[0001] The present invention relates to a method of producing nitrogen gas from compressed
air by utilizing a single fractionating tower.
[0002] Japanese Patent Publication 54-39830 describes a method of producing nitrogen gas
comprising the steps of
removing impurities such as moisture and carbon dioxide from a raw material consisting
of compressed air,
feeding the impurity-free raw material, after cooling the same to a temperature close
to a liquefying point through a main heat exchanger, to a lower position of a fractionating
tower and leading the nitrogen gas to the main heat exchanger for use as a coolant,
heating the nitrogen gas to room temperature by heat exchange therein to obtain nitrogen
gas product,
taking oxygen-rich liquid out of a bottom position of the fractionating tower and,
while being expanded, feeding it to a condenser disposed in a top position of the
fractionating tower for use as a coolant therein, said liquid being vaporized in said
condenser into oxygen-rich gas,
taking said gas out of said condenser and leeding it to said main heat exchanger for
use as a coolant therein, said gas being heated to room temperature by said main heat
exchanger.
[0003] It is possible with this known method to fractionate and separate nitrogen gas from
the raw material air by partial condensation through contact between the raw material
air fed to a lower position of the fractionating tower and recirculation liquid descending
from the top of the fractionating tower.
[0004] In the known method, oxygen-rich liquid having a large nitrogen content is collected
in a sump at the bottom of the fractionating tower. The oxygen-rich liquid in the
sump is taken out as it is and led to a condenser in the top of the fractionating
tower to be used as a coolant therein. This liquid is vaporized into oxygen-rich air
through heat exchange in the condenser, which air is thereafter used as a coolant
in the main heat exchanger and is then released as exhaust gas.
[0005] In practice, the oxygen-rich gas is released as exhaust gas as noted above without
its effective use being attained to the full extent although it is possible to make
effective use of the oxygen-rich gas.
[0006] The present invention has been made having regard to the above state of the art,
and its object is to provide a method of producing nitrogen gas with improved yield
and with low manufacturing cost per unit amount, which is achieved by making effective
use of the oxygen-rich gas which has been disposed of as exhaust gas as noted above.
[0007] A method of producing nitrogen gas according to the present invention comprises the
steps of removing impurities such as moisture and carbon dioxide from a raw material
consisting of compressed air, feeding the impurity-free raw material, after cooling
the same to a temperature close to a liquefying point through a main heat exchanger,
to a lower position of a fractionating tower for fractionating the raw material, withdrawing
nitrogen gas from a top position of the fractionating tower and leading the nitrogen
gas to the main heat exchanger for use as a coolant, heating the nitrogen gas to room
temperature by heat exchange therein to obtain nitrogen gas product,
taking oxygen-rich liquid out of a bottom position of the fractionating-tower and,
while being expanded, feeding it to a condenser disposed in a top position of the
fractionating tower for use as a coolant therein, said liquid being vaporized in said
condenser into oxygen-rich gas,
taking said gas out of said condenser and leeding it to said main heat exchanger for
use as a coolant therein, said gas being heated to room temperature by said main heat
exchanger
characterized in that at least part of said oxygen-rich gas is recirculated after
compression to said main heat exchanger, cooled through heat exchange in said main
heat exchanger, and led to the condenser either via a reboiler provided at the bottom
of the fractionating column or by introducing it directly into the bottom of the fractionating
column and
a coolant means is associated to any one of the cooling processes.
[0008] According to one embodiment, the coolant means is an additional coolant, as already
shown in FR-A-2.225.705.
[0009] According to another embodiment, said coolant means is obtained by taking oxygen-rich
gas out of an intermediate position of the main heat exchanger, expanded by an expansion
turbine, used as a coolant in said heat exchanger and thereafter used for regenerating
said drying and carbon removing unit.
[0010] In producing nitrogen gas by the method according to the present invention, the cold
energy of the oxygen-rich gas taken out of the condenser is first used as a cold source
in the main heat exchanger, whereby the oxygen-rich gas is heated to room temperature.
