11 Veröffentlichungsnummer:

0 340 537 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89107049.2

(5) Int. Cl.4: C10B 53/00 , F23G 5/027

(22) Anmeldetag: 19.04.89

3 Priorität: 04.05.88 DE 3815186

Veröffentlichungstag der Anmeldung: 08.11.89 Patentblatt 89/45

Benannte Vertragsstaaten:
AT CH DE ES FR GB GR IT LI NL SE

- 71) Anmelder: Siemens Aktiengesellschaft Wittelsbacherplatz 2 D-8000 München 2(DE)
- Erfinder: May, Karl-Wolfgang Kurt-Moosdorf-Strasse 6 D-6368 Bad Vilbel(DE)

(54) Anlage zur Entsorgung von Abfallstoffen.

57 Die Anlage umfaßt eine Schwelvorrichtung (1) und eine Brennkammer (18) mit Nachbrennkammer (8). Das Heizgas (h) für die Schwelvorrichtung (1), vorzugsweise ein Inertgas oder Luft, wird im geschlossenen Kreislauf geführt und dabei in einem Wärmetauscher (12) an der Nachbrennkammer (8) erwärmt. Die Innenauskleidung (17) der Nachbrennkammer (8) ist, zumindest teilweise, für eine Temperatur von 1200 °C und darüber ausgelegt. Die Verweilzeit der Rauchgase in einer Verweilstrecke (S) innerhalb der Nachbrennkammer (8) beträgt 1 bis 5 sec.. Vorzugsweise liegt die Verweilstrecke (S) - in Strömungsrichtung der Rauchgase gesehen - vor dem Wärmetauscher (12). Damit dürfen sich die Rauchgase innerhalb des Wärmetauschers (12) unter 1200 °C abkühlen, was von Vorteil ist.

kühlen, was von Vorteil ist.

Xerox Copy Centre

FIG 2

Anlage zur Entsorgung von Abfallstoffen

10

15

25

40

45

Die Erfindung betrifft eine Anlage zur Entsorgung von Abfallstoffen mit einer Schwelvorrichtung und einer Brennkammer.

Unter Abfallstoffen im Sinne der Erfindung werden Haus- und Industriemüll ebenso verstanden wie chemische Rückstände, die organische und anorganische Schadstoffe, wie Dioxine verschiedener Art, Furane, C_nH_m (mit n, m = 1, 2, 3 ...) etc., entwickeln.

Es stehen Anlagen zur Verbrennung von Sondermüll in Gebrauch, bei denen einem Drehrohrofen (Brennkammer) eine Nachbrennkammer nachgeschaltet ist. In dieser Brennkammer herrscht eine Temperatur zwischen 1200 und 1400 °C; darin ist eine Gasgeschwindigkeit von 2 - 4 m/sec feststellbar.

Aus der britischen Patentschrift 1 562 492 ist eine Anlage bekannt, bei der der aus einem Pyrolysereaktor gewonnene Pyrolysereststoff nach dem Zermahlen durch ein Sieb in einen gröberen Grobanteil (anorganische Stoffe wie Metalle, Keramik, Glas) und einen feineren Grobanteil (hoher Anteil kohlenstoffhaltiger Komponenten) getrennt wird. Aus dem gröberen Grobanteil werden die Metalle abgeschieden. Der feinere Grobanteil wird zusammen mit Kohle in weiter zerkleinerter Form in einer Brennkammer verbrannt und auf diese Weise thermisch genutzt. Der Brennkammer wird auch das bei der Pyrolyse entstehende Schwelgas, aus dem in einem Kondensator zunächst Öle und Teere mit hohem Siedepunkt entfernt wurden, zugeleitet. Anzumerken ist hier, daß die Brennkammer in der bekannten Anlage der Feuerraum einer herkömmlichen Verbrennungsanlage für Kohle ist, und daß die Brennkammer Teil eines Dampferzeugers ist. Wegen der in einer solchen Anlage üblichen Kühlung der Brennkammerwände ist zu befürchten, daß Schadstoffe sowohl aus der Verbrennung des Pyrolysegases als auch aus der Verbrennung des Pyrolysereststoffes die verwendete Verbrennungsanlage zumindest teilweise passieren können und an die Umgebung (Luft, Sonderdeponien, Erde, Wasser) abgegeben werden. Das gilt beispielsweise für organische Schadstoffe, aber auch für Cadmium-. Schwermetalloxide wie Zink-. Quecksilber- und Thalliumoxid. Über die Verwendung der Brennkammer-Reststoffe ist in dieser Druckschrift nichts ausgesagt.

