| (19) |
 |
|
(11) |
EP 0 334 262 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
12.01.1994 Bulletin 1994/02 |
| (22) |
Date of filing: 20.03.1989 |
|
| (51) |
International Patent Classification (IPC)5: E21D 9/00 |
|
| (54) |
Method and apparatus for enlarging tunnels
Verfahren und Gerät zum Erweitern von Tunneln
Procédé et dispositif pour l'élargissement de tunnels
|
| (84) |
Designated Contracting States: |
|
AT CH DE ES FR GB IT LI |
| (30) |
Priority: |
24.03.1988 IT 1992188
|
| (43) |
Date of publication of application: |
|
27.09.1989 Bulletin 1989/39 |
| (73) |
Proprietor: ING. GIOVANNI RODIO & C.
IMPRESA COSTRUZIONI SPECIALI S.P.A. |
|
I-20070 Casalmaiocco (Milan) (IT) |
|
| (72) |
Inventors: |
|
- Volpe, Antonio
S. Donato Milanese
Milan (IT)
- Casagrande, Bruno
Fontanafredda
Pordenone (IT)
|
| (74) |
Representative: Marietti, Giuseppe |
|
MARIETTI e GISLON S.r.l.
Via Larga, 16 20122 Milano 20122 Milano (IT) |
| (56) |
References cited: :
DE-A- 2 747 975 FR-A- 2 305 583
|
FR-A- 2 230 806
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates to a method for enlarging existing tunnels while maintaining
services; it refers in particular, but not exclusively, to railway tunnels.
[0002] Tunnels are particularly critical points in the expansion of road and rail networks.
Tunnels are obligatory sections in which the work is of necessity carried out in confined
spaces, without the possibility of acceptable traffic diversions, and with technical
problems associated with the nature of the soil in which the expansion excavation
is being carried out.
[0003] While on a motorway it is usually possible to divert the traffic onto a contra-flow
system using the opposite carriageway at the cost of increased rush-hour congestion,
the same is not normally possible with the ordinary road network, and is never a practical
possibility with rail traffic.
[0004] Therefore upgrading of ordinary road tunnels are railway tunnels - usually for electrification,
widening the permanent way, or doubling the tracks - almost always involves suspension
of the service with consequent substitution by road services for passengers, and re-routing
of freight trains.
[0005] It is a fact that tunnels are built in general through soil whose structure and geology
varies, so excavation techniques may vary over the entire section to be enlarged.
This involves the use of different equipment, to be used according to the nature of
the soil, with high costs for waiting-time and/or transport of the equipment.
[0006] FR-A- 2 230 806 discloses a process for rebuilding the vault of an existing tunnel.
According to this document, the vault is first pre-cut and supported by a portal with
inflatable supporting means until it is demolished and removed. Train passage within
the tunnel is protected by a shield. This process also provides a further shield to
support the ground above the removed old vault. However, no actual enlargement of
the tunnel is carried out because of the risks of the ground collapsing. Moreover,
this process is implementable only in grounds made of competent rocks, throughout
the whole tunnel length which is a situation seldom met in actual operations.
[0007] It is, therefore, the aim of the present invention to present a method and apparatus
for enlarging tunnels, which are without the inconveniences and drawbacks outlined
above, and in particular, permit the continuation of services during enlarging operations.
[0008] A further aim of the present invention is to present a method of the kind indicated
above in which it is possible to use various kinds of consolidation and excavation,
so that the basic equipment can be better used for the variety of soil encountered
in the different tunnels. These are other advantages of the present invention can
be conferred by a method according to claim 1. The present invention also concerns
an apparatus according to claim 13.