At least part of this oxygen-rich gas is compressed and returned to the main heat
exchanger where it is cooled, and is thereafter fed to the bottom of the fractionating
tower (to a reboiler disposed therein, for example). Then a heat exchange takes place
in the bottom of the fractionating tower between the compressed oxygen-rich gas and
the oxygen-rich liquid. The oxygen-rich liquid is thereby heated and the compressed
oxygen-rich gas is liquefied. The gas evaporated as the oxygen-rich liquid is heated
ascends in counter current contact with a recirculation liquid (liquid nitrogen, for
example) descending through the fractionating tower. Fractionation is thereby effected
with oxygen becoming liquefied and descending, and nitrogen-rich gas ascending. On
the other hand, the oxygen-rich liquid collected in the bottom of the fractionating
tower is taken out of the bottom, expanded and fed to the condenser to act as a coolant.
In other words, the oxygen-rich liquid is fed to the top of the fractionating tower
to produce the recirculation liquid necessary for separating the nitrogen content
from the raw material air by liquefying the nitrogen gas ascending through the fractionating
tower.
[0011] In one embodiment of the method according to the present invention, the oxygen-rich
gas taken out of the condenser is used as a coolant in the main heat exchanger, and
thereafter compressed, cooled and fed to the bottom of the fractionating tower for
heating the oxygen-rich liquid in the bottom of the fractionating tower. Moreover,
the oxygen-rich liquid in the bottom of the fractionating tower is used as a cold
source for producing the recirculation liquid. This feature realizes improved yield
of nitrogen gas and low manufacturing cost per unit amount compared with the known
method.
[0012] The present invention will be described further with reference to the drawings illustrating
embodiments thereof.
Fig. 1 is a view of a piping system illustrating execution of a nitrogen gas producing
method according to the present invention, and
Figs. 2-4 are views of modified piping systems, respectively.
[0013] As shown in Fig. 1, raw material air GA stripped of dust by an air filter (not shown)
is compressed by a compressor 1 to a nitrogen gas product pressure and pressure necessary
for operating an air separator 9.3 bar, for example). The compressed raw material
air GA is fed through a piping P1 to a drying and carbon removing unit 2. In the drying
and carbon removing unit 2, the compressed raw material air GA is fed to one of two
molecularceive towers where moisture and carbon dioxide are removed from the raw material
air GA through adsorption. Meanwhile, oxygen-rich gas GW having passed through a main
heat exchanger 3 to be described later is fed to the other molecularseive tower to
regenerate this tower.
[0014] The raw material air GA stripped of moisture and carbon dioxide at the drying and
carbon removing unit 2 is fed through a piping P2 to the main heat exchanger 3 to
be cooled to a temperature close to the liquefying point. There after the air GA is
fed through a piping P3 to a lower position of a fractionating tower 4. This fractionating
tower 4 receives liquid nitrogen LN, which is one example of cold source, delivered
through a piping P4 to an upper position thereof. In the fractionating tower 4, the
raw material air GA ascending from below and the liquid nitrogen (recirculation liquid)
descending from above contact each other in counter current, whereby oxygen in the
raw material air GA is liquefied to fractionate and separate nitrogen gas GN.
[0015] The nitrogen gas GN taken out of the top of the fractionating tower 4 is fed through
a piping P5 to the main heat exchanger 3 so that the cold energy of nitrogen gas GN
is used as a coolant in the main heat exchanger 3 and that the nitrogen gas GN is
heated to room temperature. The nitrogen gas GN at room temperature taken out of the
main heat exchanger 3 through a piping P7 is supplied as a nitrogen gas product having
an appropriate pressure (8.82 bar, for example).
[0016] Oxygen-rich liquid LW is collected in the bottom of the fractionating tower 4. This
liquid LW is taken out of the bottom and is led through a piping P6 having an expansion
valve 5 to a condenser 10 disposed in the top position of the fractionating tower
4. The liquid LW is expanded by the expansion valve 5 to an appropriate pressure 3.43
bar, for example) and is led into the condenser 10 to be used as a coolant therein.
In the condenser 10 the liquid LW is vaporized into oxygen-rich gas GW.
