[0001] The present invention relates to an apparatus for straightening curls in a sheet
made of a plastic film, paper, a metallic foil or the like which is wound off from
a winding roll.
[0002] For example, in an apparatus for cutting and treating a sheet, the sheet wound off
from a winding roll is cut into given lengths by a cutting machine. At this time,
if the sheet wound off from the winding roll is cut in that state, curls come into
the open in the cut sheets due to a wound form. Such curls create problems such as
jamming which may occur in a line for cutting and treating the sheets and in the sheet
inlet portion of a printing machine or of various other machines when the sheets are
thereafter introduced therein.
[0003] An apparatus for straightening curls in a sheet has previously been proposed in which
a wrap angle is provided for a sheet wound off from a winding roll by applying a decurler
bar to the sheet between two backup rolls, as described in Japanese Patent Publication
No. 48427/1985.
[0004] The degree to which curls are straightened by the above-described apparatus for straightening
sheet curls depends upon the wrap angle of the sheet, and the greater the wrap angle
is, the stronger the pressure with which the sheet is wiped with the decurler bar
and the greater the degree to which curls are straightened.
[0005] On the other hand, when a sheet is wound off from a winding roll, the extent to which
curls are present in the sheet increases as the diameter of the winding roll decreases
while winding-off progresses.
[0006] The use of the above-described apparatus for straightening sheet curls therefore
requires monitoring of the change in the diameter of the winding roll and the provision
of a wrap angle adjusting device which is capable of adjusting the relative position
between the backup rolls and the decurler bar in such a manner that the wrap angle
of the sheet is increased as the diameter of the winding roll decreases.
[0007] For example, such a wrap angle adjusting device is so configured that the decurler
bar is displaced from a position corresponding to a large parent roll (the position
where a low degree of pushing force is applied inwardly) to a position corresponding
to a small parent roll (the position where a high degree of pushing force is applied
inwardly) in the state wherein the backup rolls are set at standard positions with
the sheet pushed in.
[0008] In the apparatus for straightening sheet curls described in Japanese Patent Publication
No. 48427/1985, an optimum degree of driving of the decurler bar for the purpose of
straightening curls in correspondence with the change in diameter of the winding roll
is expressed in a digital pattern using figures in order to automatically adjust the
degree of straightening of the curls in the sheet in correspondence with the change
in diameter of the winding roll. The figures are separately formed for respective
kinds of sheet and the respective component items of the relevant straightening apparatus,
each of the figures being formed by collecting in advance data with respect to the
optimum degree of driving of the decurler bar from experiments which are performed
in such a manner that the diameter of the winding roll is changed within a given range.
[0009] There has been an increasing demand in recent years for a high level of operational
stability and a high level of productivity to be available in, for example, an apparatus
for cutting and treating a sheet which is provided with an apparatus for straightening
sheet curls. Improvements in the operating properties of such apparatus for cutting
and treating sheets have not, however, been realized because the apparatus for straightening
sheet curls represents a bottleneck. This is because of the problems described below
which are not easily resolved, which are inherent to conventional control methods
for controlling the driving of a decurler bar in the manner of a digital pattern,
and which inhibit attempts to automate the straightening of curls from by a simple
arrangement in a rapid and highly precise manner.
[0010] ① In order to increase the precision with which curls are straightened, it is necessary
to set the driving of the decurler bar at an appropriate amount at each time the diameter
of the winding roll slightly changes, resulting in the use of a large volume of data.
The collection of data therefore requires a great number of processes.
[0011] ② Such data is previously determined for each kind of sheet and the component items
of the straightening apparatus and are stored in the data storage memory so that data
conforming to the relevant operation of straightening may be transmitted to the controller
of the wrap angle adjusting device from the data storage memory and then used. During
this operation, since, as described above, the volume of data is large, it is necessary
to ensure that both the data storage memory and the controller have a space with a
large memory capacity, and the further transmission of data from the data storage
memory to the controller takes a great deal of time.
[0012] ③ Since the operation of controlling the decurler bar using the wrap angle adjusting
device is intermittently (stepwisely) performed in correspondence with the change
in diameter of the winding roll, an optimum wrap angle cannot be set for the diameter
of the winding roll each moment as it changes.
