1. Field of the Invention
[0001] The present invention relates to a method for cooling a plurality of molten filaments
comprised of a thermoplastic resin extruded from dies and to an apparatus for carrying
out that method.
2. Description of the Related Art
[0002] Figure 3 shows a spinning apparatus for filaments comprised of polyethylene, polypropylene,
or other thermoplastic resins. In this apparatus, a plurality of molten filaments
2 extruded from a die 1 are cooled by cooling air blown from a cooling apparatus 3
and then taken up with a draft. The cooling apparatus 3 comprises a chimney 4 connected
to a die 1 in a manner so as to surround the molten filaments 2 and a gas temperature
adjustment apparatus 5 composed of coolers. The apparatus 5 cools the cooling air
to the desired temperature and the cooling air is fed to the chimney 4 by a fan 6
and is blown from the inner peripheral surface thereof through a filter 7. Reference
numeral 8 is an exhaust fan.
[0003] In the cooling of molten filaments, if the temperature of the cooling air is lowered
or the air flow rate is increased so as to rapidly cool the filaments, only the surface
of the filaments will be cooled and solidified. If a draft is applied to the filaments
in that state, the filaments will melt and break or the elasticity, tensile strength,
and other physical properties of the yarn will be lowered.
[0004] Conversely, if the filaments are gradually cooled, the filaments tend to adhere to
each other and, further, the cooling zone must be made longer, and thus the size of
the apparatus is necessarily increased.
[0005] Even if the spinning speed is increased or changed, if the cooling is carried out
without changing the length of the cooling zone, a rapid cooling becomes necessary,
and thus the problems discussed above will arise.
[0006] US-A-3,070,839 describes apparatus which varies the cooling potential of the cooling
air along the filament path by giving a greater volume to the flow of air at the upstream
region than at the downstream region. GB-A-0,998,664 describes apparatus which uses
a similar method to cool filaments, the rate of the flow downstream being greater
by about 35% than upstream.
[0007] Accordingly, an object of the present invention is to obviate the above-mentioned
problems, caused by a too rapid or gradual cooling of the filaments.
[0008] Other objects and advantages of the present invention will be apparent from the following
description.
[0009] In accordance with the present invention, there is provided a method of cooling molten
filaments in a spinning apparatus, where a plurality of molten filaments extruded
from a die are cooled by cooling air blown out from a cooling apparatus and are taken
up with a draft, wherein the temperature of the cooling air blown from the cooling
apparatus is controlled, characterised in that, the cooling zone is divided into a
plurality of sections and a cooling apparatus is provided in each section so that
the cooling effect in the upstream region of the filament path is made weaker than
the cooling effect in the downstream region of the filament path.
[0010] In accordance with the present invention, there is also provided a spinning apparatus
where a plurality of molten filaments extruded from a die are cooled by cooling air
blown from a cooling device and taken up with a draft, the cooling device being adapted
to perform greater cooling in downstream regions of the filament path than in upstream
regions of the filament path, characterised in that the cooling device comprises a
plurality of cooling apparatus and in that the strength of cooling is stepwise changed
by providing that the cooling air discharged from the different cooling apparatus
is at different temperatures along the length of the filament path.
[0011] The present invention will be better understood from the description set forth below
with reference to the accompanying drawings, in which:
Figure 1 is a schematic view of a spinning apparatus provided with a cooling apparatus
according to a first embodiment of the present invention;
Fig. 2 is a schematic view of a spinning apparatus provided with another cooling apparatus;
and
Fig. 3 is a schematic view of a conventional spinning apparatus.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0012] According to the present invention, the above-mentioned problems can be solved by
controlling the temperature and/or volume of the cooling air so that the cooling is
performed stronger, in stages or continuously, from upstream to downstream of the
filament flow.
[0013] The easiest way to change the cooling in stages and the easiest in terms of control
is to divide the cooling zone into several sections, a cooling apparatus is provided
for each section, and the cooling by the apparatus is made stronger in the downstream
direction.
[0014] To change the cooling continuously, it is possible to adopt, for example, a method
of arranging a heater in the flow path of the cooling air, and the pitch of the heating
wires is made closer in the upstream direction so as to gradually increase the amount
of heat generated, whereby the cooling air is warmed by contact with the heater and
then blown or a method of forming the flow path of the cooling air is gradually narrowed
in the upstream direction or the pressure loss is gradually increased to gradually
reduce the amount of air upstream of the filament flow.
