(19)
(11) EP 0 341 394 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
15.11.1989  Patentblatt  1989/46

(21) Anmeldenummer: 89104394.5

(22) Anmeldetag:  13.03.1989
(51) Internationale Patentklassifikation (IPC)4F23J 3/02, B08B 9/02, B08B 7/02, B08B 1/04, B28D 1/18
(84) Benannte Vertragsstaaten:
AT BE CH DE ES FR GB IT LI LU NL

(30) Priorität: 12.03.1988 DE 3808376

(71) Anmelder: FRIEDRICH SCHIEDEL KAMINWERKE GESELLSCHAFT M.B.H.
A-4542 Nussbach (AT)

(72) Erfinder:
  • Foullois, Bernhard, Dipl.-Ing.
    D-2323 Nehmten (DE)

(74) Vertreter: Dr. Elisabeth Jung Dr. Jürgen Schirdewahn Dipl.-Ing. Claus Gernhardt 
Postfach 40 14 68
80714 München
80714 München (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Vorrichtung zum Ausfräsen eines auszufütternden Schornsteins sowie Anwendungen


    (57) Die Erfindung bezieht sich auf eine Vorrichtung zum Ausfräsen eines auszufütternden Schornsteins mittels eines Fräswerkzeugs (16), das zusammen mit seinem Antriebs­motor im lichten Querschnitt des Schornsteins auf und ab bewegbar ist. Nach der Erfindung ist vorgesehen, daß der Antriebsmotor ein Fluidmotor (12) ist, der über einen Fluid­schlauch (14) von einer außerhalb des Schornsteins (2) an­geordneten Fluidquelle (10) beaufschlagt ist.
    Die Erfindung bezieht sich ferner auf ein Verfahren zum Ausfräsen eines auszufütternden Schornsteins mittels eines Fräswerkzeugs (16), das durch den lichten Querschnitt des noch nicht ausgefrästen Schornsteins abgesenkt wird und mittels dessen anschließend unter radial vergrößertem Wirkungsquer­schnitt des Fräswerkzeugs axial aufwärts gefräst wird. Nach diesem Verfahren ist vorgesehen, daß beim Absenken des Fräs­werkzeugs (16) durch den lichten Querschnitt des noch nicht ausgefrästen Schornsteins der Antriebsmotor (12) mit dem Fräs­werkzeug (16) in den noch nicht ausgefrästen lichten Querschnitt des Schornsteins mitgeführt wird.
    Die Erfindung betrifft schließlich Anwendungen von Vorrichtung und Verfahren.




    Beschreibung


    [0001] Die Erfindung bezieht sich auf eine Vorrichtung gemäß den Merkmalen des Oberbegriffs von Anspruch 1. Die Erfindung bezieht sich ferner auf ein Verfahren gemäß den Merkmalen des Oberbegriffs von Anspruch 44. Schließlich bezieht sich die Erfindung auf An­wendungen von Verfahren und Vorrichtung gemäß den Ansprüchen 48 bis 51.

    [0002] Es ist ständige Aufgabe von Kaminkehrern, Kesselreini­gern und sonstigen Rohrreinigungspersonen, Abgasrohre von Ab­lagerungen des Rauchgases zu reinigen und dabei den ursprüng­lichen lichten Querschnitt solcher Rohre wieder herzustellen. Dies erfolgt teils manuell, teils mittels motorischer Servo­unterstützung. Selbst hartnäckigere Ablagerungen lassen sich dabei mit relativ geringem Kraftaufwand beseitigen, so daß im allgemeinen bürstenartige Reinigungswerkzeuge und relativ schwach ausgelegte Servomotoren ausreichen. Ein Beispiel einer Reinigung von Rauchgasrohren einer Kesselanlage zeigt dabei die FR-A 2 074 527. Bei dieser vorbekannten Einrichtung wird eine Reinigungsbürste zusammen mit einem von Druckluft ange­triebenen Pneumatikmotor in das zu reinigende Kesselrohr ein­geführt. Die Einrichtung wirkt dabei der Art nach nicht als Fräseinrichtung, sondern als Radialschleifmaschine (vgl. auch die mit einer Waschbürste arbeitende DE-A1 29 53 685).

    [0003] Ungleich schwieriger ist die Sanierung von sanierungs­bedürftigen Altbau-Schornsteinen, womit sich die Erfindung aus­schließlich befaßt.

    [0004] Die Sanierungsbedürftigkeit kann dabei sehr unterschied­liche Gründe haben. So kann nur beispielsweise das ursprüng­liche Rauchgas führende Rohr infolge von Versottung, Sprüngen, Mürbe-Werden, Rauchgas-durchlässig-Werden, Verlust der Wärme­dämmung oder nach neuzeitlichen Bewertungen zu kleine Wärme­dämmung, oder aus anderen Gründen nicht mehr funktionsfähig sein. Es kann auch die Einbringung einer inneren Auskleidungs­schicht in einem ersten Sanierungsversuch untauglich gewesen oder geworden sein. Schließlich kann es sich bei an sich noch intakten Schornsteinstrukturen um eine Änderung des gewünsch­ten lichten Querschnitts handeln. In allen diesen Fällen muß in den sanierungsbedürftigen Schornstein ein neuer Rauchgas führender Innenrohrstrang eingezogen werden (soge­nanntes Ausfüttern), in bestimmten Fällen mit zusätzlichem radialen Abstand außerhalb dieses einzuziehenden Innenrohrstranges, sei es wegen der Notwendigkeit, zusammen mit diesem noch eine Wärmedämmschicht einzuziehen, sei es zur Anordnung eines sonstigen Zwischenraums, beispielsweise für Hinterlüftungszwecke. Nun muß der neue Rauchgas führende Innen­rohrstrang jeweils einen vorgegebenen Innen- und damit auch einen größenordnungsmäßig vorgegebenen Außendurchmesser haben, so daß in aller Regel ein Einziehen des zur Sanierung ver­wendeten neuen Innenrohrstrangs in die schon vorhandene lichte Weite des sanierungsbedürftigen Schornsteins nicht in Frage kommt. Deshalb ist in allen diesen Fällen erforderlich, in dem sanierungsbedürftigen Schornstein mindestens dessen bis­herige Rauchgas führende Innenschale vor dem Einsetzen von Sanierungsrohrelementen zu entfernen. In vielen Fällen mehr­schaliger Schornsteinkonstruktionen wird man dabei das ganze ursprüngliche Rauchgas führende Innenrohr entfernen müssen. In anderen Fällen, wie bei dem genannten Beispiel einer Nach­sanierung eines vorhergehenden fehlgeschlagenen Sanierungs­versuchs, mag es dabei ausreichen, eine Ausschleuderschicht o. dgl. wieder abzutragen, gegebenenfalls mit Randzonen der ursprünglichen Schornsteinkonstruktion.

    [0005] Weiterhin sind die Materialien der Innenrohre bestehen­der Schornsteine und auch der mit einzubeziehenden Nachsanie­rungsschichten sehr unterschiedlich und fast immer sehr wider­standsfähig. Nur beispielsweise sind ältere Schornsteine aus Natur- oder Kunststeinen, z.B. bestimmten Ziegelsteinen, auf­gemauert oder in einschaligen Formstücken aus Beton mit ge­formt, insbesondere aus wärmedämmend ausgebildetem Beton. Bei neueren Schornsteinkonstruktionen bestehen die Rauchgas füh­renden Innenrohre oft aus Schamotte unterschiedlicher Güte bis hin zu Glas-, Keramik- und Edelstahlrohren. Bei älteren Schornsteinen hat man ferner auch die Innenrohrauskleidung aus Elementen nach Art keramischer Fliesen gebildet.

    [0006] Darüber hinaus sind Schornsteine nicht selten abschnitt­weise auf Geschoßdeckendurchbrüchen aufgesetzt, so daß bei­spielsweise im Geschoßdeckenbereich eigentliches Bauwerkma­terial, wie beispielsweise Beton von Böden oder Decken von Räumen sowie darin eingebettete Armierungselemente, auch Ar­mierungseisen, bis in den lichten Querschnitt des Rauchgas führenden Rohres reichen und dort oft sogar Querschnittsein­schnürungen bilden. Entsprechende Querschnittseinschnürungen findet man häufig auch dann, wenn Mörtelungsarbeiten beim Versetzen des ursprünglichen Schornsteins unsauber ausgeführt wurden.

    [0007] Schließlich hat es sich gezeigt, daß in einem ganz erheblichen Anteil sanierungsbedürftige Schornsteine nicht längs einer geraden vertikalen Achse verlaufen, sondern im Einzelfall oft sehr überraschende gezogene Krümmungen und krumme Versetzungen aufweisen.

    [0008] Es ist bereits in Betracht gezogen worden, die erfor­derliche Querschnittsvergrößerung eines sanierungsbedürfti­gen Schornsteins mittels eines Bohrgerätes zu erzeugen (Be­zugszeichen 6 in DE-U1 87 01 745.8; siehe auch Bezugszeichen 12 des DE-U1 86 26 492.3). Ein Ausbohren von Schorn­steinen ist jedoch überhaupt nur bei bestimmten Materialien der Innenschicht möglich und darüber hinaus unerwünscht, weil unkontrollierbare Druckauswirkungen auf die Schornsteinkon­struktion ausgeübt werden. Für das Ausbohren spricht allein eine relativ günstige Arbeitsgeschwindigkeit.

    [0009] Eine geringere Beanspruchung der Schornsteinstruktur erhält man beim Ausschleifen. Dies ist jedoch mit hohem Zeit­aufwand verbunden. Wenn man ferner als schleifend arbeitende Drehwerkzeuge solche mit fliegenden Ketten nach Art der SE-C 177 343 oder der SE-C 177 783 verwendet, kommt es zusätzlich zu waschbrettartigen Riefenbildungen an der Innenfläche des Schornsteins. Das gilt auch dann, wenn diese fliegenden Ket­ten gemäß der Lehre der WO 86 00 391 der WIPO in unmittelbar axial aufeinander folgenden Ebenen des Drehwerkzeugs angeord­net sind; dabei wird der Waschbretteffekt lediglich gedräng­ter.

    [0010] Unter Verwendung eines Fräswerkzeugs hingegen kann man sowohl eine gute Schonung der bestehenden Schornstein­konstruktion als auch eine große Arbeitsgeschwindigkeit er­reichen. Verbunden ist dies mit einer größeren Vielfalt ver­wendbarer Werkzeuggeometrien und damit einer besseren Anpaß­barkeit einerseits an die vorgefundenen Gegebenheiten und andererseits an das Arbeitsziel.

    [0011] Neben den genannten Erweiterungsverfahren der lichten Weite eines sanierungsbedürftigen Schornsteins durch Bohren, Schleifen oder Fräsen ist es auch noch bekannt, eine Schlag­wirkung des Werkzeugs vorzusehen. So zeigt die US-A 4 603 747 einen rotierenden Schwinghammer. Dieser ist jedoch nur für Spezialeinsatzzwecke geeignet, hier zum Abschlagen von als Innenauskleidung des Rauchgas führenden Rohrstrangs dienen­den Fliesen.

    [0012] Es ist schließlich bekannt, ein den lichten Querschnitt eines sanierungsbedürftigen Kamins erweiterndes Drehwerkzeug zusätzlich über ein Schlagwerk in axiale Schlagschwingungen zu versetzen. Auch dies führt jedoch zu unerwünschten Er­schütterungen der Schornsteinstruktur (AT-A 325 290).

    [0013] Die Erfindung geht gemäß dem Oberbegriff von Anspruch 1 von der AT-A 203 707 aus, bei welcher neben der Verwendung von Schleif- oder Schlägerwerkzeugen auch schon Fräswerkzeuge in Betracht gezogen sind. Das betreffende Schleif- oder Fräs­werkzeug ist bei dieser bekannten Vorrichtung schon zusammen mit seinem Antriebsmotor im lichten Querschnitt des Schorn­steins auf und ab bewegbar.

    [0014] Die Erfindung bevorzugt die Verwendung von eigentlichen Fräswerkzeugen. Soweit von Fräswerkzeugen gesprochen wird, können sie jedoch auch, insbesondere für Sonderanwendungen oder zusätzliche Arbeitsgänge, durch Bohr- oder Schleifwerk­zeuge ersetzt werden, die in den Begriff spanabhebender Werk­zeuge mit einbezogen sind.

    [0015] Diese vorbekannte Vorrichtung unterscheidet sich hier­mit von fernerstehenden Vorrichtungen, bei denen der Antriebs­motor außerhalb des Schornsteins angeordnet ist und sein Dreh­moment über eine gegebenenfalls flexible Welle in das Innere des Schornsteins übertragen wird (vgl. DE-A 1 229 230, WO 86/00391 der WIPO).

    [0016] Bei derartigen Vorrichtungen muß wegen der begrenzten Länge, mit der die drehmomentübertragende Welle ausgebildet werden kann, der Antrieb auf dem Dach aufgebracht werden, wobei eine größere Reichweite als etwa 10 m nur durch eine weitere Ankupplung von flexiblen Verlängerungswellen bei Leistungsverlust erreicht werden kann. Hierbei hat sich das Starten des Antriebsmotors nur dann als möglich erwiesen, wenn das Wellenendstück mit Werkzeug aus dem Schornstein herausgenommen wird. Die biegsame Welle und das Werkzeug bewegen sich dabei also im Freien und stellen für die Be­dienungsperson(en)eine große Gefahr dar. Außerdem nutzen sich die Wellen im Betrieb mitsamt ihren Anschlußkupplungen schnell ab und neigen darüber hinaus zum plötzlichen Brechen. Allgemein ist ihre Handhabung problematisch. Ein Einsatz in nicht axial geradlinig verlaufenden Schornsteinen kommt nur höchst bedingt in Frage.

    [0017] Allerdings ist bei der AT-A 203 707 ein elektromotori­scher Antrieb vorgesehen. In einer bevorzugten Ausführungs­form dieser bekannten Vorrichtung dient dabei der Stator des Elektromotors zugleich als Führung des Motors an der Kamin­innenwand. Bei allen gezeigten Ausführungsformen ist dabei der gerätetechnische Aufwand und der damit verbundene Mindest­durchmesser der Vorrichtung so groß, daß sie nicht zum Ausbohren von Schornsteinen mit Nenndurchmessern von weniger als 150 mm geeignet erscheint. Schon gar nicht erscheint es möglich, eine derartige Vorrichtung durch den lichten Querschnitt eines zu­sätzlich mit inneren Ablagerungen versehenen Schornsteins dieses Nenndurchmessers hindurchzuführen, um anschließend von unten nach oben zu fräsen.