[0013] The present invention provides; an apparatus for straightening sheet curls in which
a wrap angle ϑ is provided for a sheet wound off from a winding roll by applying a
decurler bar to the sheet between two backup rolls, characterized by comprising a
wrap angle adjusting device for adjusting the wrap angle of the sheet by relatively
changing both the backup rolls and the decurler bar, and a controller for controlling
the wrap angle adjusting device on the basis of the results of calculation of an optimum
wrap angle which is performed using the logical equation: ϑ = A/D
q + B (wherein A, B, q are constants which can be previously determined) from which
the optimum angle ϑ for the diameter D of the winding roll can be calculated, in correspondence
with the change in the diameter of the winding roll.
[0014] Preferably said constant q of the logical equation is 0.25 to 0.75.
[0015] More preferably said wrap angle adjusting device is so configured that a relationship
(S = Kϑ) is established between the amount S of relative displacement of the winding
roll and decurler bar and the wrap angle ϑ.
[0016] The preferred embodiments of the present invention will now be described by way of
example only with reference to the accompanying drawings in which:-
Fig. 1 is a schematic diagram of an example of a sheet cutting and treating apparatus
to which the present invention is applied,
Fig. 2 is a schematic diagram of an embodiment of an apparatus for straightening curls,
Fig. 3 is a schematic diagram which shows the change in wrap angle of a sheet,
Fig. 4 is a schematic diagram of the operation of an apparatus for straightening sheet
curls,
Fig. 5 is a figure of lines which shows the results of an example of tests conducted
using the logical equations of the present invention, and
Fig. 6 is a schematic diagram of the mechanism of occurrence of curls in a sheet.
[0017] (A) An apparatus for straightening curls is capable of straightening and reducing
curls which are produced in a sheet on a winding roll. Consideration of such curls
is given below.
[0018] As shown in Fig. 6, if the thickness of a sheet wound around a round bar (diameter,
H) is t and the wrap angle is α, the neutral line length L
m, the external peripheral length L
o and the internal peripheral length L
i of the wound sheet are as follows:
L
m = (H + t) α/2 ...(1)
L
o = (H + 2t)α/2 ...(2)
L
i = Hα/2 ...(3)
The difference ΔL in expansion of either the external periphery or the internal periphery
relative to the neutral line is expressed by the following equation:
ΔL = ± t α/2 ...(4)
The strain ε of the sheet is expressed by the following equation:
ε = ΔL/Lm = ±t/(H + t) ...(5)
[0019] (B) From the above equation (5), the raw material strain ε 1 produced by a winding
roll (diameter, D) which causes curls to occur is as follows:
ε1 = ±t/(D + t) ...(6)
The straightening strain ε2 produced by a decurler bar (diameter, d) used for straightening
curls is as follows:
ε2 = ±t/(d + t) ...(7)
The ratio λ between the raw material strain ε1 and the straightening strain ε2 is
therefore as follows:
λ = ε1/ε2 = (d + t)/(D + t) ...(8)
According to an empirical rule based on the results of experiments conducted by the
inventor, the following equation is established between the wrap angle ϑ and the ratio
λ: ϑ = λ
q ...(9)
In the above-described equation (9), since t is extremely small compared with D, t
is able to be removed from the denominator of the equation (8) of λ, the numerator
may be considered as a constant because the values of d and t are constant once the
kind of sheet used and the component items of the straightening apparatus are determined.
Thus the following equation is established.
ϑ = A/D
q + B ...(10)
In equation (10), B is a constant for increasing the degree to which curls are straightened,
and also B may be zero, depending upon the given use.
[0020] (c) As a result of detailed consideration of the exponential coefficient q of equation
(10), as described below, it has been confirmed that, if the value of q is selected
from any value within the range of 0.25 to 0.75, an appropriate value of ϑ can always
be provided in accordance with wide-ranging changes in the diameter D of the winding
roll.
[0021] In other words, tests were conducted for equation (10) with values of q within the
range of 0 to 2 using a decurler bar having a diameter of 12 mmφ and a sheet made
of a white paper board with a basis weight of 270 to 450 g/m² at a sheet speed of
300 to 330 m/min (the maximum, 380 m/min) which is a normal speed.
[0022] The results of the tests are shown in Fig. 5 and are described below under ① to ③.
A suitable product after being subjected to straightening is preferably provided with
a uniformly downward weak curl (angle curl). In the figure, curve a1 represents an
allowable upper limit for downward curls (strong curls) and curve b1 represents an
allowable lower limit for downward curls (weak curls), the range between curves a1
and b1 representing an appropriate region.