[0009] The present invention will now be described with reference to some preferred, though
not limiting, embodiments and the attached drawings in which:
Fig 1 shows a cross section of the old and new profiles of the tunnel to be enlarged;
Fig 2 shows a back view of the apparatus during enlarging operations;
Fig 3 is a longitudinal section showing a train passing through the tunnel while the
latter is being enlarged;
Figs 4 and 5 show the enlarged tunnel consolidated by the infiltration or injection
method, respectively during consolidation and after the addition of the final lining;
Fig 6 shows the demolition of the old lining and a spoil wagon, used when traffic
allows;
Fig 7 shows the demolition of the direct bearings, in the previous case;
Fig 8 shows a longitudinal section of the tunnel in which the enlarging operation
is being carried out using a plurality of portal structures;
Figs 9 - 11 show a cross-section of the tunnel before, during and after the enlarging
operation;
Figs 12, 13, 15 and 16 show schematic views of the tunnel during construction of the
inverted arch; and
Fig 14 shows a top view of a detail of the section involved in the construction of
the inverted arch.
[0010] Fig 1 shows a typical case for enlargement, in which an existing railway tunnel,
shown by the reference number 1 and with a vault 2, is to be enlarged upwards (e.g.
to allow the line to be electrified) to the dimensions of the tunnel 3, with a higher
vault 4.
[0011] Other cases are the enlarging of a double line tunnel, or the enlarging of the tunnel
to increase the number of lines; these cases, although not illustrated in detail are
substantially the same as the previous example, except that the greater expansion
will be in the horizontal direction and the tracks will have to be repositioned.
[0012] Figs 2 and 3 show partial cross and side sections of the tunnel being enlarged by
a mechanical pre-cut excavation method known as the Premill (registered trade mark)
method which is particularly useful in many, clay or soft-cohesive grounds. According
to this technique, before excavating the part to be enlarged, an advance cut 17 is
made along the extrados 3 of the section of the final enlarged tunnel, with a mechanical
cutter driven by the mechanical head mounted on the self-propelled portal 8. The shape
and length of the cut is determined in advance.
[0013] More precisely, the cutter 7 with its blade 6 is moved along a rack 9 (Fig 2) supported
by the structure 8 and following the final profile of the enlarged tunnel section.
[0014] The portal structure 8, which is also of similar dimensions of the final tunnel profile,
permits the passage of trains 5 underneath; to ensure greater protection for trains
and other vehicles in transit under the portal or portals while carrying out the aforementioned
operations, the present invention provides for the presence of a protective vault
or shield 60 either fixed or mobile inside the original tunnel 1, i.e. under the portal
structure 8. As shown in fig. 3, the shield 60 is installed at least in that section
of the tunnel involved in the enlarging operation, i.e. the section between the old
lining 1 in advance of the pre-cut 17 and the newly lined enlarged section 19. Obviously,
the shield cross-section is high and wide enough to allow the unhindered passage of
through traffic.
[0015] The present invention thus allows the consolidation and lining operation to be carried
out without interruption of the services through the tunnel.
[0016] The portal structure 8 rests on the tunnel floor on two series of supports which
can be raised in turn and moved longitudinally, so as to advance self-propelled inside
the tunnel, keeping up with the consolidation and/or pre-lining operations.
[0017] The cutter 7 can move on longerons (not shown) to allow the insertion of the blade
6 into the excavation face, after which the cutter is moved along the rack 9 to make
the cut 17 along the entire extrados 3.
[0018] When the pre-cut 17 has been made, it is filled by injecting concrete (spritz-beton)
to form a protective lining 20 shown in Figs 2 and 3. In this way a stabilized shell
is obtained which is external to the final lining 16 and which has the purpose of
withstanding the pressure of the soil and providing better operating conditions for
the excavation of the soil underneath, until the definitive lining 16 is cased. Preferably
the shell is reinforced with ribs 18, shown in Fig 3, installed corresponding to the
individual lengths of pre-lining 20.
[0019] Depending on the nature of the ground, the consolidation and pre-lining can be carried
out by other means, e.g. by the method known as infiltration, or the injection of
concrete mixture (jet-grouting).