    [0018] Darüber hinaus erscheinen elektromotorische Antriebe überhaupt nicht für das Einbringen in einen Schornstein ge­eignet. Nur beispielsweise sei an die Explosionsgefahr in abgeschiedenem Ruß bei Funkenbildung, die Gefahr von elektri­schen Kurzschlüssen an leitfähigen Bereichen der Kamininnen­wand (z.B. hervorstehenden Metallarmierungen oder infolge Versottung durch Flüssigkeit leitfähig gewordener Be­reiche), Brandgefahr wegen Heißlaufens aufgrund der unzureichenden Belüftung bei Vermeidung des zusätzlichen Raumbedarfs von Flüssigkeitskühlung, Unfall­gefahr der Bedienungspersonen, großes Arbeitsgewicht, seltene Verfügbarkeit von Starkstrom am Arbeitsort u.dgl. Außerdem neigen von Elektromotoren angetriebene Fräswerkzeuge zum Festfressen im Mauerwerk, selbst wenn man wie im Falle der genannten AT-A 203 707 dagegen wirkende Auskuppeleinrichtungen vorsieht. Auch ist eine feinfühlige stufenlose Regelung nur schwierig möglich. Schließlich deckt die ganze Vorrichtung den Einblickquerschnitt des Schornsteins völlig ab, so daß eine Beobachtung des Fräsvorganges von der oberen Schornstein­mündung her nicht direkt möglich ist. Von unten her kommt ein Einblick schon wegen des herunterfallenden Fräsabhubs nicht in Betracht.

    [0019] Soweit ersichtlich haben - sicherlich aus den genannten Gründen - in den Schornstein mit dem Fräswerkzeug zusammen abgesenkte Elektromotoren in der Praxis keinen Eingang ge­funden. Nicht ohne Grund wird im Falle der WO 86/00391 der WIPO der dort auch verwendete Elektromotor außerhalb des Schornsteins angeordnet und dafür der Aufwand in Kauf ge­nommen, diesen Elektromotor über flexible Gestänge mit dem innerhalb des Schornsteins befindlichen Drehwerkzeug, dort Kettenschleifwerkzeug, zu verbinden.

    [0020] Ausgehend von der AT-A 203 707 liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zum Ausfräsen eines auszu­fütternden Schornsteins zu schaffen, die unter möglichster Beibehaltung der Vorteile der bekannten Vorrichtung gefahrlos, bequem und universell anwendbar ist und eine kompakte, eine optische Inspektion des Arbeitsortes des Fräswerkzeugs von oben ermöglichende Bauweise erlaubt.

    [0021] Diese Aufgabe wird bei einer Vorrichtung mit den Merk­malen des Oberbegriffs von Anspruch 1 durch dessen kennzeich­nende Merkmale gelöst.

    [0022] Der bei der erfindungsgemäßen Vorrichtung verwendete Fluidmotor kann beispielsweise mit Öl oder mit Druckluft be­trieben werden. Im Falle der Verwendung von Druckluft oder eines anderen Pneumatikgases, beispielsweise eines inerten Gases wie Stickstoff, besteht von vorneherein keine Gefahr für den Schornstein. Drucköle wählt man zweckmäßig in einer nicht inflammbaren Art. Sollte derartiges Drucköl in einem verrußten Schornstein austreten, könnte es sogar zur Flüssig­keitsbindung des Rußes und damit zu einer Verringerung der originär vorhandenen Rußbrandgefahr führen. Außerdem neigen Fluidleitungen weniger zu einem Verhaken an Vorsprüngen und Fugen an der Innenfläche eines auszufräsenden Schornsteins als Elektroleitungen.

    [0023] Von besonderer Bedeutung ist die Möglichkeit, den Fluidmotor so durchmesserklein bauen zu können, daß er selbst bei Schornsteinen sehr geringer lichter Weite in den Schorn­stein einführbar ist. Dabei läßt sich bei relativ geringer axialer Baulänge ein sehr hohes Drehmoment übertragen, das bei geeigneter Wahl auswechselbarer Fräswerkzeuge praktisch für alle vorhandenen Wandmaterialien des auszufräsenden Schorn­steins in Frage kommt.

    [0024] Geringer Durchmesser und geringe axiale Bauweise lassen sich gerade bei Fluidmotoren bequem zu einer im ganzen kom­pakten Bauweise vereinen. Diese hat eine ganze Reihe von Vor­teilen, wie leichtes Gewicht und damit bequeme Erreichbarkeit auch sehr großer Arbeitstiefen, selbst bei bei Schornsteinen mit rundem Innenquerschnitt ausreichendem optischen Einblickraum zum Arbeitsort des Fräswerkzeugs von oben sowie leichte Führbarkeit längs ungerader Arbeitswege.

    [0025] Fluidmotoren bedürfen ferner keiner Kühlung, um eine Überhitzung des Motors zu vermeiden. Der innere Aufbau ist technisch einfach und zugleich robust. Es besteht daher kein Risiko, wenn der Fluidmotor auch in größeren Arbeitstiefen gegen die Innenwandfläche des Schornsteins schlägt. Es läßt sich selbst eine gegen Beschädigung bei Sturz aus großer Höhe sichere Bauart einfach konstruieren. Dabei sind die Betriebs­elemente gegen den beim Fräsen entstehenden Staub mit ein­fachen Mitteln, z.B. einem einfachen Gehäuse, abschirmbar, zumal die Elemente eines Fluidmotors von vornherein eine dem Schornstein affine schmale langgestreckte Bauart zeigen. Eine das Betriebsfluid von außerhalb des Schornsteins zur Verfügung stellende Öldruckpumpe, oder im Falle einer Pneu­matikpumpe eines Kompressors, kann an beliebigem Arbeitsort einfach mittels eines Verbrennungsmotors, beispielsweise eines modernen geräuscharmen Dieselmotors, angetrieben werden, ohne daß es eines Starkstromanschlusses bedarf.

    [0026] Aus derartigen Gründen zeichnet sich inzwischen eine allgemeine breite Akzeptanz in allen denkbaren Anwendungsbe­reichen für die erfindungsgemäße Vorrichtung ab, während alle bisher bekannten vergleichbaren Vorrichtungen allenfalls unter Sonderbedingungen in Frage kamen. Von ganz besonderer Bedeutung sind dabei die Anwendungsfälle der Ansprüche 48 bis 51, für die bisher praktisch überhaupt keine sachgerechte Lösung verfügbar war. Die erfindungsgemäße Vorrichtung ist jedoch wegen ihrer universellen Einsetzbarkeit auf die Anwendbarkeit in diesen Problemfällen nicht beschränkt, son­dern es kann bei jeweils angepaßtem Fräswerkzeug derselbe Fluidmotor für alle Anwendungsfälle eingesetzt werden, d.h. selbst ein Fluidmotor sehr geringen Durchmessers bei Schorn­steinen maximaler Weite.

    [0027] Die erfindungsgemäße Vorrichtung läßt sich sowohl zum Ausfräsen von Rauchgas führenden Innenrohren mit rundem lichten Querschnitt als auch von solchen mit unrundem, beispielsweise etwa rechteckigem oder quadratischem, Querschnitt einsetzen. In allen Fällen ist der Endquerschnitt aufgrund der rotierend wirkenden Arbeitsweise des Fräswerkzeuges rund, wobei bei unrunden Querschnitten zunächst nur eine partielle Aus­höhlung des Querschnittes in den durchmesserkleinsten Bereichen erfolgt.

    [0028] Im Rahmen der Erfindung ist primär daran gedacht, die eigentliche spanabhebende Erweiterung des Schornsteins aus den erörterten Gründen durch Fräsen vorzunehmen. An dem­selben Fluidmotor lassen sich aber auch Bohr- oder Schleif­geräte auswechselbar ansetzen, um z.B. Vorbereitungsarbeiten am Schornstein, wie Schornsteinschiebervergrößerung durchzu­führen und Schornsteinkopfplatteaus zu egalisieren. Es ist auch nicht ausgeschlossen, den erfindungsgemäßen Fluidmotor z.B. bei geringeren Qualitätsansprüchen oder zur Verwendung schon vorhandener Bohr- oder Schleifwerkzeuge zu verwenden.

    [0029] Die Verwendung von Drucköl als Betriebsfluid bietet bekanntlich an sich den Vorteil, mit relativ großen Arbeitsdrücken wegunabhängig gestängeartig und damit verzögerungsfrei arbeiten zu können. Gemäß Anspruch 2 wird jedoch die Verwendung von Druckluft oder anderen Pneumatikgasen für den vorliegenden Anwendungszweck des Ausfräsens eines auszufütternden Schornsteins bevor­ zugt. Selbst wenn es einmal in einer Druckluftleitung zu einem Leck kommen sollte, verschwindet die Leck­strömung rückstandsfrei, solange das pneumatische Fluid nicht mit feuchten Anteilen versehen ist, was gemäß nachfolgender Beschreibung sogar bevorzugt sein kann. Aber auch enthaltene Feuchtigkeit verdunstet aus einem Schornstein alsbald.

    [0030] Darüber hinaus läßt sich ein Betrieb mit Druck­luft o.dgl. als Betriebsgas sehr einfach stufenlos von der Außenseite des Schornsteins her regeln, indem der Druck der Druckluft über ein Stellventil verändert wird, beispielsweise direkt am Kompressor, aber auch am Ort der Arbeitsperson am Schornstein, z.B. auf dem Dach. Wegen der Kompressibilität eines pneumatischen Druck­fluids läuft ferner das Fräswerkzeug auf etwaige Wider­stände sanft auf, so daß sich schon von der Betriebs­weise her kaum einmal ein Festfressen des Fräswerkzeugs im Schornstein ereignen wird.

    [0031] Besonders wesentlich ist auch die noch durch­messerkleinere Baumöglichkeit von Pneumatikmotoren im Vergleich mit Hydraulikmotoren als Fluidmotoren.

    [0032] Grundsätzlich kann man die Abluft (atmosphärische Luft odersonstiges pneumatisches Druckfluid) über eine gesonderte Auslaßleitung aus dem Schornstein herausführen. Vorzugsweise läßt man jedoch gemäß Anspruch 3 die Abluft direkt in den Rauchgaskanal des Schornsteins entweichen. Dabei entsteht in diesem Bereich ein Luftpolster mit geringfügigem Überdruck. Es hat sich gezeigt, daß dabei der beim Fräsvorgang gebildete Staub, der im Gegensatz zu größer dimensioniertem Fräsabhub - der von vornherein die Neigung hat, unter der Schwerkraft nach unten abzufallen - die Neigung hat, nach oben aufzuwallen, eine Strömungsrichtung zum Abströmen nach unten aufgeprägt erhält. Dies hat einen doppelten Vorteil. Zum einen kann das Abströmen des gebildeten Staubes nach unten in einfacher Weise ohne oder nur mit geringer Saugleistung erfolgen; dabei kann auch die Saugleistung einer am unteren Ende des Schornsteins etwa angeordneten Absaugeinrichtung kleingehalten werden. Zum anderen kann die Möglichkeit eines geometrischen optischen Einblicksquerschnittes von oben am Fluidmotor vorbei in Rich­tung auf den Arbeitsort des Werkzeuges für die Bedienungs­person voll nutzbar gemacht werden, da dann der Raum oberhalb des Fräswerkzeuges bzw. des genannten Luftpolsters frei von Staubtrübung bleibt. Ein angenehmer Nebeneffekt ist dabei auch, daß die Bedienungspersonen nicht durch Staubaufwirbelung eingeschmutzt wird.

    [0033] Wenn gemäß Anspruch 4 der Abluftauslaß sogar noch ge­zielt nach unten auf das unterhalb des Fluidmotors angeord­nete Fräswerkzeug gerichtet ist, kann man dieses kontinuier­lich kühlen und von unerwünschten Ablagerungen freihalten. Man kann sogar auf einen Lufttrockner in den offenen Pneu­matikkreislauf verzichten; denn es hat sich herausgestellt, daß Feuchtigkeitsanteile in der Druckluft sogar günstig zum Binden entstehenden Feinstaubes sind.

    [0034] Es ist an sich bekannt, einen Elektromotor, der mit einem Bohrkopf in den zu sanierenden Schornstein eingeführt wird, von dem oberen Ende des Schornsteins her über eine Führungsstange zu halten und zu führen. Vorzugsweise ist im Rahmen der Erfindung jedoch gemäß Anspruch 5 die Einheit von Fluidmotor und Fräswerkzeug an einem reinen Zugelement auf­gehängt, wie dies an sich aus der AT-A 203 707 bekannt ist. In einfachster Ausführungsform kann nach Anspruch 6 als das Zugelement der Fluidschlauch selbst dienen, der dann zweck­mäßig tragfähig ausgerüstet sein muß. Alternativ kommt die Verwendung eines gesonderten Zugelementes, wie beispielsweise eines von einer Winde betätigten Zugseils, z.B. aus Stahl, in Frage. Die bei der AT-A 203 707 verwendete Aufhängkette kann man wegen des geringeren Gewichts des erfindungsgemäßen Fluid­motors durch ein derartiges Zugseil problemlos ersetzen. Trotz des relativ geringen Gewichtes einer Einheit aus Fluidmotor und Fräswerkzeug hat es sich gezeigt, daß beim Fräsen von oben nach unten die Gewichtsbelastung des Fräswerkzeuges durch den Fluidmotor und die sonstigen Elemente der Einheit Fluidmotor-Fräswerkzeug ausreicht, selbst wenn sehr schwer zu fräsende Materialien vorliegen, wie beispiels­weise ein wegzufräsendes Schamotterohr oder ein wegzu­fräsendes Stahlrohr. Entscheidend ist hierbei die richtige Wahl des Fräswerkzeuges. Falls erwünscht, kann man allerdings auch mittels eines Druckelementes im Rahmen der Erfindung von oben nach unten nachdrücken. Beispielsweise könnte man am oberen Ende des Schornsteins einen von demselben Kompressor gespeisten Druckzylinder vorsehen, welcher das Druckelement nach unten hin mit Kraft beaufschlagt. Alternativ kann man in an sich be­kannter Weise auch von unten her Zug ausüben (Bezugszeichen 15 in der AT-A 203 707).

    [0035] Zur Sicherstellung optischer Einblickmöglichkeit von oben längs des Fluidmotors zum Fräswerkzeug sind Führungsele­mente für den Fluidmotor im Schornstein zweckmäßig nur lokal um den Fluidmotor herum angeordnet. Im Gegensatz dazu sind bei der AT-A 203 707 die in Betracht gezogenen Führungselemente jeweils ringförmig geschlossen ausgebildet.