[0023] ① When q = 0.75, A = 2685.2 and B = 6.94, curve b2 was obtained. Curve b2 deviates
from curve b1 in a region where the diameter of the roll is medium. In other words,
with a value of q = 0.75 or more, the wrap angle is excessively large (the effect
of straightening is too great) when the diameter of the roll is small, as shown by
curve b3, while, if the wrap angle is set to an appropriate value with the diameter
of the roll being small, this angle is excessively small (the effect of straightening
is too low) in a region where the diameter of the roll is medium, deviating from curve
b1). Thus it is impossible to set the wrap angle to an appropriate value over the
whole range of roll diameters. It is therefore suitable to determine the upper limit
for practical use at q = 0.75.
[0024] ② When q = 0.25, A = 210.9 and B = -5.39, curve a2 was obtained. Curve a2 deviates
from curve a1 within the range where the roll diameter is medium. In other words,
with the value of q = 0.25 or less, the wrap angle is excessively small (effect of
straightening is too low) when the diameter of the roll is small, as shown by curve
a3, while, if the wrap angle is set to an appropriate value with the diameter of the
roll being small, this angle is excessively large (effect of straightening is too
great) within the range where the roll diameter is medium, deviating from curve a1.
Thus it is impossible to set the wrap angle to an appropriate value over the whole
range of roll diameters. It is therefore suitable to determine the lower limit for
practical use of q = 0.25.
[0025] ③ When q = 0.5, A = 648.2 and B = 11.6, a curve which coincides with curve a1 was
obtained. When q = 0.5, A = 716.8 and B = 0, a curve which coincides with curve a1
was obtained. A very good effect of straightening curls can thus be obtained over
the whole range of roll diameters by setting q at 0.5.
[0026] As a result of conducting tests in which q in equation (10) was set within the range
of 0.25 to 0.75 (preferably 0.5) and A and B were set at the above-described values,
it was found that the equation can be satisfactorily applied in practical use without
the values of A and B needing to be changed, regardless of the change in thickness
(t = 0.35 to 0.58mm, rate of change, 166%) of sheets with a basis weight within the
range of 270 to 450g/m². In other words, since the values of A and B may be set for
each group of certain types of sheet (material and thickness), only a small number
of data needs to be stored as the constants A, B.
[0027] (D) The wrap angle adjusting device of the present invention is preferably so configured
that the relationship:
S = kϑ ...(11)
is established between a relative displacement S between the backup rolls and the
decurler bar and the wrap angle ϑ. In an example of such a configuration, the locus
of relative movement of the decurler bar is set on a perpendicular bisector of the
straight line connecting the two backup rolls. If the controller is operated using
equation (11), the value S can be easily calculated using the value ϑ which is calculated
from equation (10), resulting in an improved facility of calculation.
[0028] The present invention achieved on the basis of the items (A), to (D) exhibits the
following effects:
[0029] ① Since the constants to be prepared for each type of sheet and each component item
of the straightening apparatus are the three constants A, B and q (if q is fixed within
the range of 0.25 to 0.75, preferably 0.5, the two constants A, B), only a small number
of data needs to be collected or stored.
[0030] ② The data on the above-described constants are determined in advance for each type
of sheet and each component item of the straightening apparatus and stored in the
data storage memory, and data appropriate to the relevant work of straightening are
transmitted to the controller in the wrap angle adjusting device from the data storage
unit and then used therein. Thus, since the quantity of data is small, as described
above, only a small space with a memory capacity of either the data storage unit or
the controller is needed. The time required for transmitting the data to the controller
from the data storage memory can thus be reduced to a negligible value.
[0031] ③ Since the control is performed in a completely continuous manner in accordance
with the changes in diameter of the winding roll as the time taken for arithmetic
processing using the equations is, for example, several tens of milliseconds, an appropriate
wrap angle can be set for the diameter of the winding roll each moment as it changes.
It is therefore possible to precisely control the state of the sheet which is conveyed
at a high speed and to provide such additional merits as the stability of operations
conducted at high speeds, a reduction in the quantity of paper powder and an improvement
in the appearance of sheets placed in layers.
[0032] A sheet cutting and treating apparatus 10 comprises a sheet feeder 11, a sheet splicing
apparatus 12, a curl straightening apparatus 13, a feed roll 14, a cutting machine
15, and a controller 16.