[0020] In any case, whether the Premill (Registered trade mark), infiltration or jet-grouting
technique is used, the operation is carried out by a unit with interchangeable heads
(e.g. for cutting, boring, injection, or jet-grouting) which is mounted on a mobile
fitting on the portal structure in a way similar to that described for Figs 2 and
3.
[0021] Preferably the cutter 7 and the aforementioned replaceble heads are interchangeable
on the same portal 8.
[0022] Fig 4 shows schematically the application of the aforementioned consolidation methods,
where a tool 51, moving along a portal can create a series of cylindrical consolidation
elements 50. The consolidation elements thus obtained are also shown in the following
Fig 5, which shows a train 5 passing through the enlarged tunnel, with the final lining
16 in place, together with any pre-lining 20A applied by methods already known, similar
or different to those used in applying the pre-lining 20 of Figs 2 and 3.
[0023] Referring now to Figs 6 - 11, once the consolidation has been carried out, either
by infiltration or jet-grouting, and/or after any pre-lining has been completed, the
excavation and final lining phases are proceeded with.
[0024] The excavation and demolition of the old lining and the excavation of the surrounding
ground can be accomplished in various ways.
[0025] If the traffic is sufficiently light and no vehicles will pass through the tunnel
for a time long enough, the system shown in Figs 6 and 7 can be used.
[0026] According to this system the shield must be mobile to allow access from underneath
to the old lining for its excavation and removal; in fact one spoil wagon 22 runs
on the train rails 21, carrying a hopper or upper spoil collector 23 which extends
across the full width of the original tunnel between the direct bearings 30 and 31.
The hopper is so shaped that, as can be seen in Fig 5, as it advances, it leaves behind
it the direct bearings which can be excavated later. In this way debris 24 resulting
from the demolition of the old vault lining 1 is prevented from falling on the floor
of the tunnel, which remains clean, so that the rails remain perfectly serviceable.
[0027] The excavation and demolition in this phase can be by any method which is consistent
with the type of soil and the safety regulations; the excavation equipment has not
been shown.
[0028] In Fig 7 is shown the demolition of the direct bearings 30, 31, carried out by the
use of at least one wagon 26 which moves on the wheels 29 and is fitted with a container
25 for the loading and transport of the spoil to the outside of the tunnel. The wagon
26 is equipped with one or, where necessary, two articulated digging arms 27, 28 fitted
with buckets for digging and removing the spoil to the container 25.
[0029] The shield is then returned to its protecting position, and the wagons 22 and 26
are shunted to a siding outside the tunnel mouth; thus the tunnel remains in service
for trains and other vehicles.
[0030] It should be noted that, according to the method of the invention, the operations
of consolidation, any pre-lining, excavation and application of the final lining proceed
together in such a way as to leave an unfinished section between the end 53 of the
old tunnel and the beginning of the new finished tunnel 19 (Fig 3).
[0031] The embodiments shown in Figs 8 to 11 show the operating method in practice when
the protective shield is continuously in place while the tunnel is being enlarged.
In this case, after all the service equipments (including the signals and the power
line for the train) have been located under the shield, the shield itself is installed,
preferably on service rails 62 laid at the side of the rails 21, and is made steadfast
e.g. by means jacks 66 against the inside of the lining 68 of the old tunnel (Fig
9). As previously said, the length of the shield may vary, but will be such to ensure
the completion of work on any section of the tunnel without exposing the train or
the zone of passage of the same.
[0032] With the shield in place, the aforementioned phases of the operation can proceed.
[0033] In particular and with reference to the foregoing and to Figs. N. 8 and 10, the apparatus
in this case consists of a vault or portal structure 8 fitted with bracing to strengthen
it. To this structure is fitted an external rack on which moves a tool-carrying carriage
54 which can be moved by a system of geared motors/pinions from one end of the rack
to the other, faithfully following the profile of the enlarged tunnel.
[0034] This movement is facilitated by the tool-carrying carriage being mounted on a sliding
base which allows it to follow the profile of the vault, thus compensating for any
deviations in the radius of curvature of the rack.