    [0036] Eine erste Möglichkeit hierfür gibt Anspruch 7 an. We­sentlich ist dabei, daß die Kufen an wechselnden Innendurch­messer des Schornsteins durch Verstellung anpaßbar sind. Die Kufen, die schlittenkufenartig in ihrem zentralen Bereich leicht gekrümmt und - auch zur Führbarkeit sowohl aufwärts als auch abwärts - an ihren Enden aufgebogen sein können, gewährleisten auch bei Ungleichmäßigkeiten der Innenwand des Schornsteins ein reibungsarmes Gleiten ohne Gefahr, sich zu oft zu verhaken. Zur Verstellung kann man gegebenenfalls das Druckfluid verwenden, das auch als Betriebsmittel des Fluid­motors verwendet wird, jedoch zweckmäßig über eine gesonderte Steuerleitung zugeführt und außerhalb des Schorn­steins, z.B. am oberen Schornsteinende, ge­steuert wird. Zweckmäßig, jedoch nicht zwingend, verbindet man dabei die Steuerleitung und die Druckfluidleitung zu einem Leitungsteil, beispielsweise durch Zusammenbinden mittels von über die Länge verteilten Befestigungsbändern, insbesondere Klebstreifen.

    [0037] Eine alternative Führungseinrichtung beschreiben die Ansprüche 9 bis 11. Aus der DE-A 1 229 230 ist es zwar schon an sich bekannt, als Tast- oder Gleitelemente dienende Füh­rungsrollen (Bezugszeichen 8) als zwei axial aufeinanderfol­gende Kränze über den Umfang eines Drehwerkzeuges zu verteilen. Nach der Erfindung wird eine derartige punktweise Abstützung des Fluidmotors selbst in rückfedernder Bauweise vorgenommen, um eine selbsttätige Anpassung an sich verändernde Innen­ durchmesser des Schornsteins zu erhalten. Die Schneidräder gemäß Anspruch 11 bieten dabei den Vorteil, bei bereits mit Versottung versetzten Altschornsteinen bis zur eigentlichen baumäßig vorgesehenen Innenwand des Rauchgas führenden Stran­ges durchdringen zu können und so die gewünschte Führung zu stabilisieren; sonst kann man Rollen oder Walzen verwenden.

    [0038] Überraschenderweise hat es sich gezeigt, daß der er­findungsgemäße Fluidmotor sogar selbst seinen Weg längs der Achse des auszufräsenden Schornsteins sucht, ohne einer Zwangs­führung zu bedürfen. Das gilt nicht nur für geradlinig ver­tikal ausgerichtete Altschornsteine, sondern auch für bogen­mäßig gezogene Schornsteine, die weiter oben angesprochen sind. In solchen Fällen kann man oft von Zwangsführungselementen sogar ganz absehen. Allenfalls kann man noch Zentrierungselemente vor­sehen, die nach Anspruch 12 zweckmäßig federnd-nachgiebig zur Anpassung an unterschiedliche effektive lichte Weiten des Schornsteins ausgebildet sind. Im Grenzfall kann man jedoch sogar auch auf solche Zentrierungselemente verzichten. Gegebenenfalls kann man eine Verstellung der Federvorspannung, wie sie z.B. Anspruch 13 erlaubt, auch von außerhalb des Schorn­steins durch Druckfluid, z.B. Druckluft steuern.

    [0039] Mittels Fluidmotoren, insbesondere Pneumatikmotoren, lassen sich grundsätzlich sehr hohe Drehzahlen erreichen, und zwar bis in Übergangsbereiche vom Fräsen zum Schleifen (20 000 U/min und mehr). Ohne Getriebeuntersetzung lassen sich dabei jedoch nur relativ mürbe Materialien abfräsen. Man kann allerdings in Nebenfunktion den erfindungsgemäßen Fluidmotor dann unter Austausch des Fräswerkzeuges gegen ein Schleifwerkzeug noch zur Nachbearbeitung eines schon vorge­frästen Schornsteins mit nutzbar machen.

    [0040] Für schwierigere Materialien ist es jedoch zweckmäßig, die Einwirkung des Fräswerkzeuges auf das auszufräsende Mauer­werk zu verstärken, sei es durch ein Untersetzungsgetriebe (Ansprüche 14 bis 16), sei es durch zuschaltbare Schlagwirkung in Winkelrichtung (Ansprüche 38 bis 41). Mittels des Unter­setzungsgetriebes wird dabei eine hohe Drehzahl des Rotors des Fluidmotors in ein hohes Drehmoment am Fräswerkzeug ge­wandelt. In beiden Fällen läßt sich das Untersetzungsgetriebe bzw. das Schlagwerk als kurzes axiales Verlängerungsstück ohne zusätzliche Außendurchmessererweiterung vorsehen, im Bedarfs­falle als herausnehmbares Einsatzstück. Untersetzungsgetriebe können dabei insbesondere in Axialrichtung hintereinander mehrstufig ausgebildet sein, wobei sich Planetengetriebe einzeln und in Hintereinanderschaltung als besonders geeignet erwiesen haben.

    [0041] Der bei der erfindungsgemäßen Vorrichtung vorgesehene Fluidmotor, insbesondere als Pneumatikmotor, ist von seiner Bauart her geeignet, nicht nur in einem bereits ausgefrästen Bereich des Schornsteins mit dem Fräswerkzeug mitgeführt zu werden, wie dies im Regelfall bei Fräsen von oben nach unten der Fall ist, sondern auch um zusammen mit dem Fräswerkzeug durch einen noch auszufräsenden Bereich des Schornsteins zu­nächst abwärts geführt zu werden, um dann das Fräsen nach oben durchzuführen (vgl. Anspruch 17). Es ist an sich bekannt, Fräswerkzeuge von Vorrichtungen zum Ausfräsen eines auszu­fütternden Schornsteins mit einem oberhalb des Fräswerk­zeuges angeordneten Antriebsmotor über eine flexible Welle zu verbinden und den Kaminquer­schnitt unter Auf- und Abbewegung des Fräswerkzeuges zu erweitern (Oberbegriff von Anspruch 1 der DE-A 12 29 230). Ein derartiger Fräsvorgang kann einstufig von unten nach oben er­folgen (vgl. z.B. WO 86/00391 der WIPO) oder mehrstufig unter schichtweiser Ausfräsung, gegebenenfalls mit schlichtender Nachbearbeitung. Die erfindungsgemäße Vorrichtung ist für alle in Frage kommenden Arbeitsweisen aufwärts und abwärts sowie einstufig und mehrstufig geeignet.

    [0042] Die Ansprüche 18 bis 21, 22 sowie 25 bis 30 betreffen drei verschiedene Bauarten von Fräsköpfen, die im Zusammen­hang mit der Erfindung als besonders geeignet erscheinen, darüber hinaus aber auch noch allgemein beim Ausfräsen von Schornsteinen mittels andersartiger Vorrichtungen eingesetzt werden können und insoweit einen Zweitnutzen besitzen.

    [0043] Die erstgenannte Fräskopfbauart findet bei relativ großer Lamellenweite von außen nach innen ihren Einsatz beim normalen Ausfräsen des Schornsteins, während Ausführungs­formen mit von außen nach innen hin dünneren Lamellen besonders geeignet zum Nacharbeiten oder Schlichten sind.

    [0044] Die zweitgenannte Bauart eines Fräswerkzeuges ist für grobe Ausräumarbeiten geeignet. Sie unterscheidet sich von normalen Kettenschleifköpfen dadurch, daß die Kettenglieder mit Fräselementen besetzt sind. Dabei spricht Anspruch 23 eine auf das Minimum reduzierte fliegende Kette an.

    [0045] Sowohl bei der ersten als auch bei der zweiten Bauart kann man in die zu fräsende Schicht konusförmig einlaufen derart, daß mit fortschreitendem Fräsen in Achsrichtung zu­nächst radial weiter innen und anschließend radial weiter außen liegende wirksame Bereiche des Fräswerkzeuges zum Ein­griff kommen. Dies ist bezüglich der ersten und der zweiten Bauart des Fräswerkzeuges in den Ansprüchen 19 und 23 (zweites Teilmerkmal bezüglich der Distanzscheiben) angesprochen.

    [0046] Die drittgenannte Bauart eines Fräswerkzeuges mit Fräs­köpfen, deren Umfang mit abstehenden Frässtiften besetzt ist, hat sich als besonders geeignet zum zermürbenden Fräsen von Schamotterohren erwiesen, wobei gleichartige Wirkungen auch bei Glasrohren, sonstigen Keramikrohren oder Betonrohren auf­treten dürften, desgleichen bei Keramikfliesen und vergleich­baren sonstigen Materialien. Es hat sich gezeigt, daß man dabei außerordentlich schnell unter Gefügeauflösung derartiger Rohre fräsen kann. Darüber hinaus lassen sich derartige Fräs­köpfe auch in anderen Anwendungsfällen üblicherer Art ein­setzen, wie bei Formsteinen, manchen Natursteinen und ins­besondere auch aus Einschlämmbeton gebildete Erstsanierungs­schichten. Durch die Ausschwenkbarkeit der Schwenkarme, an denen die Fräsköpfe sitzen, findet ebenfalls eine konusartige Anpassung an die Fortschrittsrichtung des Fräsvorganges statt.

    [0047] Soweit bisher von einem Fräswerkzeug die Rede war, sollte auch eine Ausbildung aus mehreren Teilwerkzeugen mit einge­schlossen sein, die in der beschriebenen Weise ausgebildet sein können. Insbesondere kommt dabei die Lösung nach Anspruch 31 in Frage, bei welcher die Teilwerkzeuge so relativ zueinander angeordnet sind, daß sie keiner oder nur noch einer geringen Abstützung ihres äußeren Drehmomentes über eine fest mit der Innenwand des Schornsteins in Eingriff kommende Führungsein­richtung bedürfen. Andere Möglichkeiten, auf eine derartige Drehmomentabstützung teilweise oder insbesondere ganz zu ver­zichten, werden weiter unten noch angesprochen.

    [0048] Gemäß Anspruch 32 können ferner alle in Frage kommenden Fräswerkzeuge und insbesondere die oben angesprochenen bevor­zugten drei Bauarten so gestaltet werden, daß dasselbe Fräs­ werkzeug einfach von einer Ausrichtung für ein Fräsen von oben nach unten in ein Fräsen von unten nach oben, oder umgekehrt, durch Umstecken umgerüstet werden kann.

    [0049] Ein umsteckbares Fräswerkzeug erfordert jedoch ein Um­rüsten nach jedem Arbeitshub. Insbesondere für ein spanabheben­des Erweitern in mehreren Stufen unter Spanabhub sowohl beim Abwärtshub als auch beim Aufwärtshub des Fräswerkzeugs emp­fiehlt sich jedoch gemäß Anspruch 33 eine doppeltwirkende Ausbildung des Fräswerkzeugs, so daß dieses sowohl aufwärts als auch abwärts fräsend ausgebildet ist.

    [0050] Bezüglich des Arbeitsablaufes am günstigsten ist dabei eine doppeltwirkende Geometrie des Fräswerkzeugs. Diese kann bei den oben erörterten bevorzugten ersten und zweiten Bauarten (mit La­mellen oder Ketten) des Fräswerkzeugs einfach realisiert sein. Wenn die Arbeitskante des Fräswerkzeugs auf einem Wirkkonus liegt, ordnet man diesen zweckmäßig in Tandemausbildung doppelt derart an, daß die großen Flächen des Wirkkonus einander zugewandt sind.

    [0051] Für manche Anwendungsfälle zieht man jedoch Fräswerkzeuge vor, bei denen eine derartige Anordnung nicht möglich ist. Dies gilt insbesondere auch für die oben genannte bevorzugte dritte Bauart (mit Frässtiften besetzte ausschwenkbare Fräsköpfe). Im Falle dieser bevorzugten dritten Bauart, und gegebenenfalls auch bei anderen bekannten Fräswerkzeugen, empfiehlt sich dann die Ausbildung nach Anspruch 35. Danach kann man die Wirksam­keit der Arbeitsrichtung des betreffenden Fräswerkzeugs beim Ende des Arbeitshubes in einer Richtung umstellen, ohne das Fräswerkzeug zerlegen und neu zusammenstecken zu müssen. Eine derartige Umstellung kann beispielsweise wiederum mittels des Betriebsfluids, insbesondere pneumatisch, erfolgen, indem man eine eigene Umsteuerleitung zum Arbeitsplatz der Bedienungs­ person außerhalb des Schornsteins führt. Auch diese Umsteuer­leitung kann mit dem Fluidschlauch zu einer Einheit vereinigt werden. Im Falle der genannten dritten Bauart braucht man dabei lediglich die Ausschwenkbegrenzung der Schwenkarme zu lösen, die Schwenkarme in die andere Achsrichtung umzulegen und in dieser Orientierung wiederum in ihrem Ausschwenkwinkel zu begrenzen.

    [0052] Aus ähnlichen Überlegungen empfiehlt es sich, auch eine etwa vorgesehene Zwangsführung des Fluidmotors doppeltwirkend, z.B. im Sinne von Anspruch 6 sowohl auf- als auch abwärts führend, auszubilden, was als Möglichkeit bereits im Zusammen­hang mit der Kufenführung nach den Ansprüchen 7 bis 9 bespro­chen ist.

    [0053] Auch die Führungselemente gemäß den Ansprüchen 9 bis 11 kann man gemäß Anspruch 37 doppeltwirkend anordnen. Wenn man diese Führungsmittel nur in einer Richtung benötigt, können die rückfedernden Führungselemente ohne weiteres gleich­gerichtet angeordnet sein.

    [0054] Die Fräswerkzeuge mit Schlagwerk gemäß den Ansprüchen 38 bis 41 sind bereits weiter oben im Zusammenhang mit einer Verstärkung der Fräswirkung angesprochen worden. Darüber hin­aus bieten sie den Vorteil, überwiegend und insbesondere gänzlich auf eine Drehmomentabstützung verzichten zu können, da jeweils das Fräselement an seinem Arbeitsort nach Art eines Hammerschlags auf einem Amboß federartig zurückprellt und dabei eine Kompensierung des Gegendrehmoments auftritt.

    [0055] Zusätzlich oder alternativ kann man auch noch zum Aus­gleich eines Gegendrehmoments die Maßnahme nach Anspruch 42 vorsehen.

    [0056] Anspruch 43 gibt eine Maßnahme zum schnellen Wechseln verschiedener Fräswerkzeuge an, um die im Rahmen der Erfindung mögliche sehr hohe Arbeitsgeschwindigkeit nicht durch Rüst­totzeiten zu beeinträchtigen.

    [0057] Wie schon detailliert beschrieben, ermöglicht die erfin­dungsgemäß Vorrichtung Betriebsarten, welche bisher überhaupt noch nicht in Betracht gezogen wurden. Dazu gehört insbesondere auch das Verfahren gemäß Anspruch 44 mit seinen Weiterbildungen nach den Ansprüchen 45 bis 47. Der Oberbegriff von Anspruch 44 geht dabei von dem bereits zitierten Oberbegriff des An­spruchs 1 der DE-A 12 29 230 oder der WO 86/00391 der WIPO aus.