[0017] The oxygen-rich gas GW, after being taken out of the condenser 10, is led through
a piping P8 to the main heat exchanger 3 to be used as a coolant therein. This gas
GW is heated to room temperature at the main heat exchanger 3, and is thereafter led
through a piping P9 to the drying and carbon removing unit 2 and a compressor 6. Part
of the gas GW is released as exhaust gas GW after being used for regenerating the
drying and carbon removing unit 2 as described hereinbefore. The remainder is compressed
by the compressor 6 (to a pressure of 3.43 to 9.8 bar, for example), and returned
through a piping P10 to the main heat exchanger 3. The gas GW is cooled through heat
exchange in the main heat exchanger 3. The cooled gas GW is led through a piping P11
to a reboiler 7 disposed in the bottom of the fractionating tower 4 to give off heat.
Then the gas GW is cooled therein and expanded to a pressure of 3.43 bar, for example,
through a piping P12 having an expansion valve 8 at an intermediate position thereof.
Thereafter expanded gas GW is led to the condenser 10 disposed in the top position
of the fractionating tower 4 to join the oxygen-rich gas GW.
[0018] Thus, in producing nitrogen gas, the oxygen-rich gas GW taken out of the condenser
10 is used as a coolant in the main heat exchanger 3. After being taken out of the
main heat exchanger 3, the gas GW is compressed, cooled and fed to the reboiler 7
for heating the oxygen-rich liquid LW collected in the bottom of the fractionating
tower 4. Moreover, the oxygen-rich liquid LW which has been liquefied in the reboiler
7 is used as a cold source in the condenser 10 for producing the recirculation liquid.
Thus, effective use is made of the oxygen-rich gas GW, whereby the yield of nitrogen
gas is improved to about 88% compared with less than 50% of nitrogen gas heretofore
obtained from nitrogen contained in the air.
[0019] In the described embodiment, part of the oxygen-rich gas taken out of the condenser
10 and heated to room temperature by the main heat exchanger 3 is utilized for regenerating
the drying and carbon removing unit 2. This feature promotes the effective use of
the oxygen-rich gas.
[0020] As shown in Fig. 2, the oxygen-rich gas GW taken out of the condenser 10 may be taken
out at an intermediate position of the main heat exchanger 3 through a piping P13.
Part of the gas GW is adiabatically expanded by an expansion turbine 11 and returned
through a piping P14 to the main heat exchanger 3 to be used as a coolant in the main
heat exchanger 3. The gas GW used as a coolant may be taken out of the main heat exchanger
3 and led through a piping P15 to the drying and carbon removing unit 2 for regenerating
this unit 2. In this case, the gas GW led through the piping P9 need not be used as
the regenerating gas. This method provides an even more effective use of the oxygen-enriched
gas GW.
[0021] Further, as shown in Figs. 3 and 4, the oxygen-rich gas GW returned to the main heat
exchanger 3, as in the above embodiment, may be led through a piping 16 directly to
the bottom of the fractionating tower 4 after being cooled by the main heat exchanger
3 to a temperature adjacent the liquefying point.
1. A method of producing nitrogen gas comprising the steps of
removing impurities such as moisture and carbon dioxide from a raw material consisting
of compressed air,
feeding the impurity-free raw material, after cooling the same to a temperature close
to a liquefying point through a main heat exchanger (3), to a lower position of fractionating
tower (4) for fractionating the raw material,
withdrawing nitrogen gas from a top position of the fractionating tower (4) and leading
the nitrogen gas to the main exchanger (3) for use as a coolant, and
heating the nitrogen gas to room temperature by heat exchange therein to obtain nitrogen
gas product,
taking oxygen-rich liquid out of a bottom position of the fractionating tower (4)
and, while being expanded, feeding it to a condenser (10) disposed in a top position
of the fractionating tower (4) for use as a coolant therein, said liquid being vaporized
in said condenser (10) into oxygen-rich gas,
taking said gas out of said condenser (10) and leading it to said main heat exchanger
(3) for use as a coolant therein, said gas being heated to room temperature by said
main heat exchanger (3),
characterized in that at least a part of said oxygen rich gas is recirculated after
compression (6) to said main heat exchanger (3), cooled through heat exchange in said
main heat exchanger (3), and led to the condenser (10) either via a reboiler (7) provided
at the bottom of the fractionating column, or by introducing it directly into the
bottom of the fractionating column and
a coolant means is associated to any one of the cooling processes.