Ziel einer jeden Abfallentsorgung muß es sein, die Umweltbelastung mit Schadstoffen, welcher Art auch immer, möglichst gering zu halten.

Diesem Stand der Technik gegenüber besteht die Aufgabe der Erfindung darin, die Beheizungseinrichtung der Schwelvorrichtung ganz oder weitgehend korrosionsfrei zu halten. Weiter soll die die Umwandlung von umweltschädlichen Gasen in solche mit geringem Schadstoffgehalt ermöglicht werden. Dies soll mit konstruktiv einfachen Mitteln erreicht werden.

Zur Lösung dieser Aufgabe ist erfindungsgemäß vorgesehen, daß die Brennkammer mit einer Nachbrennkammer versehen ist, daß das Heizgas für die Schwelvorrichtung im geschlossenen Kreislauf durch die Schwelvorrichtung und einen Wärmetauscher an der Nachbrennkammer geführt wird, daß die Nachbrennkammer innenseitig mit einer Auskleidung versehen ist, die für eine Rauchgastemperatur von 1200 °C oder darüber ausgelegt ist, und daß die Verweilzeit der Rauchgase in einer Verweilstrecke in der Brennkammer und der Nachbrennkammer 1 bis 5 sec beträgt. Die Verweilstrekke kann hierbei bis zu oder auch in den vom Wärmetauscher gekühlten Bereich der Nachbrennkammer hineinreichen.

Eine erste bevorzugte Ausführungsform zeichnet sich dadurch aus, daß die Brennkammer und die Nachbrennkammer in einer geraden Linie ausgerichtet sind, und daß der Wärmetauscher am unteren Ende der Nachbrennkammer angeordnet ist.

Eine zweite bevorzugte Ausführungsform zeichnet sich dadurch aus, daß die Nachbrennkammer U-förmig ausgebildet ist und einen an die Brennkammer angeschlossenen ersten Schenkel und einen zweiten Schenkel aufweist, und daß der Wärmetauscher am zweiten Schenkel, vorzugsweise an dessen Ende, angeordnet ist.

In beiden Ausführungsformen liegt die Verweilstrecke in der Nachbrennkammer, und zwar jeweils - in Strömungsrichtung der Rauchgase gesehen - vor dem Wärmetauscher.

Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.

Die erfindungsgemäße Anlage gewährleistet, daß die in die Nachbrennkammer mit einer Temperatur von über 1200° C, z. B. von ca. 1400° C eintretenden schadstoffbeladenen Gase bei einer Verweilzeit von 1 - 5 sec, vorzugsweise von 2 sec, bei einer Temperatur von 1200 °C und darüber gehalten werden. Während dieser Verweilzeit werden die hochmolekularen organischen Schadgasinhaltstoffe in niedermolekulare Gasbestandteile aufgespalten. Weiterhin ergibt sich der Vorteil, daß die dem Rauchgas der Nachbrennkammer entzogene Wärme dem Schwelvorgang dadurch zugute kommt, daß das Heizgas der Schwelvorrichtung in der Nachbrennkammer erwärmt wird. Dies erfolgt in einem geschlossenen Kreislauf zwischen der Schwelvorrichtung und dem Wärmetauscher der Nachbrennkammer, so daß eine Korrosion in den

15

heizgasberührten Teilen dieses Kreislaufs vermieden wird.

Ausführungsbeispiele der erfindungsgemäßen Anlage sind in zwei Figuren dargestellt, und zwar zeigt

Fig. 1 die Zuordnung einer Schwelvorrichtung zu einer Brennkammer mit Nachbrennkammer in geradliniger Anordnung und

Fig. 2 die Zuordnung bei U-förmiger Nachbrennkammer.