    [0058] Das erfindungsgemäße Verfahren ist allgemeinen auf Antriebs­motoren bezogen formuliert und kann insbesondere erfindungsge­mäß realisiert werden. Da eine Realisierung mit anderen An­triebsmotoren bisher nicht bekanntgeworden ist, denkgrundsätz­lich jedoch nicht auszuschließen ist, wurde die verallge­meinernde Formulierung gewählt.

    [0059] Zu den Anwendungsansprüchen sei noch nachgetragen, daß Einfamilienhäuser Schornsteinhöhen von der Kellersohle bis zur oberen Schornsteinmündung im Regelfall höchstens im Bereich von 8 bis 12 m Höhe haben. Dreigeschossige Wohnhäuser beginnen bei einer Höhe ab Kellersohle von 16 bis 17 m. Achtgeschossige Wohnhäuser haben beispielsweise eine entsprechende Höhe von etwa 48 bis 50 m. Alle derartigen Höhen von dreigeschlossigen Wohnhäusern aufwärts können mit der erfindungsgemäßen Vorrich­tung in einem Zuge bei gleichbleibendem Drehmoment un­schwer gefräst werden, wobei grundsätzlich wegen des sehr geringen Gewichtes und der großen Flexibilität kaum eine Höhenbeschränkung besteht. Sollte man doch einmal von der Seite eines Schornsteins aus arbeiten wollen, ist auch dies wegen des einfachen konstruktiven Aufbaus der erfin­dungsgemäßen Vorrichtung unschwer möglich. Insbesondere ist bezüglich der Länge des Druckfluidschlauchs praktisch keine Begrenzung gegeben, so daß auch ein Fräsen weit vom Ort einer Druckölpumpe bzw. eines Kompressors möglich ist. Letztere können daher im Regelfall immer neben dem Bauwerk aufgestellt werden, dessen Schornstein saniert werden soll.

    [0060] Die Erfindung wird im folgenden anhand schematischer Zeichnungen an mehreren Ausführungsbeispielen noch näher erläutert. Es zeigen:

    Fig. 1 eine perspektivische Gesamtdarstellung als Übersichtsdarstellung;

    Fig. 2 einen Demonstrationslängsschnitt mit einem aufwärts fräsenden Lamellen-Fräswerkzeug;

    Fig. 3 einen entsprechenden Demonstrationsquerschnitt mit einem aufwärts fräsenden Frässtift-Fräswerkzeug;

    Fig. 4 denselben Demonstrationslängsschnitt mit abwärts arbeitendem Frässtift-Fräswerkzeug;

    Fig. 5 einen axialen Längsschnitt durch einen Pneu­matikmotor als Fluidmotor mit einstufigem Planetengetriebe;

    Fig. 6 eine Expositionszeichnung eines alternativ hier­zu einsetzbaren zweistufigen Planetengetriebe;

    Fig. 7 in teilweise axial geschnittener Darstellung eine alternative Ausführungsform eines Pneumatikmotors mit Schlagwerk;

    Fig. 8 eine Draufsicht auf die Längsseite eines mit Kufen zwangsgeführten Pneumatikmotors in der Bauart gemäß Fig. 5;

    Fig. 9 eine entsprechende Draufsicht auf die Längsseite des Pneumatikmotors gemäß Fig. 5 mit andersartiger Zwangs­führung;

    Fig. 10a bis 10d kranzbildende Elemente für die Zwangs­führung gemäß Fig. 9;

    Fig. 11 eine entsprechende Draufsicht auf die Längs­seite des Pneumatikmotors mit Zwangsführung gemäß Fig. 9 in doppeltwirkender Anordnung;

    Fig. 12 einen axialen Querschnitt durch ein Rauchgas führendes Innenrohr eines Schornsteins mit gegenüber dessen Innenwandfläche zentriertem Fluidmotor;

    Fig. 13 im axialen Längsschnitt eine bevorzugte Weiter­bildung des in Fig. 1 angewendeten Fräswerkzeugs;

    Fig. 14 eine perspektivische Darstellung des in Fig. 2 verwendeten Fräswerkzeugs;

    Fig. 15 eine perspektivische Darstellung des in den Fig. 3 und 4 verwendeten Fräswerkzeugs;

    Fig. 16 eine Expositionszeichnung eines Ausgleich­schlagwerks, das vorzugsweise zwischen dem Fluidmotor und seiner Aufhängung, gegebenenfalls aber auch im Bereich von dessen Abtriebswelle angeordnet werden kann, und

    Fig. 17 einen axialen Längsschnitt dieses Schlagwerks.



    [0061] Fig. 1 zeigt in einer schematischen Darstellung ein "aufgeschnittenes" Haus mit einem ebenfalls geschnitten dar­gestellten Schornstein.

    [0062] Ein auf dem Boden abgestellter Kompressor 10 ist mit einem in dem Schornstein abgelassenen Fluidmotor 12 in Aus­bildung als Pneumatikmotor über einen Druckluft zuleitenden Fluidschlauch 14 verbunden. Der Fluidmotor trägt ein Fräs­werkzeug 16, das hier durch Ketten gebildet wird, z.B. jedoch auch durch eine geeignet ausgebildete Fräskrone gebildet sein kann.

    [0063] Bei Beaufschlagung des Fluidmotors 12 mit der Druckluft wird das Fräswerkzeug 16 in Rotation versetzt und fräst dabei den Schornstein,auch unter Abtragen von Versottungen in der Innenschale des Schornsteins und unter Beseitigung von vor­stehenden Mauerteilen,auf den Solldurchmesser aus. In diesem Beispiel wird der Schornstein durch langsames Aufziehen des Fluidmotors 12 mitsamt dem Fräswerkzeug 16 von unten nach oben kontinuierlich ausgefräst. Ebenso ist ein Arbeiten von oben nach unten möglich, z.B. mit der erwähnten Fräskrone.

    [0064] An dem unteren Ende des Schornsteins ist eine Absaug­einrichtung eingebracht, über die der sich bildende Staub ab­gesaugt wird.

    [0065] Mittels Abluft des vom Kompressor gespeisten Fluid­motors wird in dem Schornstein ein Überdruck erzeugt, der ein einfaches Abströmen des gebildeten Staubes ermöglicht, so daß keine oder nur eine geringe Saugleistung erforderlich ist.

    [0066] An die Stelle des Kompressors 10 und des Pneumatikmotors kann bei hydraulischem Betrieb mit Öl eine Druckölpumpe 10 und als Fluidmotor 12 ein Hydraulikmotor treten.

    [0067] Nachfolgend wird die erfindungsgemäße Vorrichtung noch mehr im einzelnen erläutert.

    [0068] Auf einem Schornsteinfundament 2 ist ein Schornstein 4, hier als Hausschornstein, errichtet, der eine äußere ringsum laufende Schornsteinkonstruktion 6 sowie eine von dieser umgebene Innenschale aufweist, die als Rauchgas führender Innenrohrstrang 8 vorgesehen ist.

    [0069] Ohne Beschränkung der Allgemeinheit ist hier die tra­gende Schornsteinkonstruktion 6 als Mauerwerk aus Kunst- oder Natursteinen sowie der Innenrohrstrang 8 als durch­laufende Schicht beispielsweise aus Ausschleuderzement dargestellt. In Frage kommt alternativ jede andere ein- oder mehrschalige Schornsteinkonstruktion mit oder ohne zusätzliche Zwischenschalen, wie etwa Wärmedämmschichten oder Dampfdiffusionsdämmschichten. Insbesondere kann der Innenrohrstrang auch aus Schamotte- oder Stahlrohren be­stehen und auch in üblicher Weise aus axial aneinander anschließenden und meist durch Fugenmörtel oder andere Dichtungsstränge abgedichteten Teilelementen bestehen.

    [0070] Im Bereich des unteren Endes des Schornsteins 4 ober­halb des Schornsteinfundaments 2 befindet sich eine Öffnung mit einem Schornsteinschieber 18, durch welche üblicherweise Ruß entnommen wird. Der Schornstein 2 endet oben in einem stirnseitigen Plateau 20, auf dem ein nicht dargestellter Schornsteinkopf, bei moderneren Schornsteinen gegebenen­falls über eine nicht dargestellte Abschlußplatte, an dem Gebäude aufgesetzt sein kann. Das Ausfräsen des Schornsteins 4 erfolgt zweckmäßig bei abgenommenem Schornsteinkopf und gegebenenfalls auch abgenommener Abschlußplatte. Auf dem Plateau 20 ist ein Tragrahmen oder ein Traggerüst 22 so montiert, daß es seitlich unverrückbar ist, z.B. durch Verklammerung am oberen äußeren Schornsteinrand. Ausgerich­tet auf die Achse des Schornsteins 4, gegebenenfalls in den beiden horizontalen Freiheitsgraden seitlich einstellbar, trägt das Traggerüst 22 eine Rolle 24, über welche bei der Anordnung gemäß Fig. 1 der Fluidschlauch 14 und bei der Anordnung nach den Fig. 2 bis 4 ein Zugseil 26 geführt wird. An diesem Zugseil 26 ist hier der Fluidmotor 12 aufgehängt, wozu gemäß Fig. 1 der Fluischlauch 14 selbst dient. Wenn dieser Fluidschlauch 14 selbst die Zugfunktion mit über­nehmen soll, muß er entsprechend zugfest ausgebildet sein, beispielsweise durch eine zugfeste Schlaucharmierung oder Schlauchhülle.

    [0071] Das Zugseil 26, beispielsweise ein Stahlkabel, wird von einer Seilwinde 28 aus betätigt, an deren Stelle im Falle der Aufhängung des Fluidmotors am Fluidschlauch 14 gemäß Fig. 1 eine Ausbildung der Rolle 24 als eine eben­falls im Bereich des Traggerüstes 22 betätigbare Schlauch­aufwickelrolle treten kann. Die Seilwinde 28 oder eine Schlauchabwickelrolle sind beim Betrieb mit ihrer Welle starr am Traggerüst befestigt, so daß die Aufwickelkräfte über das Traggerüst am oberen Ende des Schornsteins 4 auf­genommen werden. Die Seilwinde 28 ist zweckmäßig höhenein­stellbar.

    [0072] Der Fluidschlauch 14 ist hier gesondert von dem Zug­seil 26 aus dem oberen Ende des Schornsteins 4 geführt und mit einem Kompressor (vgl. Kompressor 10 in Fig. 1) außerhalb des Schornsteins verbunden, welcher von einem Verbrennungsmotor, zweckmäßig einem Dieselmotor, angetrie­ben wird. Sowohl der Kompressor als auch der Verbrennungs­motor sind auf einem Fahrgestell 30 mit einer Feststell­bremse 32 montiert und von einer schallschluckenden Haube 34 umgeben. Das Fahrgestell 30 kann auf jeder flachen Grund­ fläche 36 neben dem Gebäude, in welchem der Schornstein 4 errichtet ist, aufgestellt und gegenüber dieser Grundfläche festgebremst werden.

    [0073] Auf derselben Grundfläche 36 wird ebenfalls auf Fahr­gestellen 38 und 40 ein Vorabscheider 42 für groben Fräs­abhub und ein mit diesem in Saugrichtung dahinter kommuni­zierender Hauptabscheider 44 für Frässtaub angeordnet, wel­cher ebenfalls motorisch angetrieben wird. Hierzu können etwa zwei Elektromotoren 46 oder alternativ Druckluftmoto­ren vorgesehen sein, die dann zweckmäßig von dem unter der Haube 34 angeordneten Kompressor mit gespeist werden können. Die beiden Elektromotoren 46 ermöglichen bei Speisung durch ortsübliche Netzspannung die entsprechende Vervielfachung der verfügbaren Antriebsleistung und können so einen Stark­stromanschluß einsparen. Gegebenenfalls kann man auch mehr als zwei derartige Motoren 46 vorsehen.

    [0074] Der Hauptabscheider ist beispielsweise als Industrie­staubsauger ausgebildet und über die gezeigten Saugleitungen durch die Öffnung des Schornsteinschiebers 18 an den Boden­raum des Schornsteins 4 oberhalb des Schornsteinfundaments 2 angeschlossen.

    [0075] Das in Fig. 2 eingezeichnete Fräswerkzeug 16 wird nachfolgend anhand der Fig. 14 noch mehr im einzelnen be­schrieben. Das in den Fig. 3 und 4 verwendete Fräswerkzeug 16 wird nachfolgend mehr im einzelnen noch anhand von Fig. 15 beschrieben.

    [0076] Bei den Fig. 2 bis 4 trägt ferner der Fluidmotor 12 eine Führung 48, wie sie mehr im einzelnen anhand der Fig. 9 und 10a bis 10d beschrieben ist.

    [0077] Der Fluidmotor 12 hat selbst die nachfolgend anhand der Fig. 5, gegebenenfalls mit Fig. 6, beschriebene Bauart, die einer Führung bedarf. Bei Verwendung eines Fluidmotors, welcher keiner äußeren Zwangsführung bedarf, beispielsweise des Fluidmotors gemäß Fig. 7, entfällt die Führung 48 bei sonst gleichbleibender Grundkonstruktion gemäß den Fig. 2 bis 4.

    [0078] Gemäß den Fig. 2 und 3 erfolgt das Ausfräsen des Rauchgas führenden Innenrohrstrangs 8 in einem Zug von unten nach oben, bei der Anordnung nach Fig. 4 ebenfalls in einem Zug von oben nach unten. Alternativ könnte die hier als Innenrohrstrang 8 interpretierte Innenschicht 8 auch nur eine beim Fräsvorgang jeweils erfaßte Innenzone umfassen, wobei radial aufeinander folgende Zonen Zug auf Zug von innen nach außen in abwechselndem Fräsbetrieb abwärts, auf­wärts, abwärts usw. abgetragen werden können. Auch können Nachbearbeitungsschritte, wie Schlichtvorgänge, unter Aus­wechslung des Fräswerkzeugs 16 mittels desselben Fluidmotors 12 durchgeführt werden.

    [0079] Da der Fluidmotor 12 bei den Ausführungsformen der Fig. 1 bis 4 jeweils oberhalb des Fräswerkzeugs 16 angeord­net ist, ergibt sich zwangsläufig, daß die Führung 48 gemäß den Fig. 2 und 3 mit der noch nicht ausgefrästen Innenzone bzw. dem Rauchgas führenden Innenrohrstrang bei einzügigem Arbeiten, bei Fräsen von oben nach unten hingegen gemäß Fig. 4 an der bereits ausgefrästen Innenwandfläche des Schornsteins geführt ist.