2. A method of producing nitrogen gas as defined in claim 1, wherein a drying and
carbon removing unit (2) is used for removing moisture and carbon dioxyde from the
raw material, and part of the oxygen-rich gas taken out of said condenser (10) and
heated to room temperature through said main heat exchanger (3) is used for regenerating
said drying and carbon removing unit (2).
3. A method of producing nitrogen gas as defined in Claim 2, wherein the oxygen-rich
gas taken out of said condenser (10) is taken out of an intermediate position of said
main heat exchanger (3), expanded by an expansion turbine (11), used as a coolant
in said main heat exchanger (3), and thereafter used for regenerating said drying
and carbon removing unit (2).
4. A method of producing nitrogen gas as defined in Claim 1, 2 or 3, wherein the oxygen-rich
gas returned to said main heat exchanger (3) is cooled by the main heat exchanger
(3) to a temperature adjacent the liquefying point, and thereafter directly fed to
the bottom of said fractionating-tower (4).
1. Stickstoffgasherstellungsverfahren, das folgende Schritte umfasst:
Entfernen von Verunreinigungen, wie Feuchtigkeit und Kohlendioxid, aus einem aus Druckluft
bestehenden Rohmaterial,
Zuführung des von Verunreinigungen freien Rohmaterials, nachdem dieses auf eine nahe
am Verflüssigungspunkt liegende Temperatur über einen Hauptwärmetauscher (3) abgekühlt
wurde, zu einer unteren Position eines Fraktionierturmes (4) zwecks Fraktionierung
des Rohmaterials,
Abziehen von Stickstoffgas aus einer oberen Position des Fraktionierturmes (4) und
Führen des Stickstoffgases zum Hauptwärmetauscher (3), zwecks Verwendung als Kühlmittel,
und
Erhitzen des Stickstoffgases auf Raumtemperatur mittels in diesem erfolgenden Wärmeaustausch
zwecks Erzielung des Stickstoffgaserzeugnisses, Entnahme einer sauerstoffreichen Flüssigkeit
aus einer untersten Position des Fraktionierturmes (4) und Zuführung desselben zu
einem Kondensator (10), der sich in einer oberen Position des Fraktionierturmes (4)
befindet, um dort als Kühlmittel verwendet zu werden, wobei die Flüssigkeit im Kondensator
(10) zu einem sauerstoffreichen Gas verdampft wird,
Entnahme des Gases aus dem Kondensator (10) und Zuführen desselben zum Hauptwärmetauscher
(3), um es in diesem als Kühlmittel zu verwenden, wobei das Gas durch den Hauptwärmetauscher
(3) auf Raumtemperatur erwärmt wird, dadurch gekennzeichnet, dass
mindestens ein Teil des sauerstoffreichen Gases nach Verdichtung (6) zum Hauptwärmetauscher
(3) rezirkuliert wird, durch Wärmeaustausch im Hauptwärmetauscher (3) gekühlt und
dem Kondensator (10) entweder über ein am untersten Teil der Fraktioniersäule vorgesehenes
Destillationsgefäss (7) zugeführt wird, oder er unmittelbar in den untersten Teil
der Fraktioniersäule eingeführt wird, und
ein Kühlmittel jedem der Kühlvorgänge zugeordnet ist.
2. Stickstoffgasherstellungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Trocken- und Kohlenstoffentnahmeeinheit (2) verwendet wird, um Feuchgtigkeit
und Kohlendioxid aus dem Rohmaterial zu entnehmen, und dass ein Teil des sauerstoffreichen
Gases, das aus dem Kondensator (10) entnommen und über den Hauptwärmetauscher (3)
auf Raumtemperatur erwärmt wurde, dazu verwendet wird, um die Trocken- und Kohlenstoffentnahmeeinheit
(2) zu regenerieren.