[0033] The sheet feeder 11 has a turning arm 18 which is supported by a frame 17 and which
has both ends respectively supporting parent rolls 19 (a first parent roll 19A and
a second parent roll 19B) to supply a sheet 20 from each of the parent rolls 19.
[0034] The sheet splicing apparatus 12 comprises a pressure roller 21 and a knife 22, ①
the pressure roller 21 functioning to press the portion at the rear end of the sheet
supplied from the first parent roll 19A against the adhesive double coated tape which
was applied to the portion at the front end of the sheet supplied from the second
parent roll 19B, and ② the knife 22 functioning to cut off the sheet supplied from
the first parent roll 19A at the rear end thereof which is adjacent to the splicing
portion.
[0035] The curl straightening apparatus 13 serves to straighten curls produced in the sheet
20 in correspondence with the change in the diameter D of each of the parent rolls
19, as described below.
[0036] The feed roll 14 functions to provide the sheet 20 with a tension required for winding
out the sheet 20 from each of the parent rolls 19.
[0037] The cutting machine 15 functions to cut the sheet 20 which is straightened while
being continuously carried in the curl straightening apparatus 13 into an appropriate
length.
[0038] The controller 16 functions to control each of the sheet feeder 11, the sheet splicing
apparatus 12, the curl straightening apparatus 13, the feed roll 14 and the cutting
machine 15.
[0039] The controller 16 is able to count the rotational speed N1 of the first parent roll
19A using a parent roll rotation detector 16A provided on the turning arm 18 in order
to observe any change of the diameter D of the first parent roll 19A, as well as counting
the rotational speed N2 of an intermediate roll 16B (having a known diameter E) using
a rotation detector 16C provided for the intermediate roll 16B. The controller 16
is also able to always perform a calculation of D = E(N2/N1) in CPU using the relationship:
sheet speed V = πDN1 = πEN2, to obtain the diameter D of the first parent roll 19A.
[0040] When the diameter D of the first parent roll 19A is reduced to a diameter F which
is preparatory to exchange, the controller 16 causes the turning arm 18 of the sheet
feeder 11 to be turned so as to place the first parent roll 19A at the position shown
in Fig. 1 at which the work of splicing is effected, and then drives the sheet splicing
apparatus 12 which thus performs the splicing of the sheets respectively supplied
from the first parent roll 19A and the second parent roll 19B in the manner described
above.
[0041] A description will now be given of a typical configuration of the curl straightening
apparatus 13.
[0042] The curl straightening apparatus 13 comprises a decurler bar 31, two main backup
rolls 32 which are provided on both sides of the decurler bar 31, two secondary backup
rolls 33 which are provided on both outer sides of each of the main backup rolls 32,
a wrap angle adjusting device 34 for driving the decurler bar 31, and an apparatus
35 for changing suddenly the wrap angle which serves to drive the main backup rolls
32.
[0043] In other words, the curl straightening apparatus 13 serves to straighten curls produced
in the sheet 20 by applying the decurler bar 31 to the sheet 20 wound out from each
of the parent rolls 19 between the two main backup rolls 32 so as to provide a wrap
angle ϑ for the sheet 20.
[0044] ⓐ The wrap angle adjusting device 34 drives the decurler bar 31 using, for example,
a screw-type feeder 38 which is operated a driving portion 37 controlled by the controller
16. The decurler bar 31 is longitudinally displaced along the perpendicular bisector
of the line connecting the right and left main backup rolls 32.
[0045] Namely, the wrap angle adjusting device 34 controlled by the controller 16 causes
① the decurler bar 31 to be displaced from the position (position shown by the two-dot
chain lines in Fig. 2) corresponding to a large parent roll in correspondence with
the change in diameter of each of the parent rolls 19 to the position (position shown
by the solid lines in Fig. 2) corresponding to a small parent roll in the state wherein
the main backup rolls 32 are set at the standard positions (positions shown by the
solid lines in Fig. 2) at which the sheet is pushed inwardly. As a result, the wrap
angle ϑ of the sheet 20 is adjusted between a small angle ϑ1 corresponding to the
large parent roll and a large angle ϑ2 corresponding to the small parent roll (refer
to Fig. 3). During this adjustment, the controller 16 performs the successive determination
of the wrap angle ϑ (or the amount of displacement S of the decurler bar 31) which
is optimum for straightening of curls using the logical equation described below in
correspondence with the change in diameter of each of the parent rolls 19. The controller
16 also controls the driving portion 37 in such a manner that an optimum wrap angle
ϑ (or an optimum diaplacement S of the decurler bar 31) calculated as described above
is achieved in correspondence with the change of the diameter D.