    [0080] Bei geeignetem Anschluß des Fluidschlauches 14 kann man in nicht dargestellter Weise gegebenenfalls auch das Fräswerkzeug 16 oben und den Fluidmotor 12 unten anordnen;
    dies bietet jedoch die Schwierigkeit, den Fluidmotor bei Zuleitung von oben durch den Körper des Fräswerkzeugs hin­durch leiten zu müssen oder alternativ den Fluidschlauch 14 von vornherein von unten her durch die Öffnung des Schorn­steinschiebers 18, oder eine andere Öffnung, zuzuleiten.

    [0081] Der in Fig. 5 dargestellte Pneumatikmotor 12 weist einen Zylinder 50 auf, längs dessen Achse sich der Rotor 52 des Pneumatikmotors 12 erstreckt. Der Zylinder 50 ist außen und innen durch eine Zylinderfläche begrenzt, wobei jedoch die innere Zylinderfläche exzentrisch zur äußeren Zylinder­fläche angeordnet ist. Dadurch hat der Zylinder 50 ent­sprechend wechselnde Wandstärke. Der Rotor 52 hat eine zylindrische Außenfläche, die mit der exzentrischen Innen­fläche des Zylinders 50 einen Kompressionsraum 54 begrenzt (in Kreuzschraffur dargestellt). Der Rotor 52 ist seiner­seits auf einer Läuferwelle 56 befestigt.

    [0082] Über den Umfang des Rotors 52, der aus einer massiven Zylinderschale gebildet ist, sind tangential zur Läufer­welle 56 verlaufende Schlitze verteilt, welche sich über die ganze axiale Länge des Rotors 52 erstrecken und mit radialem Abstand zur Läuferwelle 56 enden. Bei praktischen Ausführungsformen sind beispielsweise zwischen vier und sechs derartiger Schlitze vorgesehen. In den Schlitzen sind Rotorlamellen lose eingelegt. Während der Fluidmotor 12 sonst aus Stahl gefertigt werden kann, können die Rotor­lamellen 60 aus einem geeigneten Kunststoff bestehen, z.B. aus Phenoplasten oder Melaninharzen, wie sie bei­spielsweise unter dem geschützten Handelsnamen "Pertinax" vertrieben werden. Die Rotorlamellen 60 sind an ihrer mit mit der zylindrischen Innenfläche des Zylinders 50 zusammen­wirkenden Längskante geradlinig und an ihrer in die Schlitze eingreifenden Längskante komplementär zu einer entsprechenden Grundausbildung der Schlitze abgeflacht ausgebildet, um in den Schlitzen in ihrer radial tiefsten Eingriffsstellung axial geführt zu sein. Die Rotorlamellen werden bei Rotation der Läuferwelle unter der Zentrifugalkraft nach außen in Anlage an die Innenwandfläche des Zylinders 50 gedrückt. Dabei teilen sie den Kompressionsraum 54 in über den Umfang der Läuferwelle verteilte wandernde Kammern ein, wobei durch hinreichend enge Anlage der Schlitze an den Rotorlamellen Kurzschlußluft zwischen den Kammern weitestgehend vermieden wird.

    [0083] In dem dicken Wandbereich des Zylinders 50 verlaufen in Umfangsrichtung nebeneinander zwei durchgehende achs­parallele Bohrungen 62, über welche die vom Kompressor 10 über einen Druckluftschlauch 14 zugeführte Druckluft über vier Schlitze 64 dem Kompressionsraum 54 zugeführt wird. Die Schlitze 64 erstrecken sich in Umfangsrichtung des Zylinders 50 und sind paarweise in der Nachbarschaft der beiden Enden des Zylinders angeordnet.

    [0084] In der in Laufrichtung des Rotors 52 abnehmenden Sichel der sich verjüngenden Wandstärke des Zylinders sind radial durchgehende Auslaßlöcher 66 verteilt, dabei sind zweckmäßig in dem axialen Bereich zwischen den Schlitzen 64 jeweils mehrere, beispielsweise fünf, dieser Löcher in mehreren, beispielsweise zwei, Reihen über den Umfang des Zylinders 50 verteilt. Der Zylinder 50 ist an seinen beiden Stirnseiten jeweils über einen Deckel 68 dicht abgeschlossen. Dabei trägt jeder Deckel 68 an seiner dem Kompressionsraum 54 abgewandten Seite jeweils ein Kugellager 71 für die Läuferwelle 56, welche abgedichtet durch axiale Öffnungen in beiden Deckeln 68 hindurchgreift und im übrigen gegen axiale Verschiebung gesichert ist.

    [0085] Auf der dem Fräswerkzeug 16 zugewandten Seite ist die Läuferwelle 56 über das Kugellager 71 hinaus verlängert als Eingangswelle eines einstufigen Untersetzungsgetriebes, hier Planetengetriebes. Insoweit entspricht das Planeten­getriebe der unteren Hälfte der Expositionszeichnung gemäß Fig. 6, in deren oberen Hälfte weitere Elemente zur zwei­stufigen Ausbildung des Untersetzungsgetriebes einge­zeichnet sind, hier eines axial hintereinander geschalteten zweistufigen Planetengetriebes.

    [0086] Auf dem abgetriebenen Ende der Läuferwelle außerhalb des Zylinders 50 sitzt demzufolge ein Ritzel 70. Dieses greift in eine Innenverzahnung eines Planetenradkäfigs 72. Die in diesem gelagerten Planetenräder 74 kämmen mit einem Sonnenradkranz 76. Dieser ist starr an der Innenseite einer topfförmigen Erweiterung 78 einer Abtriebswelle 80, an welcher die Welle des Fräswerkzeuges 16 drehfest gekuppelt wird, angeordnet.

    [0087] Bei der aus Fig. 6 ersichtlichen Variante ist zwischen der Abtriebswelle 80 und der beschriebenen ersten Stufe des Planetengetriebes noch eine zweite Planetenradstufe axial nachgeordnet, deren Elemente in Fig. 6 bei sonst gleichbleibenden Funktionsteilen mit dem Zusatz a kennt­lich gemacht sind.

    [0088] Der Unterschied besteht dabei lediglich darin, daß die erste Stufe des Planetengetriebes nicht direkt an die Abtriebswelle 80 angeschlossen wird, sondern daß bei sonst gleicher Ausbildung wie bei dem dem Pneumatikmotor zuge­wandten Ende der Abtriebswelle eine axial fluchtende Zwischen­welle 82 verwendet wird, auf welcher ein Ritzel 70a sitzt, welches in der Krafteinleitungsfunktion dem Ritzel 70 am Eingang der ersten Getriebestufe entspricht.

    [0089] Die ganze Einheit, welche durch den Zylinder 50 nebst Deckeln 68, die darin gelagerte Läuferwelle 56 sowie das im ganzen mit 84 bezeichnete Planetengetriebe (zweite Stufe 84a) beschrieben ist, ist von einem zweiteiligen massiven Panzergehäuse 84 an seiner der Aufhängung zugewandten Seite und ringsum umgeben, wobei eine massive untere Abschluß­platte 86, welche innen ein erstes Kugellager 88 für die Abtriebswelle 80 trägt und dicht an das Panzergehäuse 84 angeschlossen ist, an der dem Fräswerkzeug 16 zugewandten Seite das Gehäuse abschließt.

    [0090] Die Abtriebswelle 80 ist ferner durch ein zweites Kugellager 90 gelagert, welches an der Innenseite eines ersten Teils 92 des Panzergehäuses befestigt ist. Dieses erste Teil 92 ist haubenförmig angeordnet und umfaßt, aus­gehend von der Abschlußplatte 86, alle oben bezeichneten Teile von Abtriebsgehäuse(n) und Pneumatikmotor, wobei der Haubenboden 94 dem der Abtriebswelle 80 entgegenge­setzen freien Ende 96 der Läuferwelle 56 gegenüberliegt.

    [0091] Der Zylinder 56 ist an seinen beiden stirnseitigen Enden jeweils mit einem etwas überstehenden Ringflansch versehen, und diese Ringflansche sind dicht in das Ge­häuse des ersten Teils 92 des Panzergehäuses 84 eingepaßt. Dadurch entsteht zwischen der Außenfläche des Zylinders 50, den beiden Ringflanschen und der Innenfläche des genannten ersten Teils 92 ein gewisser Ringspalt, über den sich die aus den Auslaßlöchern 66 austretende Abluft des Kompressions­raums 54 frei verteilen kann. Diese Abluft kann durch einen Kranz von über die Wandung des ersten Teils 92 in Umfangs­richtung verteilten Ausgangslöchern radial weiter nach außen entweichen.

    [0092] Die Druckluft wird dem Pneumatikmotor durch einen axial nach oben ragenden Eingangsstutzen 100 zugeführt, der in dem Haubenboden 94 integral ausgebildet ist. Von dort aus gelangt die Druckluft über den unterhalb des Hauben­bodens 94 gebildeten Freiraum 102 innerhalb des ersten Teils 92 zu den Bohrungen 62 und von dort in der beschrie­benen Weise schließlich in den Kompressionsraum 54.

    [0093] Auf den ersten Teil 92 des Panzergehäuses 84 ist dessen zweiter Teil 104 auf seiten der Aufhängung des Fluid­motors außen umgreifend aufgeschraubt. Wie später noch an­hand von Fig. 9 beschrieben wird, wird die ganze Einheit aus Fluidmotor 12 und Fräswerkzeug 16 an diesem zweiten Teil 104 aufgehängt.

    [0094] Der zweite Teil 104 umgreift den ersten Teil 92 des Panzergehäuses 84 bis unterhalb der Ausgangslöcher 98 und ist dabei derart in eine Ausdrehung am ersten Teil eingeschraubt, daß beide Teile 92 und 104 des Panzergehäuses 84 eine ge­meinsame durchmesserkleine zylindrische Außenfläche haben.

    [0095] Außerdem wird dabei in dem übergreifenden Bereich ein Ringspalt 106 zwischen den beiden Teilen 92 und 104 des Panzergehäuses 84 gebildet, welcher den Ausgangslöchern 98 gegenüberliegt und im Bereich der unten liegenden Fuge zwischen beiden Teilen des Panzergehäuses abgedichtet ist.

    [0096] Der Ringraum 106 ist gegenüber der äußeren Stirnseite des Haubenbodens 94 durch einen Ringspalt 108 zwischen der äußeren Stirnseite des Haubenbodens 94 und einem axial weiter nach oben führenden massiven Fortsetzungsteil 110 des zweiten Teil 104 radial nach innen verlängert.

    [0097] In dem Fortsetzungsteil ist zunächst eine radiale Bohrung 112 ausgebildet, die außerhalb des Panzergehäuses mit einem sich axial neben diesem erstreckenden Einlaß­ stutzen zur Verbindung mit dem Druckluftschlauch 14 führt. Diese Anschlußbohrung 112 ist gegenüber dem äußeren Ende des Eingangsstutzens 100 am Haubenboden 94 abgedichtet.

    [0098] Unter Umgehung der Anschlußbohrung 112 kommuniziert der Ringspalt 108 mit axial und radial verlaufenden Bohrungen 114 und 116 im Fortsetzungsteil 110 des zweiten Teils 104 des Panzergehäuses 84, um die Abluft des Pneumatikmotors schließ­lich durch einen seitlich am Panzerghäuse angebrachten Aus­puffschacht 114 ins Freie, und dabei beim Fräsen in den Innenraum des Schornsteins, entweichen zu lassen. Die Aus­trittsrichtung dieses Auspuffschachtes ist dabei achsparallel in Richtung zum Fräswerkzeug 16 gewählt. Die nur über einen Teilbereich des Umfangs des Panzergehäuses entweichende Aus­puffluft verteilt sich dabei als Mantelströmung derart, daß nicht nur ein Anblasen des Fräswerkzeugs möglich ist, sondern auch eine Sperre gegen Aufsteigen von Frässtaub über den ganzen Umfang des Panzergehäuses entsteht.

    [0099] Mit Ausnahme des Untersetzungsgetriebes 85 (gege­benenfalls einschließlich 85a) kann der Pneumatikmotor ge­mäß Fig. 7 grundsätzlich gleichartig aufgebaut sein, unbe­schadet zeichnerischer Abweichungen in Fig. 7. Die Dreh­momentübertragung vom Pneumatikmotor auf das Fräswerkzeug erfolgt hierbei mangels Untersetzungsgetriebe im Über­setzungsverhältnis 1:1, d.h. direkt.

    [0100] Stattdessen ist das aus dem Zylinder 56 auf seiten des Fräswerkzeuges 16 hervorstehende freie Ende der Läufer­welle 56 mit einer Abtriebswelle 115, welche der Abtriebs­welle 80 gemäß Fig. 5 entspricht, über ein Schlagwerk 116 verbunden. Dieses wandelt die kontinuierliche Drehbewegung der Läuferwelle 56 in eine Dreh-Schlag-Bewegung mit Schlag­wirkung in Winkelrichtung aufgrund eines pro Umdrehung der Läuferwelle wirksamen Zusammenwirkens eines sog. Hammers und eines sog. Ambosses des Schlagwerkzeugs. Dabei kann auf eine Axialschwingung des Fräswerkzeuges 116 gänzlich verzichtet werden, wenn man auch im Bedarfsfall eine axiale Komponente noch mit einbeziehen könnte.

    [0101] Verschiedene konstruktive Bauweisen eines derartigen Schlagwerkes sind bekannt, so daß sich eine Beschreibung im einzelnen erübrigt. Eine mögliche und auch bevorzugte Bau­weise wird nachfolgend noch in anderem Einsatzzusammenhang anhand von Fig. 16 mehr im einzelnen erläutert. Das Schlag­werk gemäß Fig. 16 kann insbesondere zwischen dem Fluidmotor 12 einerseits und dessen Aufhängung andererseits zwischenge­schaltet werden.

    [0102] Ein wesentliches Merkmal der Einschaltung eines sol­chen Schlagwerkes besteht darin, ein beim Arbeiten des Fräswerkzeugs 16 auftretendes Gegendrehmoment schlagend - ein elastischer Hammerschlag zwischen Hammer und Amboß des Schlagwerks pro Umdrehung - durch die Schlagrückwirkung im Schlagwerk zu kompensieren.

    [0103] Dadurch wird nicht nur das die axiale Baulänge ver­längernde Untersetzungsgetriebe 85 bzw. 85a entbehrlich, sondern es wird auch die Einwirkung des Fräswerkzeugs auf das abzutragende Material erheblich verstärkt, und zwar vergleichbar der Arbeitsweise eines Bohrhammers.