[0035] On the tool-carrying carriage 54 is provided a sled 72 mounted on rails that can
be inclined from the horizontal, thus allowing the cutter blade to make inclined cuts
17 along the extrados 3 of the tunnel or, replacing the cutter head with the appropriate
tool, allowing consolidation by either the infiltration, innjection or jet-grouting
method.
[0036] The sled can be moved horizontally to allow the tool head to be inserted in the withdrawn
from the excavation face.
[0037] The entire apparatus is preferably located close to a standard service portal 88'for
either normal maintenance operations or simply for the exchange of the machine head
with one of those housed inside the portal 88 itself.
[0038] In front and on the sides of the portal structure 8 (Fig 8) there are one or more
mechanical arms 55 fitted with interchangeable tools for the excavation and demolition
along the entire arc of the tunnel underneath the consolidation elements.
[0039] Besides the aforementioned function of housing equipment not being used at the excavation
face, the service portal is used for the transport and storage of the vault reinforcing
ribs 18, thus facilitating the installation of the same.
[0040] In a preferred embodiment, more than one service portal is provided, each of said
service portals being used for such operations as the installation of a temporary
lining, of a waterproof lining or of the final lining.
[0041] Both the face portal and the service portals are preferably self moving by means
of motorized walking beams fitted with anchors and stabilizers activated during the
operational phase.
[0042] Advantageously, as shown in Fig 10, service ducts and passageways can be provided
above the protective shield for the electrical supply 78, removal of expired air 80
and for pumping concrete, compressed air and water 82. Spoil dug by the mechanical
arms 55 can be removed by conveyor belts 100.
[0043] Following the excavation and dismantling of the old tunnel, work proceeds to the
installation of the temporary lining, waterproof lining, and casting of the final
lining. These phases are not shown in detail in Figs 8 to 11, in as much as the equipment
used is substantially known, but must be operated in the space remaining between the
consolidation 76 and the outside of the protective shield 60.
[0044] At the end of the operations, the tunnel takes the shape shown in Fig 11, in which
is shown the final lining 16, spaced from the protective barriers 96 which separates
the railway for the train 5 from the passageways for the excavated material being
removed by the conveyor belt 100, the dumpers 98 or decauville wagons (not shown).
[0045] The remaining figures 12 - 16 show three possible solutions for stabilizing a tunnel
without any existing inverted arch, or when the existing inverted arch cannot be used
or has to be improved.
[0046] Figs 12 - 14 show schematically three phases of construction of an inverted arch,
working under the railway.
[0047] The excavation is carried out using a pair of cutters 56 similar to those used in
the aforementioned Premill (Registered trade mark) method, mounted laterally on the
portal 8. After the excavation has been completed, the final lining is put in place
(fig. 13).
[0048] In the section involved in the operation, the train rail 21 are provided with adequate
support such as the beams 57 (Fig 14). In Fig 13 the final appearance of the tunnel
is shown.
[0049] Alternatively, recourse may be made to the installation of struts 35 (Fig 15), either
casted, or consisted of prefabricated concrete beams or metal girders. Again, in certain
conditions, a direct bearing subfoundation 49 may be laid and/or the ground may be
consolidated by pile-driving or jet-grouting, to perform the function of the inverted
arch (fig 19).
[0050] While the present invention has been described with reference to the enlargement
of railway tunnels, it is obvious that the method may also be applied, making the
necessary modifications, to road and motorway tunnels.
1. Method for enlarging existing tunnels in service, by demolishing and rebuilding succesive
tunnel sections comprising the following steps:
- preparing a portal structure (8) having a profile substantially conforming to the
final enlarged tunnel profile and provided with a tool carriage (54) movable along
guide means on said portal structure (8);
- installing a protection shield (60) within the original tunnel to protect through
traffic at least in the section of the tunnel involved in the enlarging operations;
characterised in that it further comprises the steps of:
- forming a consolidating shell (20, 50) on a profile corresponding substantially
to the extrados (3) of the final cross-section of the tunnel;
- demolishing the old lining (1) and digging up the overlying cover up to the level
of the consolidating shell (20, 50);
- lining the enlarged tunnel by casting a concrete lining (16) on said consolidating
shell (20, 50).