[0046] The controller 16 utilizes the logical equation (ϑ = A/D
q + B or S = Kϑ for calculating the optimum wrap angle ϑ (or the displacement S of
the decurler bar 31) in correspondence with the change in diameter D of the winding
roll, as described above. The data on the constants A, B and q are determined in advance
for each kind of the sheet 20 and each component item of the straightening apparatus
and stored in the data storage memory 100. The data for the constants A, B, q which
are appropriate to the relevant operation of straightening are then supplied from
the data storage memory 100 to the controller 16. The value of q is preferably 0.25
to 0.75, more particularly 0.5.
[0047] The wrap angle adjusting device 34 which is controlled by the controller 16 operates
to ② return the decurler bar 31 to the position corresponding to the large parent
roll from the small parent roll when the controller 16 controls the sheet splicing
apparatus 12 in such a manner that the sheet from the first parent roll 19A is connected
to the sheet from the second parent roll 19B, as described above.
[0048] ⓑ The apparatus 35 for suddenly changing the wrap angle drives the main backup rolls
32 using, for example, a cylinder 40 which is operated by the driving portion 39 controlled
by the controller 16.
[0049] In other words, the apparatus 35 for suddenly changing the wrap angle controlled
by the controller 16 causes the main backup rolls 32 to retract from the standard
positions at which the sheet is pushed inwardly to the position at which the sheet
is not pushed inwardly (or moderately pushing inwardly) so as to suddenly change the
wrap angle ϑ of the sheet 20 substantially at the same timing as the controller 16
controls the wrap angle adjusting device 34 to start the return of the decurler bar
31 from the position corresponding to the small parent roll to the position corresponding
to the large parent roll.
[0050] ⓒ The secondary backup rolls 33 are stationarily provided on both outer sides of
the decurler bar 31 and the main backup rolls 32, as described above, and service
to guide the sheet 20 in such a manner that the wrap angle ϑ of the sheet 20 is a
value (ϑ1) suitable for the diameter of the first parent roll 19B having a large diameter,
when the apparatus 35 for suddenly changing the wrap angle causes the main backup
rolls 32 to retract from the positions at which the sheet is pushed inwardly.
[0051] A description will now be given of the function of the above-described embodiment.
[0052] The curl straightening apparatus 13 operates in the following manner:
[0053] (A) When the sheet is wound off from the identical parent roll 19, the wrap angle
adjusting device 34 functions to displace the decurler bar 31 from the position corresponding
to the large parent roll to the position corresponding to the small parent roll in
correspondence with the change in diameter of the parent roll in the state wherein
the main backup rolls 32 are set at the standard positions at which the sheet is pushed
inwardly, so that, the wrap angle ϑ of the sheet 20 is set to an appropriate value
for the diameter D of the parent roll used, resulting in appropriate straightening
of curls (see Fig. 4(A)).
[0054] (B) The sheets from the first and second parent rolls 19A, 19B are spliced to each
other by the sheet splicing apparatus 12 in the following processes (1) to (4):
[0055] ① The wrap angle adjusting device 34 starts the return of the decurler bar 31 from
the position corresponding to the small parent roll to the position corresponding
to the large parent roll.
[0056] ② The apparatus 35 for suddenly changing the wrap angle causes the main backup rolls
32 to retract from the standard positions at which the sheet is pushed inwardly to
the position at which the sheet is not pushed in (or moderately pushed in) so as to
suddenly change the wrap angle ϑ of the sheet 20 substantially at the same time as
the above-described process ① of starting the return. During this operation, the sheet
20 is guided by the secondary backup rolls 33, and the wrap angle ϑ of the sheet 20
is set to a value appropriate to the diameter of the second parent roll having a large
diameter in a moment. As a result, the curls in the sheet 20 wound off from the second
parent roll 19B having a large diameter are appropriately straightened (refer to Fig.
4(B)).