    [0104] Eine weitere Besonderheit des Pneumatikmotors nach Fig. 7 besteht ferner darin, daß die Abtriebswelle 115 hohl ausgebildet ist, und zwar mit mehreckigem Innenquerschnitt, insbesondere als Sechskant. Dadurch können marktgängige Fräswerkzeuge, die im allgemeinen mit einem Sechskantan­schluß versehen sind, unter Übertragbarkeit sehr hoher Drehmomente einfach angesteckt werden. Ein entsprechendes Ansteckstück 118 eines Fräswerkzeuges 16 ist in Fig. 7 eingezeichnet.

    [0105] Außerdem kann die Bohrung der hohlen Abtriebswelle 115 als Zuführungskanal von Steuerfluid, insbesondere Druck­luft, zum Fräswerkzeug mit benutzt werden. Hierzu ist am frässeitigen Ende der Hohlwelle ein Steuerleitungsanschluß 120 herausgeführt, beispielsweise, um ein für Arbeitsrich­tungen aufwärts und abwärts umsteuerbares Fräswerkzeug bei Änderung der Arbeitsrichtung umzusteuern.

    [0106] Die Fig. 8 sowie 9 bis 11 zeigen zwei mögliche be­vorzugte Bautypen von Zwangsführungen, die bei der im Drehmoment abstützungsbedürftigen Bauart eines Pneumatik­motors gemäß Fig. 6 Anwendung finden können. Beide Bauarten zeichnen sich durch einen relativ wenig abgedeckten Durch­blickspalt zwischen dem Panzergehäuse 84 und der Innenfläche des Schornsteins 4 aus.

    [0107] Allgemein erkennt man an diesen Figuren auch eine Anschlußkupplung 124, hier eine sog. Stecknuß, zum Verbinden der Abtriebswelle 80 gemäß Fig. 5 mit dem Fräswerkzeug 16. Ferner ist am oberen Ende eine Öse 122 am zweiten Teil 104 des Panzergehäuses vorgesehen, an welcher das Zugseil 26 eingeklinkt werden kann.

    [0108] Wenn die Aufhängung über den Fluidschlauch 14 ge­mäß Fig. 1 erfolgt, müßte man in nicht dargestellter Weise den hier seitlich am Panzergehäuse angeordneten Anschluß­stutzen 126, welcher mit der Anschlußbohrung 112 kommuni­ziert, am Fluidmotor analog der Öse 122 axial anordnen und zugkraftübertragend ausbilden, d.h. mit Anschlußmitteln an die Armierung oder zugfeste Umhüllung des Fluidschlauches 14.

    [0109] Bei beiden Führungsarten der Fig. 4 bis 11 sind mit für die Führung hinreichendem axialen Abstand im Bereich bei­der Enden des Panzergehäuses 84 jeweils eine Haltescheibe 128 angeordnet (siehe insbes. auch die Fig. 10a und 1b, in denen die Halte­scheibe 128 in Draufsicht und in Seitenansicht dargestellt ist). Die Haltescheibe wird längs der gestrichelt dargestell­ten Wirkungslinie 130 in Fig. 10a mittels Spannschrauben 132 auf den Außenumfang des Panzergehäuses 84 aufgeklemmt.

    [0110] Die gestrichelte Doppellinie 134 in Fig. 10a be­schreibt im großen quadratischen Querschnitt der Halte­scheiben 128 im Bereich der Mitten der Begrenzungslinien des Quadrates eine Anlenkachse 134 für Schwenkarme 136. Diese sind gerade Hebel, deren eines Ende im Bereich der Achse 134 an einem Gelenkzapfen 138 am Panzergehäuse 84 angelenkt ist und dessen anderes Ende gelenkig mit einer Wange 140 an der radial inneren Seite einer Kufe 142 verbunden ist. Es sind dementsprechend vier Kufen 142 über den Umfang des Pneumatik­motors verteilt. Diese haben einen langgestreckten, wenig­stens annähernd geradlinigen Mittelabschnitt 144 und oben und unten jeweils nach innen gekrümmte oder schräg ausgestell­te Enden 146.

    [0111] Bei dieser Ausbildung bilden jeweils die Mantelfläche des Panzergehäuses 84, die Kufen und die beiden die jeweilige Kufe oben und unten anlenkenden Schwenkarme ein Parallel­führungsgestänge.

    [0112] Alle vier Parallelführungsgestänge werden durch eine axial verschiebliche Betätigungsplatte 147 in ihrer radialen Weite gemeinsam verstellt. Hierzu ist jeweils der Umfang der Betätigungsplatte im Bereich einer Anlenkung 148 über einen sich längs des Panzergehäuses außerhalb desselben erstrecken­den Zughebel 150 mit einer Anlenkung 152 im mittleren Bereich des jeweils oberen Schwenkarms 136 verbunden.

    [0113] Die Betätigungsplatte 147 ist auf zwei einander dia­gonal gegenüberliegenden Führungsstangen 154 axial verschieb­lich geführt. Die Führungsstangen ihrerseits sind mit ihren unteren Enden in die obere Haltescheibe 128 eingeschraubt und an ihren oberen Enden durch ein Querjoch 156 verbunden, an welchem die Öse 122 angeschweißt ist.

    [0114] Ohne aufgebrachte Verschiebekraft liegt die Betäti­gungsplatte 147 in ihrer untersten Stellung aufgrund des Gewichtes der an ihr angelenkten Gestänge mit Kufen. Zum Anheben der Betätigungsplatte 147 dient ein pneumatisch be­tätigter Servozylinder 158, welcher an der Stirnseite des Panzergehäuses 84 befestigt ist und mit seinem Stempel 160 am axialen Zentrum der Betätigungsplatte lose abgestützt sein kann. Bevorzugt ist jedoch zur Zwangssteuerung der Be­tätigungsplatte 147 in beiden axialen Richtungen eine Befe­stigung 162 an der Angriffsstelle an der Betätigungsplatte 147.

    [0115] Bei den Ausführungsformen nach Fig. 9 und 11 ist die Haltescheibe 128 an den Ecken ihres im großen quadratischen Grundrisses abgeschrägt ausgebildet, und in den Ecken ist je ein radial verlaufender Einschnitt 163 vorgesehen, der im Bereich der Wirkungslinie 130 für das Zusammenspannen auf dem Umfang des Panzergehäuses ebenso wie bei der vorbeschriebenen Aus­führungsform als durchgehender Schlitz ausgebildet ist.

    [0116] Innerhalb der Einschnitte 163 ist das eine Ende eines geradlinigen Hebels 164 längs der dreifach gestrichelten ge­ dachten Achse 166 angelenkt. Die Form des Hebels 164 ist aus der Draufsicht gemäß Fig. 10c bzw. der Seitenansicht gemäß Fig. 10d ersichtlich. Der Wirkungsachse 166 entspricht dabei der Gelenkzapfen 168 gemäß Fig. 10d.

    [0117] Das freie Hebelende ist mit einer einseitigen Auskra­gung als Gabel 169 ausgebildet, wobei an den beiden Armen 170 der Gabel 169 eine Welle 172, auf welcher jeweils ein Schneidrad 174, oder alternativ eine Rolle oder Walze, dreh­bar gelagert ist.

    [0118] Unter der jeweiligen Haltescheibe 128 ist jeweils ein elastisch-nachgiebiges Pufferelement in Gestalt eines umlau­fenden Zellkautschukringes 176 gegen axiale Verschiebung ge­sichert aufgesteckt, auf welchem der mittlere Bereich des jeweiligen Hebels zur Begrenzung seiner Abwärtsschwenkstellung lose aufliegt. Man kann gegebenenfalls die axiale Stellung dieses Pufferelementes 176 auch verstellen. Durch passende Einstellung kann man dabei auch eine gleiche oder auch ge­wünschte unterschiedliche radiale Ausstellung (z.B. in An­passung an Formkonizitäten des Schornsteins) bei unterschied­lichen Längen der Hebel 164 wählen. In diesem Sinne sind die oberen Hebel 164 mit kürzerer Länge als die unteren Hebel 164 gezeichnet. Die aus Fig. 9 auch erkennbare etwas weitere radiale Ausladung der unteren Hebel 164 soll hier nicht einer Anpassung an einen konischen Verlauf des Schornsteins mit oben engem und unten weitem Querschnitt entsprechen, sondern eine unterschiedliche Belastung der oberen und unteren Hebel ausgleichen, da die unteren Hebel durch das näher liegende Fräswerkzeug stärker gewichtsbelastet sind. Man kann so mit gleichartigem Material der Pufferelemente 176 auskommen. Wie erkennbar sind im übrigen aus demselben Grunde die unteren Pufferelemente 176 in Fig. 9 mit weiterer radialer Ausladung als die oberen ausgegliedert.

    [0119] Im übrigen ist in Fig. 9 noch eine Einkerbung 178 am äußeren Umfang des Panzerzylinders zu erkennen. Dieser Ein­kerbung 178 liegt eine parallele entsprechende Einkerbung auf der abgedeckten anderen Seite gegenüber. Dadurch kann man mittels eines Werkzeugs die beiden Teile 92 und 104 des Panzer­gehäuses 86 unter Aufbringung eines hinreichenden Drehmomentes aufschrauben.

    [0120] Wegen des andersartigen Aufbaus dieser Führung sind hier die Führungsstangen 154 der Ausführungsform nach Fig. 8 durch einen Anschlußzapfen 180 ersetzt, der oben durch die Öse 122 festgesetzt ist und unten mit der Stirnseite des Pan­zergehäuses 84 starr verbunden ist.

    [0121] Erkennbar ist der Anschlußzapfen 180, ein massiver Zylinder, mit kleinerem Durchmesser als das Panzergehäuse 84 ausgebildet. Dies hat den Vorteil, die oberen Hebel 164 mit besonders kleiner radialer Ausladung anordnen zu können. Wegen der größeren Belastung der unteren Hebel stellt sich dort das Problem nicht in dem Maße. Im ganzen hat dies die Möglich­keit einer Anpassung an besonders geringe lichte Schornstein­weiten.

    [0122] In der Ausführung nach Fig. 9 ist die Führung jedoch nur einseitig führend, nämlich in Aufwärtsrichtung. Fig. 11 zeigt eine einfache Modifizierung, mit welcher man denselben Aufbau der Führung doppeltwirkend ausbilden kann, und zwar mit gleichbleibender Geometrie ohne die Notwendigkeit von Umstellarbeiten. Hierzu sind die Hebel, die oben und unten jeweils kranzförmig angeordnet sind, miteinander durch sich längs des Panzergehäuses 84 erstreckende Zugelemente 182 mit­einander verbunden, die zweckmäßig Zugfedern sind. Bei dieser Konfiguration ist sogar das untere Pufferelement 176 gänzlich entbehrlich. Es kann jedoch vorgesehen bleiben, wenn man die Zugelemente 182 lösbar vorsieht.

    [0123] Während bei beiden beschriebenen Führungen jeweils vier Führungselemente in Umfangsrichtung äquidistant um das Panzergehäuse verteilt sind, kann man gegebenenfalls auch eine andere Anzahl dieser Führungselemente vorsehen, zweckmäßig mindestens drei derselben.

    [0124] Wie schon erwähnt gibt es jedoch Pneumatikmotoren, welche einer Zwangsführung mit Kufen, Schneidrädern oder Rollen nicht bedürfen, sondern die im Grenzfall sogar frei hängen können. Zweckmäßig ist dabei jedoch eine keine Dreh­momente abstützende Zentrierung. Eine bevorzugte Ausführungs­form einer derartigen Zentrierung zeigt Fig. 12.

    [0125] In dieser Fig. ist das Panzergehäuse 84 des Fluid­motors 12 nur grobschematisch dargestellt. Es geht darum, dieses Panzergehäuse an der jeweils vorhandenen Innenwand­schicht 184 des Schornsteins 4 zu zentrieren. Dabei kann je nach der Arbeitsrichtung diese Innenwandschicht von einer bereits ausgefrästen oder noch auszufräsenden Zone des Schorn­steins gebildet sein, insbesondere also bei einstufigem Fräsen von der tragenden Schornsteinkonstruktion 6 oder dem Rauchgas führenden Innenrohr 8.

    [0126] Über den Umfang des Panzergehäuses 84 sind mindestens drei, vorzugsweise vier, Bogenfedern 186 verteilt. Diese sind mit ihrem unteren Ende an der Befestigungsstelle 188 am Pan­zergehäuse 84 befestigt und greifen an ihrem oberen Ende in eine ebenfalls am Außenumfang des Panzergehäuses 84 ange­brachte Axialführung 190 ein.

    [0127] Es ist möglich, diesen Eingriff einwirkungsfrei zu machen, so daß eine freie axiale Beweglichkeit der oberen Enden in der Führung bei unterschiedlicher radialer Zusammen­drückung der Bogenfedern 186 erfolgt. Man kann jedoch auch das in die Längsführung 190 eingreifende freie Ende der Bogenfeder gegen einen verstellbaren Anschlag wirken lassen oder wenig­stens die Eingriffstiefe des freien Endes in die Längsführung 190 unterschiedlich wählen bei anfangs gegebener freien Be­weglichkeit. Für derartige Verstellungen kann man wiederum einen Servomotor vorsehen, der von dem Betriebsfluid mit ge­speist werden kann wie in den anderen fernbetätigten Servo­fällen.

    [0128] Im Grenzfall braucht die Bogenfeder 186 nur in einem relativ geringen axialen Bereich mit der Schornsteininnenfläche in Kontakt zu sein. Bevorzugt ist jedoch die dargestellte große axiale Eingriffslänge, welche die überwiegende Länge der Bogenfeder einnimmt. Da hier keine Kräfte übertragen werden sollen, liegt der Hauptvorteil in der Verwendung derselben Bogenfeder für ganz unterschiedlich weite Schornsteine 4.

    [0129] Die Fig. 13, 14 und 15 zeigen ferner drei besonders bevorzugte Bauarten von bei der erfindungsgemäßen Vorrichtung einsetzbaren Fräswerkzeugen.

    [0130] In allen drei Fällen hat das Fräswerkzeug einen zentra­len Tragkörper 192, um den sich vom Tragkörper gehaltene fräs­wirksame Elemente erstrecken. Das obere Ende des Tragkörpers ist hier jeweils als Vierkant dargestellt, wobei bei normge­rechter Ausführung stattdessen Sechskante vorgesehen sind. Diese werden über Befestigungsstifte 194, welche in entspre­chende Befestigungsbohrungen im Tragkörper 192 eingreifen, starr mit der Abtriebswelle des jeweiligen Fluidmotors 12 in axialer Fluchtung mit dessen Wirkachse befestigt. Im Grenzfall kann man aber auch Befestigungskupplungen mit geringfügiger seitlicher Ausbiegbarkeit vorsehen, die jedoch das in Winkel­richtung wirksame Drehmoment aufnehmen sollen.