2. Method according to Claim 1, characterized in that said consolidating shell (20, 50)
is formed on a section of the tunnel immediately preceding that already subject to
demolition and in that the final lining (16) is applied to a section following that
subject to demolition.
3. Method according to Claim 1 or 2, characterized in that the forming of said consolidating
shell (20, 50) also consists of the construction by sample or section of an inverted
arch and/or by operations of subfoundation (49) and consolidation of the direct bearings
(30, 31) of said tunnel.
4. Method according to one of the preceding Claims, characterized in that the forming
of the consolidating shell (20, 50) and the final lining (16) is effected by tools
moving along one or more guides or racks supported by a portal structure (8), said
racks and said portal (8) being configured to conform to the final enlarged tunnel
profile.
5. Method according to Claim 4, characterized in that the portal structure (8) and guide
are made to advance step by step between the excavation face and the final lining
face.
6. Method according to one of the preceding Claims, characterized in that the forming
of the consolidating shell (20, 50) is carried out by making an advancing cut (17),
starting from the excavation face (53) of the tunnel, along the extrados (3) of the
final section of the enlarged tunnel, said cut (17) being subsequently filled with
concrete to form said consolidating shell (20) for the vault.
7. Method according to one of the Claim 1 to 5, characterized in that the forming of
the consolidating shell (50) is effected by one of the techniques known as infiltration,
injection or jet-grouting.
8. Method according to Claim 6 or 7, characterized in that a consolidating shell (20,
50) overlaps the following one for an adequate distance.
9. Method according to any of the preceding Claims, characterized in that the demolishing
step is carried out by means of at least a first wagon (22) moving along the tunnel
and having a material collector hopper (23) as wide as the original tunnel above the
height of the direct bearings (30, 31) and at least a similar second wagon (26) provided
with at least one digging arm (27, 28) and a spoil container (25).
10. Method according any of the preceding claims, characterized by carrying out the demolishing
step by means of mechanically articulated arms and tools (55) supported and actuated
by at least one portal structure (8) operating between the extrados of the protective
shield (60) and the intrados of the consolidated zone.
11. Method according to Claim 10, characterized by the removal of the spoil of the demolishing
step being made by means of dumpers (98) and/or decauville wagons and/or conveyor
belts (100), operating outside the protective shield (60).
12. Method according to any of the preceding Claims, characterized by carrying out the
said lining step by means of a plurality of portal structures (88), said structure
(88) carrying equipment for the waterproofing and final lining of the tunnel.
13. Apparatus for implementing the method according to any of the preceding Claims, comprising
a first portal structure (8) provided with a guide or rack for at least one tool carriage
(54),
at least one further service portal structure (88), and at least one protection shield
(60) set up as a fixed or mobile structure within the original tunnel lining (68)
at least in the area involved in the enlarging operation to allow the unhindered passage
of traffic with the apparatus in place,
characterised in that
said tool carriage (54) is provided with a horizontally movable sled (72), a plurality
of tool heads being interchangeably mountable on said sled (72).
14. Apparatus according to Claim 13, characterized in that the tool carriage (54) is fitted
with rack and pinion means to effect its translation along said guide, hydraulic cylinder
means to regulate its inclination, and rack and pinion means to effect a longitudinal
translation of the tool fitted on the said carriage (54), for the replacement of the
tool itself.