Im Beispiel nach Fig. 1 dient als Pyrolysereaktor oder Schwelvorrichtung 1 eine Schweltrommel, der das zu verschwelende Gut (Abfall) G über eine Schnecke 2 zugeführt wird. Das verschwelte Gut, nämlich Schwelgas s und fester Pyrolysereststoff r, verläßt in Richtung des Pfeils 3 die Schweltrommel I über eine Austragsvorrichtung 3A. Das für den Schwelvorgang benötigte Heizgas h gelangt über eine Zuführung 4 in die Trommel 1, und es wird von dort über einen Abzug 5 abgeführt.

Der Schwelvorrichtung 1 samt Austragsvorrichtung 3A ist über Leitungen 3R, 3S eine Haupt- oder Hochtemperatur-Brennkammer 18 zugeordnet, die vorzugsweise stehend angeordnet ist. Ihr Brenner ist mit dem Schwelgas s und zusätzlich mit dem in einer Reststoffaufbereitungsanlage 26 zerkleinerten, von einer Schnecke 27 ausgetragenen Pyrolysereststoff r beaufschlagt. Eine zugehörige Nachbrennkammer, die mit 8 bezeichnet ist, ist geradlinig darunter angeordnet. In die Nachbrennkammer 8 gelangen die schadstoffbeladenen Rauchgase vorwiegend aus der Hochtemperatur-Brennkammer 18 (alternativ: aus anderer Quelle) in Richtung des Pfeiles 9. Sie verlassen die Nachbrennkammer 8 durch einen Stutzen 10 in Richtung des Pfeiles 11. Dem Stutzen 10 ist ein Abhitzedampferzeuger 30 und diesem ein Rauchgasfilter 32 und eine (nicht gezeigte) Rauchgasreinigungsanlage nachgeordnet. An beiden Anlagen 30, 32 kann Flugstaub abgenommen werden, was durch Pfeile 34 bzw. 36 gekennzeichnet ist. Die Nachbrennkammer 8 ist am unteren Ende mit einem Schlackenauslauf oder Austrag 40 zum selbsttätigen Ablauf schmelzflüssiger Schlacke versehen. Die Schlacke wird in ein Wasserbad 42 geleitet, wo sie zu einer glasartigen Substanz erstarrt.

Am unteren Bereich der Nachbrennkammer 8 ist ein mit der allgemeinen Bezugsziffer 12 versehener Wärmetauscher angeordnet. In diesen mündet eine Leitung 7a, die aus dem Abzug 5 über eine Leitung 7 gespeist wird. Sie führt dem Wärmetauscher 12 über den oberen Zuleitungs-Stutzen 22 aus dem Heizgasabzug 5 der Schwelvorrichtung 1 kommendes Heizgas h, vorzugsweise Luft, ein Inertgas oder dergleichen, zu. Dieses Heizgas h wird aus dem unteren Ableitungs-Stutzen 23 unter der Wirkung eines Gebläses 28 über Leitungen 6

und 6a wieder dem Eingang der Schweltrommel 1 zugeführt. Somit ist ein geschlossener Kreislauf über die Schwelvorrichtung 1, die Leitungen 7 und 7a, dem Wärmetauscher 12 und die Leitungen 6a und 6 gegeben. Hierdurch kann die Korrosionsanfälligkeit der genannten heizgasberührten Teile klein gehalten werden.