    [0131] Im Falle der Ausführungsform nach Fig. 13 erstreckt sich der Tragkörper 192 mit gleichbleibendem Querschnitt über die ganze axiale Höhe des Fräselements. Das untere Ende ist dabei als Auflager 196 gebildet, welches über einen Befesti­gungsstift 194 an dem Tragkörper 192 axial unverschiebbar befestigt ist.

    [0132] Oberhalb des Auflagers ist eine Folge von Abstands­hülsen 198 und Distanzscheiben 200 lose auf den Tragkörper aufgesteckt. Die Distanzscheiben 200 sind dabei vorzugsweise äquidistant angeordnet, wobei dann die zwischen ihnen ange­ordneten Abstandshülsen 198 jeweils gleiche axiale Länge haben bzw. jeweils für sich gleich ausgebildet sein können. Die unterste Abstandshülse 198 kann, wie dargestellt, kürzer ausgebildet sein. Alternativ kann man auf sie auch ganz ver­zichten und die unterste Distanzscheibe direkt auf dem Auf­lager 196 auflegen.

    [0133] Das äußere Ende jeder Distanzscheibe trägt in Ver­teilung um den Umfang des Fräswerkzeugs jeweils ein einzi­ges Kettenglied 202, welches jeweils an seinem äußeren Ende eine Frässcheibe 204 trägt.

    [0134] In Fig. 13 ist dabei eine Darstellung gezeichnet, bei der vom Rotationszustand des Fräswerkzeugs ausgegangen wird, so daß die sowohl mit den Distanzscheiben 200 als auch mit den Frässcheiben 204 kettenartig gelenkig verbundenen äußeren Kettenglieder 202 horizontal nach außen fliegen, wie dies auch in Fig. 1 bezüglich längerer kettenartiger Fräswerkzeuge dargestellt ist. Im Ruhezustand hängen derartige Ketten unter ihrem Eigengewicht nach unten, so daß sie dann leicht durch noch nicht ausgefräste Bereiche des Schornsteins hindurchgeführt werden können.

    [0135] Die Frässcheiben 204 beschreiben einen sich von oben nach unten zunächst konisch erweiternden und dann wieder konisch verjüngenden Wirkkegel, der in bezug auf die mittelste Distanz­scheibe 200a axialsymmetrisch ausgebildet ist, um bei gleich­bleibender Geometrie doppeltwirkend sowohl nach oben als auch nach unten gleichermaßen fräsen zu können. Da die Frässcheiben der mittelsten Distanzscheibe 200a wegen ihrer größten radialen Ausladung am stärksten beansprucht sind und daher auch jeweils für sich zweckmäßig besonders widerstandsfähig gewählt sein sollten, empfiehlt es sich auch, gemäß der Darstellung die mittelste Distanzscheibe 200a stärker als die übrigen Distanz­scheiben auszubilden (bei gleichem Material mit größerer Dicke). Die Distanzscheiben haben unterschiedliche radiale Weite ent­sprechend der jeweiligen radialen Ausladung des Wirkkonus an der betreffenden Stelle, während die einzelnen Kettenglieder 202 alle gleichartig gewählt sein können.

    [0136] Bei der Ausführungsform eines Fräswerkzeugs gemäß Fig. 14 ist der Tragkörper 192 ebenso,wie bezüglich des vor­beschriebenen Fräswerkzeugs erwähnt, mit einem nicht darge­stellten unteren Auflager analog zu dem Auflager 196 versehen, auf welchem hier eine einzige langgestreckte Abstandshülse 198a aufliegt (anstelle der Mehrzahl der Abstandshülsen 198 und Distanzscheiben 200 der vorbeschriebenen Ausführungsform).

    [0137] Zwischen dem Auflager und der Abstandshülse 198 einer­seits sowie auf der oberen Stirnfläche der Abstandshülse 198a andererseits ist jeweils eine mit dem Tragkörper 192 drehfest verbundene Tragplatte 206 angeordnet, die hier quadratisch ausgebildet ist.

    [0138] In den vier Eckbereichen dieser quadratischen Trag­platte 206 ist jeweils ein sich radial erstreckendes Langloch 208 ausgebildet, in welches jeweils eine Stellschraube 210 von den der Abstandshülse 198a abgewandten Seiten eingreift. An den Stellschrauben 210 sind über den Umfang des Fräswerk­zeugs verteilt vier bügelförmig ausgebildete Fräslamellen 212 ausschwenkbar, jedoch bei festem Anziehen der Stellschrau­ben 210 auch in einer bestimmten Winkelstellung feststellbar, angelenkt. Außerdem kann man bei hinreichend loser Einstellung der Stellschrauben auch eine freie axiale Verschiebbarkeit der Fräslamellen 212 längs der Langlöcher 208 vorsehen, wobei diese Verschiebbarkeit bei angezogener Stellschraube ebenfalls ausgeschlossen ist.

    [0139] Die Fräswerkzeuge haben jeweils an mindestens einer außen gelegenen Schmalseite eine Schneidkante 214. Es ist auch denkbar, an beiden Kanten der Fräslamelle eine Schneid­kante 214 vorzusehen, obwohl immer nur eine Schneidkante in einer Arbeitsrichtung benutzt wird, sei es zum Arbeiten unter unterschiedlichen Betriebsbedingungen, sei es zum Zwecke um­gekehrter Montage zur nachträglichen Abnutzung beider Schneid­kanten.

    [0140] Man kann aber auch zur Erzeugung besonders vorteil­hafter Fräsbedingungen den Querschnitt der Fräslamelle 214 so wählen, daß nur an einer Kante eine Schneidkante 214 in Frage kommt.

    [0141] In der zeichnerischen Darstellung sind ferner die Schneidkanten 214 axial von oben nach unten hin radial nach außen ausgestellt, um erneut einen konischen Wirkkegel zu beschreiben. Bei umgekehrter Arbeitsrichtung kann man dieses Werkstück auch umstecken, indem man die Schenkel der bügel­förmigen Fräslamellen, an denen die Stellschrauben 210 zwi­schen den Tragplatten 206 angreifen, ausgetauscht werden. Alternativ kann man zur Erzeugung einer Doppelwirkung auch die Ausstellung der Fräslamellen selbst nach Art eines Dop­pelkonus wählen, wie dies bezüglich der Ausführungsform nach Fig. 13 hinsichtlich verschiedener Fräselemente schon beschrieben ist. Hier würde dann der Doppelkonus von demsel­ben Fräselement gebildet sein. Alternativ kann man aber auch nach Art der Ausführungsform nach Fig. 13 zwei Fräswerkzeug­elemente nach Fig. 14 axial hintereinander schalten und dabei die Ausstellung zur Erzeugung des doppelkonischen Wirkungs­querschnittes bei gleichartigen Fräslamellen, die jedoch oben und unten unterschiedlich ausgestellt sind, erreichen. Alternativ zu der besonders bevorzugten beschriebenen Aus­führungsform mit Langlöchern 208 und Stellschrauben 210 kann man auch Anlenkungen der bügelförmigen Fräslamellen einfach über einzelne Kettenglieder vorsehen, wie dies bei der Aus­führungsform nach Fig. 13 bezüglich der Verbindung der dorti­gen Distanzscheiben 200 mit den äußeren Frässcheiben 204 an­hand der einzelnen Kettenglieder 202 beschrieben ist.

    [0142] Bei der dritten Ausführungsform eines bevorzugten Fräswerkzeugs gemäß Fig. 15 ist eine Tragscheibe 216 in ähnlicher Art wie das früher beschriebene Auflager 196 am unteren Ende des Tragkörpers 192 befestigt, z.B. durch eine nicht dargestellte Befestigungsschraube, mit welcher die Tragscheibe 216 von unten her an den formschlüssig teilweise in die Tragscheibe 216 eingreifenden Tragkörper 192 ange­schraubt ist.

    [0143] Über den Umfang der Tragscheibe 216 sind drei in Um­fangsrichtung äquidistante Rechtecknuten 218 verteilt, die axial durchlaufen. In jeder Rechtecknut 218 ist ein Schwingblock 220, der einen geradlinig kurzen Hebel bildet und die Weite der Rechtecknut unter relativer Beweg­lichkeit im wesentlichen einnimmt, an einem Lagerstift 222 schwingbar angelenkt. Der Lagerstift 222 ist dabei durch zu beiden Seiten der jeweiligen Rechtecknut 218 gegenüberliegende Durchgangsbohrungen 224 formschlüssig eingeschlagen.

    [0144] Die Schwingblöcke sind mit der oberen Stirnseite der Tragscheibe 216 im wesentlichen bündig. Die oberen Enden der Schwingblöcke 220 sind ferner mindestens an ihrer radial innen liegenden Seite des Fräskopfes dachartig angeschrägt. In der Fig. 15 ist ein außen und innen gleichartiges Dach 226 mit ebener Firstausbildung dargestellt. Der First ist dabei im wesentlichen nach der Schwenkstellung des Schwingblocks 220 mit der Oberfläche der Tragscheibe 216 bündig, während die radial innen gelegene Dachschräge 228 bei einer vorgegebenen Ausschwenkstellung des Schwingblocks 220 am Grund der Recht­ecknut 218 anschlägt und damit die Ausschwenkung begrenzt. Die doppelseitige Dachausbildung kann verwendet werden, um bei einseitiger Abnutzung des Schwingblocks die Einbaurichtung umzudrehen.

    [0145] Am unteren Ende des etwas axial nach unten aus der Tragscheibe 216 herausragenden Schwingblocks 220 ist eine Ge­windebohrung 230 ausgespart. In diese ist ein hohe Beanspruchun­gen aufnehmender Standbolzen 232 fest eingeschraubt, welcher mit etwas radialem Spiel als Lagerwelle für einen zylinder­schalenförmigen Grundkörper 234 eines Fräskopfes 236 dient. Der Fräskopf ist dabei durch Frässtifte 238 komplementiert, welche in die zylindrische Umfangsfläche des Grundkörpers 234 starr eingelassen sind und von dieser Umfangsfläche radial ab­stehen, so daß Grundkörper und Frässtifte zusammen eine Art radialen Igel bilden. Die Frässtifte haben gleiche Länge, so daß die Umfangsfläche des Igels eine zylindrische, gegebenen­falls aber auch eine andere Hüllfläche beschreiben, z.B. eine in mittlerer axialer Länge leicht ausgebauchte Hüllfläche. Die Stifte selbst sind dabei geradlinig und aus Hartmetall gefertigt, z.B. einer Stahllegierung oder aus anderen Hart­metallen bzw. Hartmetallegierungen.

    [0146] Wie man aus dem Bohrungsverlauf benachbarter axialer Reihen 240 von Aufnahmelöchern in der Umfangsfläche des Grund­körpers für die Frässtifte 238 erkennt, sind die Aufnahme­löcher dieser Reihen gegeneinander auf Lücke versetzt, wobei die Reihen äquidistant angeordnet sind.

    [0147] Die Lagerung der Grundkörper 234 der Fräsköpfe 236 auf den Standbolzen 232 mit etwas Spiel bildet ein Schlotter­gelenk, welches gegebenenfalls auch anders ausgebildet sein kann. Es hat sich gezeigt, daß die harten Beanspruchungen eines derartigen Fräswerkzeugs beim Auslegen eines Kamins besser aufgenommen werden, wenn der Fräskopf auf seiner Lagerwelle etwas schlotternd angeordnet ist, als wenn hier eine präzise Lagerung vorgesehen wäre.

    [0148] Der Kopf des jeweiligen Standbolzens 232 ist, wie dargestellt, in den Grundkörper an dessen äußerer Stirnseite eingelassen.

    [0149] Wie anhand der Fig. 3 und 4 verdeutlicht wurde, kann dieses Werkzeug in gleichbleibender Geometrie sowohl abwärts als auch aufwärts arbeitend eingesetzt werden, wobei man dann gegebenenfalls einen Tragkörper 192 an beiden Stirnsei­ seiten der Tragscheibe 216 vorsieht. Dies ist bei der Aus­führungsform nach Fig. 15 nicht realisiert. Nach der ge­zeigten Ausführungsform können die als gerade Schwingarme wirkenden Schwingblöcke 220 noch etwas frei schwingend ver­tikal nach unten hängen, wenn das Fräswerkzeug nicht in Um­drehung versetzt ist. Dann stützen sich die äußeren Hüll­flächen der drei Fräsköpfe 236 so aneinander ab, daß alle drei Fräsköpfe im wesentlichen axial ausgerichtet sind und so ein Einführen in einen noch nicht ausgefrästen Schorn­steinquerschnitt bequem möglich ist. Alternativ kann man auch die Schwingblöcke in dieser Betriebsart mit ihrer innen liegenden Längsfläche am Grund der Rechtecknut 218 zur Anlage kommen lassen. Man kann darüber hinaus den Grund der "Rechteck"-Nut auch ausgebaucht gestalten, um gegebenen­falls den Schwingblock axial etwas zu halten.

    [0150] Die dargestellte Ausführungsform ermöglicht jedoch nicht von ihrer Geometrie her eine doppelt wirkende Arbeits­weise ohne Umstecken eines beidseitig vorgesehenen Trag­körpers 192 bei der Befestigung an der Abtriebswelle des Fluidmotors 12.

    [0151] In nicht dargestellter Weise kann man aber den An­schlag des Schwingblocks 220 an dem Grund der Rechtecknut 218 mittels einer Servoeinrichtung lösbar so gestalten, daß der Schwingblock aus der hängenden Anordnung gemäß Fig. 5 in eine im wesentlichen stehende Anordnung umgeschwenkt und dort durch eine außenseitige, ebenfalls servomäßig einstellbare Abstützung fixiert wird. Eine derartige Servosteuerung kann wiederum mittels desselben Betriebsmittels erfolgen, welches für den Betrieb des Fluidmotors 12 Anwendung findet, jedoch über eine gesonderte Steuerleitung.

    [0152] Anhand der Fig. 16 und 17 werden schließlich wesent­liche Funktionselemente eines im Handel erhältlichen Schlag­werks erläutert, das der Winkeldrehung der Antriebswelle des Fluidmotors, hier speziell eines Pneumatikmotors, in Winkelrichtung noch eine pulsierende Schlagbewegung über­lagert, und zwar mit Wiederholung desselben Schlagwerks­ablaufs pro Umdrehung der Abtriebswelle. In nicht darge­stellter Weise kann man dabei den Schlagbetrieb erst bei einer Sollumdrehungszahl zuschalten, um beispielsweise sanfte Anlaufsvorgänge zur Verfügung zu stellen.

    [0153] Obwohl ein solches Schlagwerk auch an anderem Ort, insbesondere zwischen dem Fluidmotor und seiner Aufhängung, angeordnet werden kann, wird es nachfolgend in unmittel­barer Nachschaltung nach dem Rotor des Fluidmotors be­schrieben.Es ersetzt insoweit ein gesondertes Untersetzungs­getriebe, in dem die Drehmomentverstärkung eines Unter­setzungsgetriebes gegen eine Wirkungsverstärkung durch Hämmern ausgetauscht wird. Man kann aber gegebenenfalls auch Drehmomentverstärkungen durch Untersetzung und Hammer­wirkung mittels Schlagwerk kombinieren.