1. Verfahren zum Erweitern von bestehenden, im Betrieb befindlichen Tunnels durch Abreißen
und Wiederaufbauen von aufeinanderfolgenden Tunnelabschnitten, wobei das Verfahren
die folgenden Schritte aufweist:
- Vorbereiten einer Portalkonstruktion (8), die ein Profil hat, das an das endgültige
erweiterte Tunnel-profil im wesentlichen angepaßt ist, und die mit einem Werkzeugwagen
(54) versehen ist, der längs Führungseinrichtungen an der Portalkonstruktion (8) beweglich
ist;
- Installieren eines Schutzschilds (60) innerhalb des ursprünglichen Tunnels, um den
Durchgangsverkehr zumindest in dem Abschnitt des Tunnels zu schützen, der von den
Erweiterungsarbeiten betroffen ist;
dadurch gekennzeichnet,
daß es ferner die folgenden Schritte aufweist:
- Bilden eines Konsolidierungsmantels (20, 50) auf einem Profil, das im wesentlichen
der äußeren Gewölbefläche (3) des endgültigen Querschnitts des Tunnels entspricht;
- Abreißen der alten Auskleidung (1) und Aufgraben der darüberliegenden Abdeckung
bis zu dem Niveau des Konsolidierungsmantels (20, 50);
- Auskleiden des erweiterten Tunnels durch Gießen einer Betonauskleidung (16) auf
den Konsolidierungsmantel (20, 50).
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß der Konsolidierungsmantel (20, 50) auf einem Abschnitt des Tunnels gebildet wird,
der demjenigen unmittelbar vorausgeht, der bereits dem Abriß unterliegt, und daß die
Endauskleidung (16) auf einen Abschnitt aufgebracht wird, der demjenigen folgt, der
dem Abriß unterliegt.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß das Bilden des Konsolidierungsmantels (20, 50) außerdem aus der probe- oder abschnittweisen
Konstruktion eines Gegenbogens und/oder dem Einbringen von Unterfundamenten (49) und
der Konsolidierung der direkten Auflager (30, 31) des Tunnels besteht.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß das Bilden des Konsolidierungsmantels (20, 50) und der Endauskleidung (16) mit
Werkzeugen bewirkt wird, die sich entlang von einer oder mehreren Führungen oder Gestellen
bewegen, die von einer Portalkonstruktion (8) abgestützt sind, wobei die Gestelle
und das Portal (8) so ausgebildet sind, daß sie an das endgültige erweiterte Tunnelprofil
angepaßt sind.
5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
daß die Portalkonstruktion (8) und die Führung zwischen der Ausbruchfront und der
Endauskleidungsfläche schrittweise vorgetrieben werden.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß das Bilden des Konsolidierungsmantels (20, 50) durch Herstellen eines Vortriebseinschnitts
(17), ausgehend von der Ausbruchfront (53) des Tunnels entlang der äußeren Gewölbefläche
(3) des endgültigen Profils des erweiterten Tunnels durchgeführt wird, wobei der Einschnitt
(17) anschließend mit Beton verfüllt wird, um den Konsolidierungsmantel (20) für das
Gewölbe zu bilden.
7. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß das Bilden des Konsolidierungsmantels (50) durch eine der Techniken erfolgt, die
als Infiltration, Injektion oder Strahlinjektion bekannt sind.
8. Verfahren nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
daß ein Konsolidierungsmantel (20, 50) den nachfolgenden um eine angemessene Strecke
überlappt.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Abrißschritt ausgeführt wird mit mindestens einem ersten Förderwagen (22),
der sich längs des Tunnels bewegt und einen Materialsammeltrichter (23) hat, der so
breit wie der ursprüngliche Tunnel über der Höhe der direkten Auflager (30, 31) ist,
und mit mindestens einem ähnlichen zweiten Förderwagen (26), der mit mindestens einem
Grabarm (27, 28) und einem Aushubbehälter (25) versehen ist.
10. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
das Ausführen des Abrißschritts mit mechanisch angelenkten Armen und Werkzeugen (55),
die von mindestens einer Portalkonstruktion (8) abgestützt und betätigt werden, die
zwischen der äußeren Gewölbefläche des Schutzschilds (60) und der inneren Gewölbefläche
der konsolidierten Zone in Betrieb ist.