Die Rauchgase treten in Richtung des Pfeiles 9 mit einer Temperatur von über 1200° C, z. B. mit ca. 1400° C, in den oberen Abschnitt 8a der Nachbrennkammer 8 ein. Sie haben eine niedrige Strömungsgeschwindigkeit, z. B. von etwa 2 - 4 m/sec, so daß bei Berücksichtigung des Durchmessers der Nachbrennkammer 8 eine Verweilzeit der Gase in der Nachbrennkammer 8 von 1 bis 5 sec, vorzugsweise von 2 sec, gegeben ist, bevor eine Abkühlung auf oder unter 1200 °C erfolgt. Die entsprechende Verweilstrecke ist mit S bezeichnet. Die Länge L bzw. Höhe der Nachbrennkammer 8 ist hier derart gewählt, daß bei der gegebenen Geschwindigkeit der Gase in der Nachbrennkammer 8 die genannte Verweilzeit von 1 bis 5 sec vor dem Eintritt in den Wärmetauscher 12 gewährleistet ist. Hierbei ist es gleichgültig, ob dann später im Wärmetauscher 12 die Temperatur des Gases auf 1200 °C oder weniger herabgesunken ist; wesentlich ist nur, daß die Verweilzeit von 1 bis 5 sec bei ca. 1200° C eingehalten wird. Dies bedeutet, daß die Länge L des Wärmetauschers 8 einerseits und die Strömungsgeschwindigkeit der Gase innerhalb desselben andererseits so gewählt werden, vorstehend genannten Parameter daß (Verweilzeit und Temperatur) eingehalten werden.

Sinkt die Rauchgastemperatur außerhalb der Verweilstrecke S auf unter 1000° C, so tritt ein "Einfrieren" der Schlacketropfen auf. Wegen der senkrechten, gradlinigen Anordnung ist aber auch dann kein "Anbacken" an den Innenwänden der Nachbrennkammer 8 zu befürchten. Schlacke tropft von der Tropfkante am Ende der Brennkammer 18 frei über den Austrag 40 in das Wasserbad 42. Als Vorteil ist auch anzusehen, daß Schlacke und Gasströmungsrichtung in der Nachbrennkammer 8 gleich sind.

Zur Kontrolle der Temperaturführung in den einzelnen Bereichen der Nachbrennkammer 8 können Temperaturmeßeinrichtungen 14 vorgesehen werden, von denen nur die unterste Temperaturmeßeinrichtung 14b im unteren Abschnitt 8b der Nachbrennkammer 8 gezeigt ist.

Der Wärmetauscher 12 selbst kann als zylindrisches Ringteil mit einer Außenwand 15 sowie einer Innenwand 16 ausgebildet sein, wobei die Innenwand 16 eine den Innenraum bildende Auskleidung 17 besitzt.

Da die Temperatur der Gase aus der Brennkammer 18, die in Richtung des Pfeiles 9 in die Nachbrennkammer 8 strömen, unterschiedlich aus-