[0057] Since it is sufficient that the apparatus 35 for suddenly changing the wrap angle
simply functions to selectively switch the two positions of the main backup rolls
32, i.e., the standard positions at which the sheet is pushed inwardly and the positions
at which the main backup rolls are retracted, the operation of switching can be easily
completed in a moment.
[0058] ③ The decurler bar 31 is completely returned to the position corresponding to the
large parent roll by the wrap angle adjusting device 34 (refer to Fig. 4(C)).
[0059] ④ The main backup rolls 32 are reset to the standard positions at which the sheet
is pushed inwardly from the positions at which the main backup rolls are retracted
by the apparatus 35 for suddenly changing the wrap angle (refer to Fig. 4(D)).
[0060] (C) The wrap angle adjusting device 34 functions to displace the decurler bar 31
from the position corresponding to the large parent roll to the position corresponding
to the small parent roll in correspondence with the reduction in diameter D of the
second parent roll 19B in the same manner as that described in (A). The wrap angle
of the sheet is therefore set to a value optimum for the parent roll used, resulting
in appropriate straightening of curls (refer to Figs. 4(E) and 4(F)).
[0061] The above-described embodiment therefore enables the wrap angle of the sheet 20 to
be changed in a moment in accordance with the changes in the diameter of the parent
roll used in the state wherein the line speed of the sheet cutting and treating apparatus
10 is kept at a high value which is determined by, for example, the capacity of the
cutting machine 15, when the first and second parent rolls are changed over as above
described in (B). The curls in the sheet 20 can be appropriately and precisely straightened,
while the productivity of the line being maintained.
[0062] In Fig. 4, (A) and (F) each represent the case where the diameter of the parent roll
19 used is minimum, the decurler bar 31 is placed at the position corresponding to
the small parent roll, and the wrap angle ϑ of the sheet 20 is the maximum value ϑ2.
(C) represents the case where the diameter of the parent roll 19 used is maximum,
the decurler bar 31 is placed at the position corresponding to the large parent roll,
and the wrap angle ϑ of the sheet 20 is the minimum value ϑ1.
[0063] In Fig. 4, although the wrap angle ϑ of the sheet 20 slightly changes as the state
of the sheet 20 changes from (B) to (D), such a change in the wrap angle ϑ is reduced
to be negligible for practical use if the distance K between the main backup rolls
32 is sufficiently smaller than the distance L between the secondary backup rolls
33.
[0064] Since the above-described equations are used for calculating ϑ and S in the controller
16, the above-described embodiment also has the following functions:.
[0065] ① Since the constants prepared for each type of sheet and each component item of
the straightening apparatus are the three constants A, B, q (if the q value is fixed
to 0.25 to 0.75, preferably 0.5, the two constants A, B), only a small number of data
to be collected or stored is sufficient.
[0066] ② The data for the above-described constants are previously determined for each type
of sheet and each component item of the straightening apparatus and stored in the
data storage memory, data appropriate to the relevant operation of straightening are
transmitted from the data storage memory to the controller of the wrap angle adjusting
device and used therein. Since the amount of data is small, as described above, only
a small space with a memory capacity of either the data storage unit or the controller
is needed. The time required for transmitting the data to the controller from the
data storage memory can thus be reduced to a negligible value.
[0067] ③ Since the speed of calculation using the logical equation s is, for example, several
tens of milliseconds, and the control can be performed in a complete continuous manner
in correspondence with the change in diameter of the winding roll used, an optimum
wrap angle can be set for each diameter of each winding roll. It is therefore possible
to precisely control the state of the sheet carried at a high speed and provide additional
merits such as the stability of the operation at a high speed and a reduction in amount
of paper dust, as well as an improvement in the appearance of sheets placed in layers.
[0068] In an application of the present invention, the wrap angle adjusting device may adjust
the wrap angle by controlling the displacement of the main backup rolls in accordance
with the changes in the diameter of each winding roll in place of the control of the
displacement of the decurler bar. In this case, the apparatus for suddenly changing
the wrap angle switches in a moment the decurler bar between the standard position
at which the sheet is pushed inwardly and the position at which the decurler bar is
retracted.
[0069] In the present invention, the wrap angle adjusting device may function to displace
one of the main backup rolls and the decurler bar along a straight line relative to
the other, as well as displacing it along a curve line by an operation of turning.
[0070] As described above, the preferred embodiments of the present invention can realize
the automatization of straightening of curls with a simple arrangement and in a rapid
and highly precise manner.