11. Verfahren nach Anspruch 10,
gekennzeichnet durch
das Entfernen des Aushubs aus dem Abrißschritt mit Wagenkippern (98) und/oder Decauville-Förderwagen
und/oder Förderbändern (100), die außerhalb des Schutzschilds (60) in Betrieb sind.
12. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
das Ausführen des Auskleidungsschritts mit einer Vielzahl von Portalkonstruktionen
(88), wobei die Konstruktionen (88) Einrichtungen zum Wasserdichtmachen und Endauskleiden
des Tunnels tragen.
13. Vorrichtung zum Durchführen des Verfahrens nach einem der vorhergehenden Ansprüche,
die folgendes aufweist:
eine erste Portalkonstruktion (8), die mit einer Führung oder einem Gestell für mindestens
einen Werkzeugwagen (54) versehen ist,
mindestens eine weitere Service-Portalkonstruktion (88) und mindestens einen Schutzschild
(60), der als feste oder mobile Konstruktion in der ursprünglichen Tunnelauskleidung
(68) zumindest in dem Bereich aufgestellt ist, der von der Erweiterungsarbeit betroffen
ist, um einen ungehinderten Verkehrsfluß zu gestatten, wenn die Vorrichtung an Ort
und Stelle ist,
dadurch gekennzeichnet,
daß der Werkzeugwagen (54) mit einem horizontal bewegbaren Schlitten (72) versehen
ist, wobei eine Vielzahl von Werkzeugköpfen an dem Schlitten (72) auswechselbar anbringbar
ist.
14. Vorrichtung nach Anspruch 13,
dadurch gekennzeichnet,
daß der Werkzeugwagen (54) mit folgenden Einrichtungen versehen ist: einer Zahnstangentriebeinrichtung,
um seine Translationsverschiebung entlang der Führung zu bewirken, einer Hydraulikzylindereinrichtung,
um seine Neigung einzustellen, und einer Zahnstangentriebeinrichtung, um eine Längsverschiebung
des an dem Wagen (54) befestigten Werkzeugs zum Auswechseln des Werkzeugs selbst zu
bewirken.
1. Procédé pour l'élargissement de tunnels existants en service, par démolition et reconstruction
de parties successives du tunnel, comprenant les étapes suivantes :
préparation d'une structure en portail (8) ayant un profil sensiblement conforme
au profil du tunnel élargi final et comportant un chariot d'outil (54) déplaçable
le long de moyens de guidage sur ladite structure en portail (8) ;
installation d'un bouclier de protection (60) dans le tunnel d'origine, pour protéger
le trafic traversant au moins dans la partie du tunnel concernée par les opérations
d'élargissement ;
caractérisé en ce qu'il comprend en outre les étapes de :
création d'une enveloppe de consolidation (20, 50) suivant un profil qui correspond
sensiblement à l'extrados (3) de la section transversale finale du tunnel ;
démolition de l'ancien revêtement (1) et excavation de la couche de recouvrement,
jusqu'au niveau de l'enveloppe de consolidation (20,50) ; et
revêtement du tunnel élargi, par coulée d'un revêtement en béton (16) sur ladite
enveloppe de consolidation (20,50).
2. Procédé suivant la revendication 1, caractérisé en ce que ladite enveloppe de consolidation
(20,50) est formée sur une partie du tunnel qui précède immédiatement la partie déjà
soumise à la démolition, et en ce que le revêtement final (16) est appliqué à une
partie qui suit celle qui a été soumise à la démolition.
3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que la création de ladite
enveloppe de consolidation (20,50) consiste également dans la construction, par élément
ou section, d'une arche inversée et/ou dans des opérations de reprise en sous-oeuvre
(49) et de consolidation des appuis directs (30,31) dudit tunnel.