[0015] Further, when changing the spinning speed is changed, the degree of strength of the
cooling can be changed.
[0016] Although the temperature and volume of air for cooling largely depend upon the materials
to be extruded, the temperature of the molten filaments, and the extrusion rate, the
temperature of the cooling air is preferably -20°C to 140°C, more preferably 0 to
100°C, and the volume of the cooling air to be blown is preferably 2 to 40 m
3/kg, more preferably 5 to 25 m
3/kg The materials to be extruded include, for example, polyethylene, polypropylene
and other thermoplastic resins.
[0017] The molten filaments extruded from the die are cooled weakly at the upstream portion
of the cooling zone and strongly at the downstream portion thereof. When the cooling
is weak, the temperature difference of the filament surface and interior is made small
and the draft is applied in that state to ensure that, a uniform draft is applied,
whereby the elasticity, tensile strength, and other physical properties of the filaments
are improved, and melting and breaking occur with difficulty. Further, at the downstream
side where the filaments are taken up, a strong cooling is performed for solidification,
so adhesion between filaments occurs with difficulty. Thus, it is possible to make
the cooling zone shorter than with gradual cooling of the whole.
[0018] If the spinning speed is increased, it is possible to avoid rapid cooling by increasing
the ratio of the weak cooling in the cooling zone. Note that when the spinning speed
is reduced, there is no problem if the ratios of the strength of the cooling are varied.
Embodiments
[0019] Figure 1 shows a first embodiment of two-stage cooling apparatus according to the
present invention, having the same construction as that of the cooling apparatus 3
provided in the spinning apparatus as shown in Fig. 3, except for the filter at the
bottom of the cooling apparatus 3, i.e., is comprised of a chimney 12 and a gas temperature
adjustment apparatus 13 comprised of coolers. The said apparatus sends the cooling
air, cooled to a desired low temperature by the top stage gas temperature adjustment
apparatus 13, to the chimney 12 by the fan 14 and connects this to a cooling apparatus
11 so that it is blown out from the inside peripheral surface. It blows out relatively
high temperature cooling air from the top stage and relatively low temperature cooling
air from the bottom stage thus slowly cooling the molten filaments 2 at the top stage
and rapidly cooling them at the bottom stage.
[0020] For example, when polyethylene is used, the preferable cooling conditions are as
follows:
Top stage: 30°C x 8 m
3/kg
Bottom stage: 10°C x 8 m
3/kg
[0021] In the above-mentioned embodiment, the temperature of the cooling air blown out from
the bottom stage is made lower than that at the top stage, but it is also possible
to change the air amounts of the fans 6 and 14 so as to increase the amount of air
of the bottom stage over the top stage and further possible to change both the temperature
and air amount of the top and bottom stages.
[0022] A typical example of the cooling condition when polyethlene is used is as follows:
Top stage: 20°C x 4 m
3/kg
Bottom stage: 10°C x 8 m
3/kg
[0023] The embodiment shown in Fig. 2 is comprised in the same way as the apparatus shown
in Fig. 1 outside of the fact that the fan 6 in the apparatus shown in Fig. 1 is made
an exhaust fan and the cooling air of the bottom stage is exhausted from the fan 16,
heated by the heater 17, then blown out from the top stage. As a result, cooling air
of a relatively higher temperature is blown out from the top stage and cooling air
of a relatively lower temperature is blown out from the bottom stage.
[0024] The above-mentioned embodiment shows an example where two cooling apparatuses are
connected for two-stage cooling, but in another embodiment three or more cooling apparatuses
may be connected for multi-stage cooling and in still another embodiment heating wires
may be wound around the internal peripheral surface of the chimney and the pitch made
gradually closer upstream so as to heat the cooling air and give it a temperature
gradient so that the temperature gradually falls downstream, whereby the cooling can
be made continuously stronger downstream. Further, in another embodiment, the flow
path of the cooling air can be formed to be gradually narrower upstream or formed
so that the pressure loss gradually increases, thereby gradually decreasing the amount
of the cooling air upstream.
[0025] As mentioned above, according to the method of claim 1, the cooling is made performed
weaker at the upstream side and stronger at the downstream side, thereby improving
the elasticity, tensile strength, and other physical properties of the filaments without
enlarging the apparatus and further making molten breakage difficult and preventing
mutual adhesion of filaments.
[0026] According to the method of claim 2, even if the spinning speed is changed to make
it faster, the ratio of the weaker portion of the cooling at the cooling zone can
be increased so as to avoid rapid cooling or elongation of the cooling zone.