55

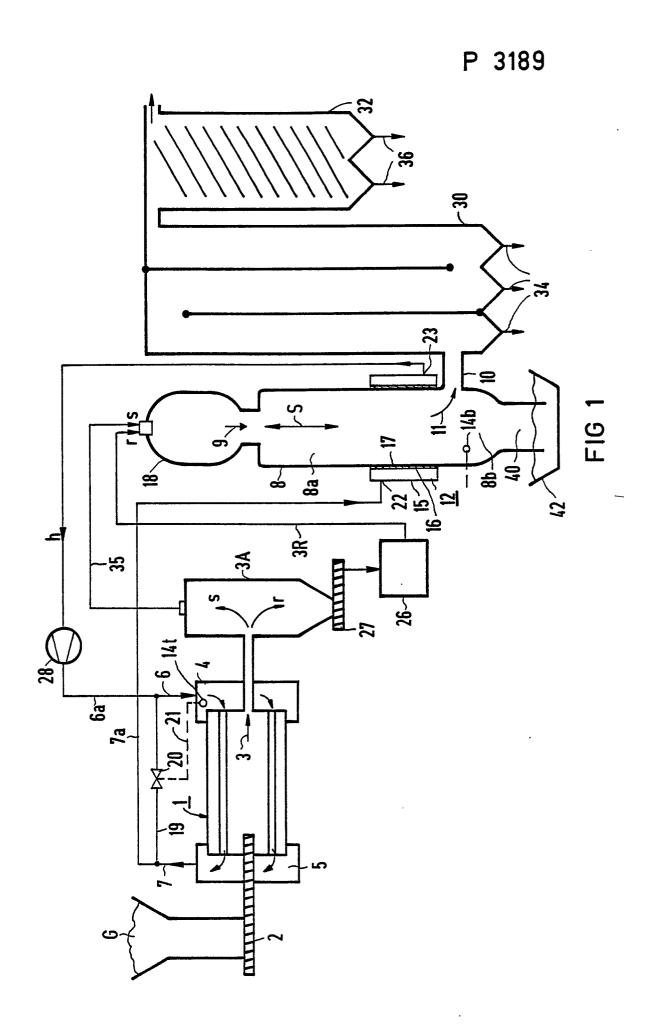
45

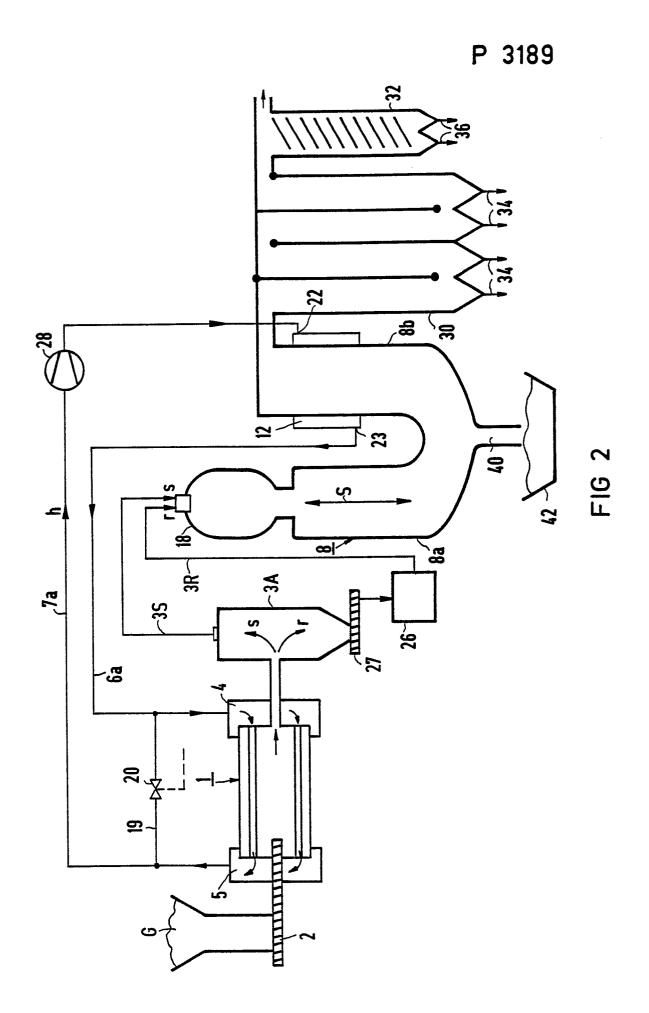
10

35

45

fallen kann, und da bei bestimmter Strömungsgeschwindigkeit die gewünschte Verweilzeit in der Nachbrennkammer 8, und zwar bis zum oder bis in den Bereich des Wärmeaustauschers 12, einzuhalten ist, ist zwischen den beiden Leitungen 6 und 7, beispielsweise in Nähe der Nachbrennkammer 8, eine Bypassleitung 19 mit einem Steuerventil 20 vorgesehen. Dies steht vorzugsweise über eine Steuerleitung 21 mit einer Temperaturmeßeinrichtung 14t in Verbindung. Über den Bypaß 19 und das Ventil 20 wird der Energiebedarf des Pyrolysereaktors 1 geregelt. Läßt die Temperaturmeßeinrichtung 14t erkennen, daß in der Zuführung 4 die vorgegebene Temperatur unterschritten wird, so steuert das Ventil 20 einen Teil des z. B. auf etwa 750 C liegenden inerten Kreislauf-Heizgases h des Leitungsteils 6a über die Bypasslei tung 19 in den Leitungsteil 7a und den Stutzen 22 des Wärmetauschers 12. Dieser Teil mischt sich mit den über die Leitung 6 mit einer Temperatur von etwa 250° C ankommenden Heizgasen der Schwelvorrichtung 1. Das Rauchgas verläßt die Nachbrennkammer 8 über den Stutzen 10; es wird in dem nachgeschalteten Abhitzedampferzeuger 30 thermisch genutzt.