    [0154] Ein Hammerträger 242 des Schlagwerks wird mit der Übersetzung 1:1 vom Rotor 50 des Pneumatikmotors angetrieben.

    [0155] Im Hammerträger 142 sind an diametral gegenüber­liegenden Umfangsstellen zwei Hämmer 246 und zwei Hammer­stifte 244 lose angeordnet, wobei die Hammerstifte 244 als Endanschläge eine Bewegung der Hämmer 246 unter der Fliehkraft radial nach außen begrenzen.

    [0156] Bei der Drehbewegung des Hammerträgers 242 werden die Hämmer 246 in Drehrichtung mitgenommen. Die Anordnung der Hämmer 246 im Hammerträger 242 ist verschieden ausgebildet, was sich in unterschiedlicher Umfangslänge von die aufzu­nehmenden Umfangsnuten und unterschiedlicher Geometrie der­selben äußert. Beim Drehen des Hammerträgers führen dabei die Hämmer 246 eine taumelnde Bewegung aus.

    [0157] Die Hämmer 246 wirken in Drehrichtung schlagend mit einem Amboß 248 zusammen, welcher mit der das Fräs­werkzeug 16 tragenden Abtriebswelle 80 eine drehfeste, vorzugsweise starre, Einheit bildet. Der Amboß 248 ist dabei über die Lagerbuchse 252 im Schlagwerkzeugsgehäuse 250 gelagert. Damit erhält auch die Abtriebswelle 80 eine gleichmäßige Halterung.

    [0158] Die unterschiedliche Anordnung der Hämmer 246 im Hammerträger 242 ist trotz ihrer Unterschiedlichkeit so ausgelegt, daß beide Hämmer 246 zugleich auf den Amboß 248 schlagen.


    Ansprüche

    1. Vorrichtung zum Ausfräsen eines auszufütternden Schornsteins (2) mittels eines Fräswerkzeugs (16), das zusammen mit seinem Antriebsmotor im lichten Querschnitt des Schorn­steins auf und ab bewegbar ist,
    dadurch gekennzeichnet,
    daß der Antriebsmotor ein Fluidmotor (12) ist, der über einen Fluidschlauch (14) von einer außerhalb des Schorn­steins (2) angeordneten Fluidquelle (10) beaufschlagt ist.
     
    2. Vorrichtung nach Anspruch 1, dadurch gekenn­zeichnet, daß der Fluidmotor (12) ein Pneumatikmotor, der Fluidschlauch (14) eine Druckluftleitung und die Fluidquelle (10) ein Kompressor sind.
     
    3. Vorrichtung nach Anspruch 2, dadurch gekenn­zeichnet, daß der Abluftauslaß (114) des Pneumatikmotors (12) innerhalb des Schornsteins (2) mündet.
     
    4. Vorrichtung nach Anspruch 3, dadurch gekenn­zeichnet, daß der Abluftauslaß (114) unten auf das Fräs­werkzeug (16) gerichtet ist.
     
    5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einheit von Fluidmotor (12) und Fräswerkzeug (16) an einem reinen Zugelement (14;26) auf­gehängt ist.
     
    6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Einheit am Fluidschlauch (14) aufgehängt ist.
     
    7. Vorrichtung nach einem der Ansprüche 1 bis 6, da­durch gekennzeichnet, daß der Fluidmotor (12) mit sich längs der Achse des Fluidmotors (12) erstreckenden Kufen (142) versehen ist, deren Abstand von der Achse des Fluidmotors (12) verstellbar ist.
     
    8. Vorrichtung nach Anspruch 7, gekennzeichnet durch eine, vorzugsweise pneumatische, Fluidsteuerung für die Verstellung der Kufen (142).
     
    9. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Fluidmotor (12) mit min­destens zwei axial aufeinanderfolgenden Kränzen von über den Umfang des Fluidmotors verteilten rückfedernden Führungselementen (164,174,176) versehen ist.
     
    10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Führungselemente (164,174,176) am Fluidmotor (12) angelenkte Hebel (164) aufweisen, die jeweils auf einem unterhalb der An­lenkung angeordneten elastisch-nachgiebigen Pufferelement (176) aufliegen.
     
    11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekenn­zeichnet, daß die Führungselemente (164,174,176) an ihren mit der Innen­wand des Schornsteins (2) in Eingriff kommenden Enden mit dreh­baren achsparallelen Schneidrädern (174) oder Rollen versehen sind.
     
    12. Vorrichtung nach einem der Ansprüche 1 bis 6, da­durch gekennzeichnet, daß der Fluidmotor (12) mit über seinen Umfang verteilten federnd-nachgiebigen Zentrierelementen (186) versehen ist.
     
    13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Zentrierelemente an ihrem einen Ende befestigte und an ihrem anderen Ende verstellbar abgestützte Bogenfedern (186) sind.
     
    14. Vorrichtung nach einem der Ansprüche 1 bis 13, da­durch gekennzeichnet, daß der Rotor des Fluidmotors (12) mit dem Fräswerkzeug (16) über ein Untersetzungsgetriebe (85,85a) verbunden ist.
     
    15. Vorrichtung nach Anspruch 14, dadurch gekennzeich­net, daß das Untersetzungsgetriebe (85, 85a) mehrstufig ausgebildet ist.
     
    16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß das jeweilige Untersetzungsgetriebe (85,85a) als Planetengetriebe ausgebildet ist.
     
    17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der Außenquerschnitt des Fluidmotors (12) so klein bemessen ist, daß der Fluid­motor durch den lichten Querschnitt des noch nicht aus­gefrästen Schornsteins (2) ist, und daß ein Fräswerkzeug (16) vorgesehen ist, das zusammen mit dem Fluidmotor (12) durch den lichten Querschnitt des noch nicht ausgefrästen Schornsteins absenkbar und bei angetriebenem Fluidmotor in unteren Eingriff mit der aus­zufräsenden Innenschicht (8) des Schornsteins (2) bringbar ist.
     
    18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das Fräswerkzeug (16) über seinen Umfang verteilte und sich längs der Achse des Fräswerkzeugs erstreckende Fräslamellen (212) aufweist, die jeweils an einer außen gelegenen Schmalseite eine Schneidkante (214) aufweisen.
     
    19. Vorrichtung nach Anspruch 18, dadurch gekenn­zeichnet, daß die Schneidkante (214) entgegen der Arbeitsrichtung des Fräswerkzeugs (16) radial nach außen ausgestellt ist.
     
    20. Vorrichtung nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß die Fräslamellen (212) am Fräswerkzeug (16) an­gelenkt und/oder radial beweglich sind.
     
    21. Vorrichtung nach Anspruch 20, dadurch gekenn­zeichnet, daß die Anlenkung und/oder radiale Beweglich­keit feststellbar (210) ist.
     
    22. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Fräswerkzeug (16) axial über­einander angeordnete Gruppen von Ketten (202,204) aufweist.
     
    23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, daß die Ketten jeweils eine äußere Frässchneide (204) aufweisen, die jeweils über ein einziges Kettenglied (202) an einer drehfest auf der Welle des Fräswerkzeugs aufgeschobenen Distanzscheibe (200) angelenkt wird, wobei die Distanzscheibe einen entgegen der Arbeitsrichtung des Fräswerkzeugs ausgestellten Wirkkonus der Frässcheiben beschreiben.
     
    24. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Fräswerkzeug (16) über seine Achse verteilte Schwenkarme (220) aufweist, die an ihrem in Arbeitsrichtung weisenden Ende angelenkt sind und deren anderes Ende jeweils einen Fräskopf (236) trägt, dessen Umfang mit abstehenden Frässtiften (238) besetzt ist.
     
    25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, daß die Schwenkarme (220) zwischen einer achsparallelen Ausrichtung und einem vorgegebenen Ausstellwinkel frei schwingen.
     
    26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß der Ausstellwinkel einstellbar ist.
     
    27. Vorrichtung nach einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, daß der Fräskopf (236) zylindrisch aus­gebildet ist.
     
    28. Vorrichtung nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, daß die Frässtifte (238) längs der Achse ihres Fräskopfes (236) in gegeneinander auf Lücke versetzten Reihen (240) über den Umfang des Fräskopfes verteilt sind.
     
    29. Vorrichtung nach einem der Ansprüche 24 bis 28, dadurch gekennzeichnet, daß die Frässtifte (238) gleiche Länge haben.
     
    30. Vorrichtung nach einem der Ansprüche 24 bis 29, dadurch gekennzeichnet, daß die Frässtifte (238) radial in bezug auf die Achse ihres Fräskopfes (236) ausgerichtet sind.
     
    31. Vorrichtung nach einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, daß das Fräswerkzeug (16) in zwei Teilwerkzeuge unterteilt ist, wobei das eine Teilwerkzeug an dem Fluidmotor (12) und das andere Teilwerkzeug an einer vom Fluidmotor angetriebenen, sich relativ zu diesem drehen­den Welle montiert ist, und daß der Fluidmotor (10) und der Fluidschlauch (14) über eine Drehkupplung miteinander ver­bunden sind.
     
    32. Vorrichtung nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß das Fräswerkzeug (16) aus Bau­elementen derart zusammengesteckt ist, daß die Arbeits­richtung (auf oder ab) desselben Fräswerkzeugs umkehrbar ist.
     
    33. Vorrichtung nach einem der Ansprüche 1 bis 32, da­durch gekennzeichnet, daß das Fräswerkzeug (16) doppelwirkend nämlich sowohl aufwärts als auch abwärts fräsend, ausge­bildet ist.
     
    34. Vorrichtung nach Anspruch 33, dadurch gekennzeich­net, daß eine doppeltwirkende Geometrie des Fräswerkzeugs (16) gewählt ist.
     
    35. Vorrichtung nach Anspruch 33, dadurch gekennzeich­ net, daß das Fräswerkzeug (16) in seiner Wirkung umstellbar ist.
     
    36. Vorrichtung nach einem der Ansprüche 1 bis 11 oder 13 bis 34, dadurch gekennzeichnet, daß eine Führung (144; 164, 174) des Fluidmotors (12) doppeltwirkend, d.h. sowohl auf- als auch abwärts führend, ausgebildet ist.
     
    37. Vorrichtung nach einem der Ansprüche 9 bis 11 und 35, dadurch gekennzeichnet, daß die rückfedernden Führungs­elemente (164,174) beider Kränze aufeinander zu gerichtet und mitein­ander verbunden (182) sind.
     
    38. Vorrichtung nach einem der Ansprüche 1 bis 37, dadurch gekennzeichnet, daß zwischen dem Fluidmotor (12) und dem Fräswerkzeug (16) ein in Winkelrichtung wirksames Schlag­werk (116) zwischengeschaltet ist.
     
    39. Vorrichtung nach Anspruch 38, dadurch gekennzeich­net, daß das Schlagwerk (116) als herausnehmbares axiales Ver­längerungsstück ausgebildet ist und gegebenenfalls zwi­schen dem Fluidmotor (12) und einem Untersetzungsgetriebe (85,85a) an­geordnet ist.
     
    40. Vorrichtung nach Anspruch 38 oder 39, dadurch ge­kennzeichnet, daß der Fluidmotor (12) mit Übersetzung 1:1 mit dem Schlagwerk (116) und dieses mit Übersetzung 1:1 mit dem werkzeug (16) verbunden sind.
     
    41. Vorrichtung nach einem der Ansprüche 38 bis 40, dadurch gekennzeichnet, daß das Schlagwerk (116) sich erst bei einer Grenzdrehzahl des Fräswerkzeugs, z.B. von 2500 U/min, selbsttätig zuschaltet.
     
    42. Vorrichtung nach einem der Ansprüche 1 bis 41, dadurch gekennzeichnet, daß zwischen dem Fluidmotor (12) und seiner Aufhängung (14; 26) ein Ausgleichsschlagwerk zwischenge­schaltet ist.
     
    43. Vorrichtung nach einem der Ansprüche 1 bis 42, dadurch gekennzeichnet, daß die Kupplung zwischen Fluid­motor (12) und Fräswerkzeug (16) als Schnellverschluß ausgebildet ist.
     
    44. Verfahren zum Ausfräsen eines auszufütternden Schorn­steins (2) mittels eines Fräswerkzeugs (16), das durch den lichten Querschnitt des noch nicht ausgefrästen Schornsteins abge­senkt wird und mittels dessen anschließend unter radial vergrößertem Wirkungsquerschnitt des Fräswerkzeugs axial aufwärts gefräst wird,
    dadurch gekennzeichnet,
    daß beim Absenken des Fräswerkzeugs (16) durch den lichten Querschnitt des noch nicht ausgefrästen Schornsteins (2) der Antriebsmotor (12) mit dem Fräswerkzeugen (16) in den noch nicht aus­gefrästen lichten Querschnitt des Schornsteins mitgeführt wird.
     
    45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, daß der Antriebsmotor (12) an der Innenwand des Schornsteins (2) im Bereich dessen noch nicht ausgefrästen Querschnitts geführt wird.
     
    46. Verfahren nach Anspruch 44, dadurch gekennzeichnet, daß der Antriebsmotor (12) nebst Fräswerkzeug (16) unter seiner Schwerkraft frei im lichten Querschnitt des Schornsteins (2) aufgehängt wird.
     
    47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, daß der Antriebsmotor (12) nebst Fräswerkzeug (16) gegenüber der Innenwand des Schornsteins (2) zentriert wird.
     
    48. Anwendung der Vorrichtung nach einem der Ansprüche 1 bis 43 oder des Verfahrens nach einem der Ansprüche 44 bis 47 auf das Ausfräsen in einem Zug von Schornsteinlängen von mehr als 15 m, beispielsweise von mindestens dreigeschössigen Wohnhäusern oder ganzen Fabrikschornsteinen.
     
    49. Anwendung der Vorrichtung nach einem der Ansprüche 1 bis 44 oder des Verfahrens nach einem der Ansprüche 44 bis 47 auf Schornsteine mit krummem Achsverlauf.
     
    50. Anwendung der Vorrichtung nach einem der Ansprüche 1 bis 44 oder des Verfahrens nach einem der Ansprüche 44 bis 47 auf auszufräsende Schornsteine mit einem Nenndurchmesser von 140 mm oder weniger (kleinster Durchmesser bei unrunden Schornsteinen) ihres lichten Querschnitts.
     
    51. Anwendung nach Anspruch 50 mit der Maßgabe, daß der Nenndurchmesser höchstens 100 mm beträgt.
     




    Zeichnung