[0027] In the cooling apparatus of claim 6, a plurality of cooling apparatuses are connected
so as to strengthen the cooling in stages downstream.
[0028] In the cooling apparatus of claim 7, the temperature of the cooling air can be given
a temperature gradient descending in the downstream direction and the cooling can
be made continuously stronger downstream.
[0029] In the cooling apparatus according to claim 8, the volume of the cooling air can
be gradually increased downstream and thus the cooling can be made continuously stronger
downstream.
1. A method of cooling molten filaments (2) in a spinning apparatus, where a plurality
of molten filaments (2) extruded from a die (1) are cooled by cooling air blown out
from a cooling apparatus (3,11) and are taken up with a draft, wherein the temperature
of the cooling air blown from the cooling apparatus (3,11) is controlled, characterised
in that the cooling zone is divided into a plurality of sections and a cooling apparatus
is provided for each section so that the cooling effect in the upstream region of
the filament path is stepwise made weaker than the cooling effect in the downstream
region of the filament path.
2. A method of cooling molten filaments as claimed in claim 1, further comprising the
steps of changing the speed at which the filaments are spun by the spinning apparatus,
whereby the degree of strength of the cooling is changed, the amount of time the filaments
are exposed to the air being proportional to said speed, and of adjusting the cooling
effect by changing the degree of cooling by the cooling apparatus at each section.
3. A method according to claim 1 or 2, wherein the temperature of the cooling air is
stepwise controlled by heater means.
4. A spinning apparatus where a plurality of molten filaments (2) extruded from a die
(1) are cooled by cooling air blown from a cooling device (3,11) and taken up with
a draft, the cooling device (3,11) being adapted to perform greater cooling in downstream
regions of the filament path than in upstream regions of the filament path,
characterised in that the cooling device comprises a plurality of cooling apparatus
and in that the strength of cooling is stepwise changed by providing that the cooling
air discharged from the different cooling apparatus is at different temperatures along
the length of the filament path.
5. An apparatus according to claim 4 wherein there is provided a heater for each cooling
section in the flow path of the cooling air, said heater including heating wires arranged
such that the pitch of the heating wire is closer in the upstream region of the filament
path than in the downstream region, whereby the temperature of the cooling air is
higher near the extruding die than near the take up means.
6. An apparatus according to claim 4 or 5, wherein the flow path of the cooling air in
each cooling section is formed so as to be more restricted in the upstream parts of
the filament path or is formed so as to have increased pressure loss in those parts.
1. Verfahren zur Abkühlung von aus der Schmelze gesponnenen Fäden (2) in einer Spinnvorrichtung,
wobei eine Vielzahl von aus einer Matrize (1) extrudierten, aus der Schmelze gesponnenen
Fäden durch eine aus einer Kühlvorrichtung (3, 11) ausströmende Kühlluft abgekühlt
und unter Verstreckung aufgenommen wird, worin die Temperatur der aus der Kühlvorrichtung
(3, 11) ausströmenden Kühlluft kontrolliert wird, dadurch gekennzeichnet, daß die
Kühlzone in eine Vielzahl von Bereichen unterteilt ist und eine Kühlvorrichtung für
jeden Bereich vorgesehen ist, so daß der Kühleffekt im stromaufwärts befindlichen
Bereich der Fadenbahn schwächer als der Kühleffekt im stromabwärts befindlichen Bereich
der Fadenbahn ist.
2. Verfahren zur Abkühlung von aus der Schmelze gesponnenen Fäden nach Anspruch 1, das
darüber hinaus eine Änderung der Geschwindigkeit, bei der die Fäden durch die Spinnvorrichtung
gesponnen werden, wobei der Grad der Stärke der Kühlung geändert wird, und die Zeitspanne,
die die Fäden der Luft ausgesetzt werden, proportional zu der Geschwindigkeit ist,
und Einstellen der Kühleffektes durch Änderung des Grades der Kühlung durch die Kühlvorrichtung
an jedem Bereich, umfaßt.
3. Verfahren nach Anspruch 1 oder 2, worin die Temperatur der Kühlluft schrittweise durch
Heizvorrichtungen kontrolliert wird.