4. Procédé suivant une des revendications précédentes, caractérisé en ce que la création
de l'enveloppe de consolidation (20,50) et le revêtement final (16) sont effectués
par des outils se déplaçant le long d'un ou plusieurs guidages ou rails supportés
par une structure en portail (8), lesdits rails et ladite structure en portail (8)
étant configurés en conformité au profil du tunnel agrandi final.
5. Procédé suivant la revendication 4, caractérisé en ce que la structure en portail
(8) et les guidages sont prévus pour avancer pas à pas entre la face d'excavation
et la face de revêtement final.
6. Procédé suivant une des revendications précédentes, caractérisé en ce que la création
de l'enveloppe de consolidation (20,50) est effectuée par exécution d'une taille d'avancement
(17), en partant de la face d'excavation (53) du tunnel, le long de l'extrados (3)
de la partie finale du tunnel élargi, ladite taille (17) étant ensuite remplie de
béton pour former ladite enveloppe de consolidation (20) de la voûte.
7. Procédé suivant une quelconque des revendications 1 à 5, caractérisé en ce que la
création de l'enveloppe de consolidation (50) est effectuée par une des techniques
appelées infiltration, injection ou cimentage au jet.
8. Procédé suivant la revendication 6 ou 7, caractérisé en ce qu'une enveloppe de consolidation
(20, 50) chevauche la suivante sur une distance adéquate.
9. Procédé suivant une quelconque des revendications précédentes, caractérisé en ce que
l'étape de démolition est effectuée au moyen d'au moins un premier wagon (22) se déplaçant
le long du tunnel et comportant une trémie de collecte de matériaux (23) aussi large
que le tunnel d'origine, au-dessus de la hauteur des appuis directs (30,31), et au
moins un deuxième wagon similaire (26) comportant au moins un bras d'excavation (27,28)
et un conteneur de gravats (25).
10. Procédé suivant une quelconque des revendications précédentes, caractérisé en ce que
l'étape de démolition est effectuée au moyen de bras mécaniquement articulés et d'outils
(55) supportés et actionnés par au moins une structure en portail (8) travaillant
entre l'extrados du bouclier de protection (60) et l'intrados de la zone consolidée.
11. Procédé suivant la revendication 10, caractérisé en ce que l'évacuation des gravats
de l'étape de démolition est effectuée au moyen d'engins d'évacuation (98) et/ou de
wagons Decauville et/ou de bandes transporteuses (100), fonctionnant en dehors du
bouclier de protection (60).
12. Procédé suivant une quelconque des revendications précédentes, caractérisé en ce que
ladite étape de revêtement est effectuée au moyen d'une pluralité de structures en
portail (88), lesdites structures (88) portant l'équipement pour l'exécution de l'étanchéité
à l'eau et du revêtement final du tunnel.
13. Appareil pour la mise en oeuvre du procédé suivant une quelconque des revendications
précédentes, comprenant :
une première structure en forme de portail (8) comportant un guidage ou un rail
pour au moins un chariot d'outil (54), au moins une autre structure en forme de portail
(88) pour les services, et
au moins un bouclier de protection (60) sous la forme d'une structure fixe ou mobile
à l'intérieur du revêtement (68) du tunnel d'origine, au moins dans la zone concernée
par l'opération d'élargissement, pour permettre le passage non gêné du trafic lorsque
l'appareil est en place,
caractérisé en ce que :
ledit chariot d'outil (54) comprend un coulisseau horizontalement mobile (72),
une pluralité de têtes d'outil étant montables de façon interchangeable sur le dit
coulisseau (72).
14. Appareil suivant la revendication 13, caractérisé en ce que le chariot d'outil (54)
est équipé d'un mécanisme à pignon et crémaillère pour effectuer sa translation le
long dudit guidage, d'un dispositif de vérin hydraulique pour régler son inclinaison,
et d'un mécanisme à pignon et crémaillère pour effectuer une translation longitudinale
de l'outil monté sur ledit chariot (54), en vue du remplacement de l'outil lui-même.