3. Stickstoffgasherstellungsverfahren nach Anspruch 2, dadurch gekennzeichnet, dass das aus dem Kondensator (10) entnommene sauerstoffreiche Gas aus einer Zwischenposition
des Hauptwärmetauschers (3) entnommen wird, durch eine Expansionsturbine (11) entspannt
wird, als Kühlmittel im Hauptwärmetauscher (3) verwendet wird und anschliessend zur
Regenerierung der Trocken- und Kohlenstoffentnahmeeinheit (2) verwendet wird.
4. Stickstoffgasherstellungsverfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das zum Hauptwärmetauscher (3) zurückgeführte, sauerstoffreiche Gas durch den
Hauptwärmetauscher (3) auf eine nahe am Verflüssigungspunkt liegende Temperatur gekühlt
wird, und anschliessend unmittelbar dem untersten Teil des Fraktionierturmes (4) zugeführt
wird.
1. Procédé de production d'azote gazeux comprenant les étapes suivantes:
on enlève les impuretés notamment l'humidité et le gaz carbonique d'un matériau brut
constitué par de l'air comprimé,
on alimente le matériau brut libre d'impuretés, après refroidissement de ce dernier
à une température proche d'un point de liquéfaction à travers un échangeur de chaleur
principal (3), en position basse d'une tour de fractionnement (4) afin de fractionner
le matériau brut,
on retire de l'azote gazeux en tête de la tour de fractionnement (4) et on envoie
l'azote gazeux à l'échangeur principal pour utilisation en tant qu'agent de refroidissement,
et
on chauffe l'azote gazeux à température ambiante par échange de chaleur de façon à
obtenir un produit constitué d'azote gazeux,
on soutire un liquide enrichi en oxygène en cuve de la tour de fractionnement (4)
et tout en le dilatant, on l'alimente à un condenseur (10) disposé en tête de la tour
de fractionnement (4) pour utilisation en tant qu'agent de refroidissement, ledit
liquide étant vaporisé dans ledit condensateur (10) pour former un gaz enrichi en
oxygène,
on retire le gaz dudit condenseur (10) et on l'envoie audit échangeur de chaleur principal
(3) pour utilisation en tant qu'agent de refroidissement, ledit échangeur de chaleur
principal (3), chauffant ledit gaz à température ambiante,
caractérisé en ce qu'au moins une partie dudit gaz enrichi en oxygène est recirculée
après compression (6) vers ledit échangeur de chaleur principal (3), refroidie par
échange de chaleur dans ledit échangeur de chaleur principal (3), et envoyée au condenseur
(10) soit par l'entremise d'une rebouilloire (7) prévue en cuve de la colonne de fractionnement
ou en l'introduisant directement en cuve de la colonne de fractionnement et
un moyen refroidisseur est associé à l'un quelconque des étapes de refroidissement.
2. Procédé de production d'azote gazeux selon la revendication 1, caractérisé en ce
que l'on utilise un ensemble (2) de séchage et d'enlèvement de carbone pour enlever
l'humidité et le gaz carbonique du matériau brut, et une partie du gaz enrichi en
oxygène que l'on retire dudit condenseur (10) et que l'on chauffe à température ambiante
en se servant de l'échangeur de chaleur principal (3) est utilisé pour regénérer ledit
ensemble de séchage et d'enlèvement de carbone (2).
3. Procédé de production d'azote gazeux selon la revendication 2, caractérisé en ce
que l'on soutire le gaz enrichi en oxygène retiré dudit condenseur (10) d'une position
intermédiaire dudit échangeur de chaleur principal, on le dilate dans une turbine
de dilatation (11), on l'utilise comme régrigérant dans ledit échangeur de chaleur
principal et on l'utilise ensuite pour regénérer ledit ensemble de séchage et d'enlèvement
de carbone (2).
4. Méthode de production d'azote gazeux selon les revendications 1, 2 ou 3, caractérisé
en ce que le gaz enrichi en oxygène que l'on retourne audit échangeur de chaleur principal
(3) est refroidi dans l'échangeur de chaleur principal (3) à une température voisine
du point de liquéfaction et qu'on l'envoie ensuite en cuve de la tour de fractionnement
(4).