4. Spinnvorrichtung, in der eine Vielzahl von aus einer Matrize (1) extrudierten, aus
der Schmelze gesponnenen Fäden (2) von einer aus einer Kühlvorrichtung (3, 11) ausströmenden
Kühlluft abgekühlt und unter Verstreckung aufgenommen wird, wobei die Kühlvorrichtung
(3, 11) so eingestellt ist, im stromabwärts befindlichen Bereich der Fadenbahn eine
stärkere Abkühlung als in den stromaufwärts befindlichen Bereichen der Fadenbahn durchzuführen,
dadurch gekennzeichnet, daß die Kühlvorrichtung eine Vielzahl von Kühlgeräten umfaßt
und daß die Stärke der Kühlung dadurch schrittweise geändert wird, daß die von den
unterschiedlichen Kühlgeräten ausströmende Luft unterschiedliche Temperaturen entlang
der Länge der Fadenbahn aufweist.
5. Vorrichtung nach Anspruch 4, wobei im Strömungsweg der Kühlluft eine Heizung für jeden
Kühlungsbereich im Strömungsweg vorgesehen ist, wobei die Heizung Heizungsdrähte beinhaltet,
die so angeordnet sind, daß der Abstand des Heizungsdrahtes im stromaufwärts befindlichen
Bereich der Fadenbahn enger als im stromabwärts befindlichen Bereich ist, wodurch
die Temperatur der Kühlluft in der Nähe der Extrusionsmatrize höher als in der Nähe
der Aufnahmevorrichtung ist.
6. Vorrichtung nach Anspruch 4 oder 5, wobei der Strömungsweg der Kühlluft in jedem Kühlungsbereich
so ausgebildet ist, daß dieser in den stromaufwärts befindlichen Teilen der Fadenbahn
mehr eingeschränkt ist oder so ausgebildet ist, daß in diesen Teilen ein erhöhter
Druckverlust vorliegt.
1. Procédé pour le refroidissement de filaments fondus (2) dans un appareil à filer,
dans lequel une pluralité de filaments fondus (2) extrudés dans une filière (1) sont
refroidis par de l'air de refroidissement soufflé par un appareil de refroidissement
(3, 11) et sont repris par un courant d'air, dans lequel la température de l'air de
refroidissement soufflé par l'appareil de refroidissement (3, 11) est réglée, caractérisé
en ce que la zone de refroidissement est divisée en une pluralité de segments et qu'il
est prévu un appareil de refroidissement pour chaque segment, de sorte que l'effet
de refroidissement dans la zone amont du trajet du filament est pas à pas rendu plus
faible que l'effet de refroidissement dans la zone aval du trajet du filament.
2. Procédé pour le refroidissement de filaments fondus suivant la revendication 1, comprenant,
par ailleurs, les étapes consistant à modifier la vitesse à laquelle les filaments
sont filés par l'appareil à filer, le degré d'intensité du refroidissement étant ainsi
modifié, le laps de temps pendant lequel les filaments sont exposés à l'air étant
proportionnel à ladite vitesse, et à régler l'effet de refroidissement en modifiant
le degré de refroidissement par l'appareil de refroidissement à chaque segment.
3. Procédé pour le refroidissement de filaments fondus suivant la revendication 1 ou
2, dans lequel la température de l'air de refroidissement est réglée pas à pas par
des moyens chauffants.
4. Appareil à filer, dans lequel une pluralité de filaments fondus (2) extrudés dans
une filière (1) sont refroidis par de l'air de refroidissement soufflé par un dispositif
de refroidissement (3, 11) et repris par un courant d'air, le dispositif de refroidissement
étant adapté pour réaliser un refroidissement plus intense dans les zones avant du
trajet du filament que dans les zones amont du trajet du filament, caractérisé en
ce que le dispositif de refroidissement comprend une pluralité d'appareils de refroidissement
et en ce que l'intensité de refroidissement est modifiée pas à pas en prévoyant que
l'air de refroidissement évacué des différents appareils de refroidissement est à
des températures différentes sur la longueur du trajet du filament.
5. Appareil suivant la revendication 4, dans lequel il est prévu un élément chauffant
pour chaque segment du trajet de circulation de l'air de refroidissement, ledit élément
chauffant comportant des fils chauffants disposés de manière que la distance entre
les fils chauffants est plus étroite dans la zone amont du trajet du filament que
dans la zone aval, la température de l'air de refroidissement étant ainsi supérieure
près de la filière d'extrusion que près du moyen de reprise.
6. Appareil suivant la revendication 4 ou 5, dans lequel le trajet de l'air de refroidissement
dans chaque segment de refroidissement est formé de manière à être plus restreint
dans les parties amont du trajet du filament ou est formé de manière à présenter une
perte de pression accrue dans ces parties.