Die geradlinige Anordnung der Brennkammer 18 und der Nachbrennkammer 8 kann von Nachteil sein, wenn es auf eine geringe Bauhöhe ankommt. In diesem Fall kann eine U-förmig gestaltete Nachbrennkammer 8 verwendet werden, wie aus Fig. 2 hervorgeht. Gleiche Bauteile sind mit denselben Bezugszeichen belegt wie in Fig. 1. In diesem Fall ist der erste Schenkel 8a der Nachbrennkammer 8 geradlinig mit der Hauptbrennkammer 18 verbunden. Der Wärmetauscher 12, der wieder zylindrisch ausgeführt sein kann, ist am zweiten Schenkel 8b, beispielsweise an dessen Ende, angeordnet. Zwischen den Schenkeln 8a, 8b liegt am tiefsten Punkt der Austrag 40 für die schmelzflüssige Schlacke. Auch bei der in Fig. 2 gezeigten Ausführungsform ergibt sich der Vorteil, daß innerhalb des Wärmetauschers 12 die Rauchgase auf z.B. 900 bis 1200 C abgekühlt werden können, ohne daß dies nachteilige Folgen für die Verweilstrecke S am Eingang hätte.


Ansprüche

1. Anlage zur Entsorgung von Abfallstoffen mit einer Schwelvorrichtung und einer Brennkammer, dadurch gekennzeichnet, daß die Brennkammer (18) mit einer Nachbrennkammer (8) versehen ist, daß das Heizgas (h) für die Schwelvorrichtung (1) im geschlossenen Kreislauf durch die Schwelvorrichtung (1) und einen Wärmetauscher (12) an der Nachbrennkammer (8) geführt wird, daß die Nachbrennkammer (8) innenseitig mit einer Auskleidung

- (17) versehen ist, die für eine Rauchgastemperatur von 1200 °C oder darüber ausgelegt ist, und daß die Verweilzeit der Rauchgase in einer Verweilstrecke (S) in der Brennkammer (18) und der Nachbrennkammer (8) 1 bis 5 sec beträgt.
- 2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmetauscher (12) in die Wand der Nachbrennkammer (8) integriert ist.
- 3. Anlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wärmetauscher (12) eine obere Zu- und eine untere Ableitung (22, 23) für das Heizgas (h) aufweist.
- 4. Anlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Brennkammer (18) und die Nachbrennkammer (8) in einer geraden Linie ausgerichtet sind, und daß der Wärmetauscher (12) am unteren Ende der Nachbrennkammer (8) angeordnet ist (Fig. 1).
- 5. Anlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Nachbrennkammer (8) U-förmig ausgebildet ist und einen an die Brennkammer (18) angeschlossenen ersten Schenkel (8a) und einen zweiten Schenkel (8b) aufweist, und daß der Wärmetauscher (12) im zweiten Schenkel (8b), vorzugsweise an dessen Ende, angeordnet ist (Fig. 2).
- 6. Anlage naach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Nachbrennkammer (8) am unteren Teil mit einem Austrag (40) für den selbsttätigen Ablauf schmelzflüssiger Schlacke versehen ist.

4

EUROPÄISCHER RECHERCHENBERICHT

89 10 7049 ΕP

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A,D	GB-A-1 562 492 (FO PRODUCTS) * Ansprüche 8-16; F	OSTER WHEELER POWER Figur *	1-6	C 10 B 53/00 F 23 G 5/027
A	DE-A-3 400 976 (SA * Anspruch; Figur '	AARBERG-HÖLTER) *	1-6	
Α	DE-A-3 039 469 (Hč * Anspruch; Figur '	OLTER)	1-6	
A	US-A-4 395 958 (CA * Ansprüche 1-4,17	AFFYN et al.) ,19,21,24-28; Figur 2	1-6	
				RECHERCHIERTE
				SACHGEBIETE (Int. Cl.4)
	_			C 10 B F 23 G
	<u> </u>			
Der vo		de für alle Patentansprüche erstellt		
Recherchenort DEN HAAG		Abschlußdatum der Recherche 20-07-1989	MEER	Prüfer RTENS J.

KATEGORIE DER GENANNTEN DOKUMENTE

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze
 E: älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument