1 Veröffentlichungsnummer:

0 345 205

(12)

EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 89730122.2

22 Anmeldetag: 16.05.89

(s) Int. Cl.4: C 21 D 9/08

C 21 D 1/64, C 21 D 1/63

③ Priorität: 01.06.88 DE 3818878 11.01.89 DE 3900995

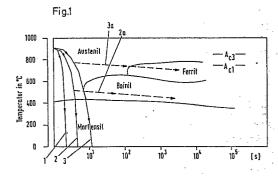
Veröffentlichungstag der Anmeldung: 06.12.89 Patentblatt 89/49

84 Benannte Vertragsstaaten: AT DE ES FR GB IT

(7) Anmelder: MANNESMANN Aktiengesellschaft Mannesmannufer 2 D-4000 Düsseldorf 1 (DE)

Erfinder: Hengstenberg, Wolfgang, Dipf.-Ing. Beim Gansacker 66 D-4100 Duisburg 25 (DE) Lüdecke, Wilhelm Grazer Strasse 24 D-4100 Duisburg 28 (DE)

Prasser, Christoph, Dr. Ing. Bredeneyer Strasse 32 D-4300 Essen 1 (DE)


von Hagen, Ingo, Dr. Ing. Schumannstrasse 1 D-4150 Krefeld 1 (DE)

Prochaska, Klaus, Dr. Ing. Auf dem Driesch 16 D-4100 Duisburg (DE)

(4) Vertreter: Meissner, Peter E., Dipl.-Ing. et al Meissner & Meissner Patentanwälte Herbertstrasse 22 D-1000 Berlin 33 Grunewald (DE)

(54) Verfahren zum Härten eines zylindrischen Hohlkörpers aus Stahl.

© Die Erfindung betrifft ein Verfahren zum Härten eines zylindrischen Hohlkörpers aus Stahl, insbesondere eines Stahlrohres, im Rahmen einer Vergütungsbehandlung, wobei der auf Austenitisierungstemperatur erwärmte Hohlkörper in einem Kühlmittelbar, insbesondere einem Wasserbad, in der Weise abgekühlt wird, daß er mit seiner Längsachse parallel zum Badspiegel des Kühlmittelbades ausgerichtet wird, nur mit einem Teil seiner Oberfläche in das Kühlmittelbad eingetaucht und um seine Längsachse gedreht wird. Um ein Verfahren und eine Vorrichtung zu dessen Durchführung anzugeben, mit dem die Abkühlung von Hohlkörpern beim Drehtauchen wesentlich intensiviert und stärker vergleichmäßigt werden kann, wird vorgeschlagen, daß das Kühlmittelbad unterhalb des Hohlkörpers zumindest zeitweilig durchwirbelt wird.

10

35

50

55

60

Verfahren zum Härten eines zylindrischen Hohlkörpers aus Stahl

Die Erfindung betrifft ein Verfahren zum Härten eines zylindrischen Hohlkörpers aus Stahl gemäß dem Oberbegriff des Patentanspruchs 1.

1

Ein derartiges Verfahren ist aus der auf die gleiche Anmelderin zurückgehenden DE-PS 37 21 665 bekannt. Dieses Verfahren sieht vor, zur Vermeidung von Härterissen beim Drehtauchen die Drehzahl des abzukühlenden Hohlkörpers bei Erreichen der Martensitstarttemperatur deutlich zu erhöhen. Insbesondere bei Behältern, also bei Hohlkörpern mit geschlossenen Stirnflächen hat dieses Verfahren qute Ergebnisse erbracht.

Beim Härten derartiger Gegenstände ist es aber auch wichtig, daß die Abkühlung möglichst ohne zu starke örtliche Unterschiede der Kühlwirkung erfolgt, damit insgesamt eine einheitliche Gefügeausbildung sichergestellt ist. örtlich unterschiedliche Kühlwirkungen können wegen der verschiedenen spezifischen Volumina der Gefügearten zu erheblichen Deformierungen des Hohlkörpers führen. Dies macht nicht nur eine vielfach aufwendige Nachbearbeitung der Hohlkörper erforderlich, sondern erschwert z.B. im Falle von Stahlrohren häufig die Weiterverarbeitung (z.B. Transportstörungen durch krumme Rohre).

Während sich die Eintauchtiefe eines beidseitig geschlossenen Behälters danach bestimmt, in welchem Maße seine Enden gekühlt werden müssen, richtet sich die zweckmäßige Eintauchtiefe bei Rohren, d.h. bei an den Enden offenen Hohlkörpern danach, wie gleichmäßig die Werkstoffeigenschaften in Längsrichtung des Rohres sein sollen. Die Gleichmäßigkeit der Kühlung auf der Außenseite des Rohres hängt nicht von der Eintauchtiefe ab. Anders ist dies jedoch bei der Kühlung der Innenseite des Rohres, da das an den Enden einströmende Kühlmittel auf seinem Weg zur Mitte hin erhitzt wird, so daß sich die Kühlwirkung zur Mitte hin abschwächt. Mit zunehmender Eintauchtiefe wird dieser Effekt jedoch immer weniger ausgeprägt. Bei Eintauchtiefen über 80 % des Durchmessers ist die Kühlwirkung auf der Innenseite selbst bei Rohren mit einer Länge des 60-fachen Durchmessers über die gesamte Rohrlänge ausreichend gleichmäßig, um eine durchgehende martensitische Härtung zu erzielen, sofern die Wanddicke nicht zu groß ist (z.B. bei einem Vergütungsstahl 34 CrMo 4 kleiner als ca. 28 mm). Aus diesem Grund sind entsprechend große Eintauchtiefen als vorteilhaft anzusehen für die Erzielung gleichmäßiger Eigenschaften. Ein vollständiges Eintauchen eines abzukühlenden Rohres sollte jedoch vermieden werden, da sich Dampfblasen im Rohrinneren ausbilden, die im getauchten Zustand nur schwer entweichen und zu unterschiedlicher Kühlwickung führen können.

Bei Rohren mit relativ großem Durchmesser (oberhalb etwa 240 mm Durchmesser) findet meistens trotz geringer Eintauchtiefe noch eine relativ gleichmäßige Innenkühlung und damit auch eine gleichmäßige Gesamtkühlung statt. Problematisch sind die Verhältnisse jedoch bei Rohren mit kleine-

ren Durchmessern oder bei einseitig offenen Behältern, da die wärme- und strömungstechnischen Bedingungen dabei erheblich ungünstiger sind. Dies gilt insbesondere für den Fall einer abfangenden Kühlung zur Erzielung eines bainitischen Gefüges, das nach dem Abschrecken ohne weiteres Anlassen günstige mechanische Eigenschaften aufweist (vgl. Kurve 2a in Figur 1). Bei einer martensitischen Durchhärtung (Kurven 1-3 in Figur 1), d.h. bei einer Abschreckung bis auf Kühlmitteltemperatur kann eine einheitliche Gefügeausbildung dagegen in der Regel durch eine geeignete Werkstoffauswahl für den Hohlkörper sichergestellt werden, so daß auch größere Kühlwirkungsunterschiede noch verkraftbar sind

Es ist bekannt, daß die kühlwirkung flüssiger Kühlmittel sehr stark von der Oberflächentemperatur des abzukühlenden Gegenstandes abhängt. Je höher diese Temperatur ist, umso geringer ist die Abschreckwirkung. Beim Vergüten von Gegenständen aus Stahl kommt es häufig aber gerade darauf an, den hohen Temperaturbereich, d.h. den Bereich zwischen Austenitisierungstemperatur und Martensitstarttemperatur bzw. einsetzender Bainitbildung schnell zu durchfahren, um das Entstehen unerwünschter Gefügebestandteile (z.B. Ferrit und Perlit) zu verhindern. Auf der anderen Seite sollte der Temperaturbereich der Martensitbildung möglichst langsam durchfahren werden, um eine gleichmäßige Temperaturverteilung über die Wanddicke zu gewährleisten und damit die Entstehung von Eigenspannungen in der Rohrwand möglichst zu vermei-

Insbesondere hinsichtlich der Steuerung einer Verminderung der Abkühlintensität führt die Verfahrensweise gemäß DE-PS 37 21 665 zu guten Ergebnissen. Dagegen besteht (insbesondere bei der Behandlung dickwandiger Rohre) vielfach der Wunsch, die Kühlwirkung beim Drehtauchen der abzuschreckenden Hohlkörper über das bisher als realisierbar angesehene Maß zu erhöhen. Ein weiteres Problem besteht darin, daß die Kühlwirkung aufgrund unregelmäßiger Oberflächenbeschaffenheit der abzuschreckenden Hohlkörper (z.B. durch Zunder) die Kühlwirkung ungleichmäßig ausfällt.

Aus der EP 0 086 988 A1 ist es für eine Abkühlvorrichtung, in der stillstehende Rohre in einem bewegten Kühlmittelbad innen und außen mit Kühlwasser beaufschlagt werden, bekannt, eine Verminderung der Kühlwirkung infolge Dampfblasenansammlung auf der Innenseite der vollständig eingetauchten Rohre dadurch zu vermeiden, daß in das durch eine Düse an der Rohrstirnseite in einer schraubenlinienförmigen Strömung zugeführte Wasser Druckluft injiziert wird. Auf eine Steigerung der Kühlwirkung durch Druckluft bei einer Rohraußenkühlung ergeben sich daraus keine Hinweise.

Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu dessen Durchführung anzugeben, mit dem die Abkühlung von Hohlkörpern beim Drehtauchen wesentlich intensiviert und stärker

vergleichmäßigt werden kann.

Gelöst wird diese Aufgabe erfindungsgemäß durch ein Verfahren mit den Merkmalen des Patentanspruchs 1; vorteilhafte Weiterbildungen dieses Verfahrens sind in den Unteransprüchen 2 - 8 gekennzeichnet. Eine Vorrichtung zur Durchführung dieses Verfahrens ist erfindungsgemäß mit den Merkmalen des Patentanspruchs 9 ausgestattet. Die Ansprüche 10 bis 12 geben zweckmäßige Ausgestaltungen der erfindungsgemäßen Vorrichtung an.

Die erfindungsgemäße Lösung sieht eine Durchwirbelung des Kühlmittels unterhalb des abzukühlenden, sich drehenden Hohlkörpers (z.B. Rohr) vor. Die Durchwirbelung, die z.B. auch durch Umwälzpumpen erreicht werden könnte, wird zweckmäßigerweise durch Einleitung von Druckluft z.B. mit Hilfe eines unterhalb des Hohlkörpers angeordneten Düsenrohres bewirkt. Dieses Düsenrohr befindet sich z.B. am Boden des Kühlmittelbeckens und verläuft parallel zur Längsachse des abzukühlenden Hohlkörpers. An seiner Oberseite befinden sich zahlreiche Bohrungen, durch die die Druckluft entweichen kann, die auf dem Weg zur Oberfläche des Kühlmittelbades für eine starke Durchwirbelung sorgt. Hierdurch wird offenbar die in der ersten Abkühlphase auf hohem Temperaturniveau auftretende Dampfschicht (Filmverdampfung) auf der Oberfläche des Hohlkörpers zerstört und werden in der zweiten Abkühlphase die entstehenden Dampfblasen (Blasenverdampfung) schneller von der Oberfläche abgelöst. Als Folge wird die Kühlwirkung des Kühlmittels deutlich erhöht. Da das Zusammenbrechen der Dampfschicht und das Ablösen der Dampfblasen bei niedrigen Relativgeschwindigkeiten zwischen Kühlmedium und der Oberfläche des Hohlkörpers (z.B. Rohr oder Behälter) insbesondere von der Beschaffenheit dieser Oberfläche (z.B. Rauhigkeit) abhängt, wirkt sich eine Erhöhung dieser Relativgeschwindigkeit infolge der Durchwirbelung bei ungleichmäßig beschaffenen Oberflächen im Sinne einer Vergleichmäßigung der Kühlwirkung auf der Oberfläche aus.

Die intensivierte Kühlwirkung führt zu einer erheblichen Reduzierung der Kühlzeiten, also zu einer stärkeren Abschreckung. Dies wird mit äußerst einfachen Mitteln (z.B. Drucklufteinleitung) erreicht. Damit kann der Anwendungsbereich bestehender Drehtauchanlagen ohne großen Aufwand wesentlich erweitert werden. Es können nämlich nicht nur Hohlkörper mit dickeren Wänden als bisher abgeschreckt werden, sondern es ist auch möglich, bei gleicher Wanddicke Rohre oder Behälter aus Stahlwerkstoffen mit geringen Gehalten an Legierungselementen erfolgreich abzuschrecken.

Die Verringerung der Abkühlwirkung bei Erreichen der Martensitstarttemperatur ist durch einfaches Abschalten der Druckluftzufuhr möglich. Darüber hinaus kann auch durch Erhöhung der Drehzahl des abzukühlenden Hohlkörpers bei Bedarf eine schonendere Kühlung eingestellt werden. Schließlich bringt auch die Verminderung der Eintauchtiefe des Hohlkörpers eine Verringerung der Kühlintensität mit sich; allerdings erhöht sich dabei die Gefahr, daß einseitig oder beidseitig offene Hohlkörper auf der Innenseite an den offenen Enden schneller

abkühlen. Eine Möglichkeit zur Ausschaltung dieser unterschiedlichen Kühlwirkungen auf der Innenseite der Hohlkörper ist grundsätzlich dadurch realisierbar, daß man den Zutritt des Kühlmittels in das Innere des Hohlkörpers von vornherein ausschließt. Dies kann durch das vorübergehende Anbringen geeigneter Verschlußdeckel an den offenen Stirnflächen der Hohlkörper erfolgen. Eine solche Maßnahme erfordert jedoch einen erheblichen Handhabungs- bzw. Apparateaufwand und erscheint deswegen weniger erstrebenswert.

In vorteilhafter Weiterbildung der Erfindung ist daher insbesondere für Stahlrohre unter 240 mm Durchmesser vorgesehen, daß die an den offenen Enden durch das einströmende Kühlmittel dort verstärkte Innenkühlung zumindest annähernd durch eine entsprechende Abschwächung der Au-Benkühlung in diesem Bereich kompensiert wird. Dies wird dadurch gewährleistet, daß die Durchwirbelung des Kühlmittelbades in diesen Endbereichen z.B. durch örtliche Verringerung des Drucks der zur Durchwirbelung zugeführten Druckluft oder des mit erhöhtem Druck zugeführten Kühlmittels (z.B. Druckwasser) weniger stark erfolgt. Damit läßt sich selbst bei empfindlichen Werkstoffen bei einer abfangenden Kühlung eine gleichmäßige Gefügeausbildung (Bainit) erzielen. Die Wirksamkeit des erfindungsgemäßen Verfahrens wird anhand der nachfolgend beschriebenen Vergleichsbeispiele näher erläutert.

1. Beispiel

Stahlrohrstücke von 178 mm Durchmesser, 14,5 mm Wanddicke und 1500 mm Länge wurden einheitlich auf 980°C in einem Ofen aufgeheizt und mit einer Starttemperatur von 960°C in eine Drehtauchanlage mit Wasserbad eingesetzt. Die Drehtauchvorrichtung war absenkbar, so daß die Rohrstücke nach vorgegebenen Abschreckzeiten wieder aus dem Wasserbad herausgehoben werden konnten, um die Rohrausgleichstemperatur feststellen zu können. In einem ersten Vergleichsversuch betrug die Eintauchtiefe jeweils 90 % des Rohrdurchmessers und die Drehzahl des Rohres 80 U/min.

Bei herkömmlicher Verfahrensweise stellte sich nach einer Kühlzeit von 18 sek eine Ausgleichstemperatur im Rohr von 575°C ein; bei erfindungsgemäßer Druckluftzufuhr von 0,25 bar Überdruck dagegen lag die Ausgleichstemperatur nach nur 10 sek bereits bei 510°C und nach 12 sek bei 450°C.

2. Beispiel

In einem zweiten Versuch wurden zwei gleiche Rohre bei gleicher Einsatztemperatur wie im ersten Versuch, aber mit einer Eintauchtiefe von jeweils 50 % des Rohrdurchmessers eingetaucht und bei 80 U/min unter Drucklufteinleitung in der Drehtauchanlage abgekühlt. Der Überdruck der Druckluft betrug beim ersten Rohr 0,25 bar und beim zweiten 0,5 bar. Nach 12 sek Abschreckzeit stellte sich im ersten Rohr eine Ausgleichstemperatur von 600°C und im zweiten eine Ausgleichstemperatur von 453°C ein.

Diese Ergebnisse zeigen bereits deutlich, daß die Kühlwirkung durch die Einleitung von Druckluft

erheblich gesteigert werden konnte. Die Kühlzeit verminderte sich gegenüber dem bisherigen Stand der Technik bis auf etwa die Hälfte.

3. Beispiel

Die Unzulänglichkeit der bisherigen Vorgehensweise beim Abkühlen von Hohlkörpern mit offenen Stirnseiten in einer konventionellen Drehtauchanlage zeigt sich an den in Figur 2 und 3 dargestellten Meßergebnissen an einem Stahlrohr mit 178 mm Durchmesser, 14 mm Wanddicke und 15 m Länge. Dieses Rohr wurde gezielt von 920 °C auf eine mittlere Temperatur von 450 °C abgeschreckt, un ein bainitisches Gefüge zu erzielen. Die tatsächliche Temperaturverteilung war jedoch, wie Figur 2 zeigt, extrem unterschiedlich. Während an den Enden bereits Temperaturen unter 400 °C vorlagen, war der mittlere Bereich noch auf Temperaturen um bzw. oberhalb 600 °C. Das heißt die vorliegenden Temperaturdifferenzen betrugen bis zu 250 K. Dies führte zu einer entsprechend unterschiedlichen Gefügeausbildung, die sich z.B. in den in Figur 3 dargestellten über die Rohrlänge stark unterschiedlichen Streckgrenzenwerten Rto,5 dokumentieren.

Während die Werte an den Enden bei etwa 700 N/mm² liegen, weil dort das angestrebte bainitische Gefüge entstanden ist (entsprechend Kurve 2/2a in Fig. 1), sind im mittleren Bereich (ca. 2-3 m von den Rohrenden entfernt) Werte von 465 - 495 N/mm² festzustellen, die auf ein überwiegend ferritisch/perlitisches Gefüge hindeuten (entsprechend Kurve 3/3a in Fig. 1).

Die Wirksamkeit der Erfindung bei einer Verfahresweise gemäß Anspruch 6 zeigt sich in den Meßergebnissen in Figur 5 und 6, die an einem anderen Stahlrohr ermittelt wurden, das auf einer Anlage abgekühlt wurde, welche schematische in Figur 4 dargestellt ist. Werkstoff und Rohrabmessungen entsprachen denen des Vergleichsversuchs gemäß Figur 2 und 3. In Figur 4 ist durch eine Vielzahl von Pfeilen angedeutet, daß die Druckluftzufuhr zur Verwirbelung des Kühlmittelbads unterhalb des eingetauchten Rohres 1 im Bereich des Rohranfangs 1a und des Rohrendes 1b in einzelne Düsenleisten 2a bzw. 2b aufgeteilt ist, die mit unterschiedlichem Druck beaufschlagt werden können. Im vorliegenden Beispiel sind jeweils 8 einzelne Düsenleisten 2a bzw. 2b von 350 mm Einzellänge an den beiden Rohrenden 1a, 1b vorgesehen worden. Im mittleren Bereich des Rohres 1 ist eine durchgehende Düsenleiste 2 angeordnet. Dadurch ist es prinzipiell möglich, eine Teillänge von jeweils etwa 3 m an den beiden Rohrenden unterschiedlich stark gegenüber dem mittleren Bereich zu kühlen.

Im Falle des Ausführungsbeispiels gemäß Figur 5 und 6 wurden lediglich jeweils die zwei äußersten Düsenleisten 2a, 2b mit Druckluft beaufschlagt, deren Druck auf 1,3 bar abgesenkt war, während alle anderen Düsenleisten 2a, 2b und die durchgehende Düsenleiste 2 mit Druckluft von 2,5 bar betrieben wurden. Die Länge der weniger intensiv von außen gekühlten Rohrenden betrug somit an jeder Seite etwa 700 mm. Die Tauchtiefe des Rohres 1 war mit 90 % festgesetzt worden.

Unter diesen Bedingungen ergab sich die sehr

gleichmäßige Temperaturverteilung über die Rohrlänge von etwa 15 m, wie sie in Figur 5 dargestellt ist. Der Streubereich ist auf eine Bandbreite von etwa 30 K zusammengeschrumpft, so daß die angestrebte Temperatur bei der abfangenden Kühlung überall praktisch erreicht wurde. Dementsprechend gleichmäßig ist auch das entstandene bainitische Gefüge. Dies zeigt sich an den gleichmäßigen Streckgrenzenwerten von 670 - 690 N/mm² gemäß Figur 6.

Um eine Abkühlanlage gemäß Figur 4 z.B. für eine Stahlrohrproduktion möglichst effektiv und flexibel (unterschiedliche Rohrabmessungen und Werkstoffe) betreiben zu können, bietet sich eine elektronische Steuerung an, die die Länge des jeweils abzukühlenden Rohres beim Austritt aus dem Austenitisierungsofen mißt und unter Berücksichtigung der Tauchtiefe, der Temperatur, des Werkstoffs, des Durchmessers und der Wanddicke des Rohres die Lage und Länge der stärker bzw. weniger stark zu kühlenden Zonen ermittelt und schließlich die entsprechenden Düsenleisten mit dem erforderlichen Druck beaufschlagt.

Patentansprüche

25

40

45

50

55

60

1. Verfahren zum Härten eines zylindrischen Hohlkörpers aus Stahl im Rahmen einer Vergütungsbehandlung, wobei der auf Austenitisierungstemperatur erwärmte Hohlkörper in einem Kühlmittelbad, insbesondere einem Wasserbad, in der Weise abgekühlt wird, daß er mit seiner Längsachse parallel zum Badspiegel des Kühlmittelbades ausgerichtet wird, nur mit einem Teil seiner Oberfläche in das Kühlmittelbad eingetaucht und um seine Längsachse gedreht wird,

dadurch gekennzeichnet, daß das Kühlmittelbad unterhalb des Hohlkörpers zumindest zeitweilig durchwirbelt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Durchwirbelung mittels in das Kühlmittelbad eingeblasener Preßluft erfolgt.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Durchwirbelung bei Erreichen der Martensitstarttemperatur beendet wird.

4. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß die Tauchtiefe des Hohlkörpers bei Erreichen der Martensitstarttemperatur verringert wird.

5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß die Drehzahl des Hohlkörpers nach Erreichen der Martensitstarttemperatur erhöht wird.

6. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, daß beim Abkühlen des mindestens an einer Stirnseite offenen Hohlkörpers die Durchwirbelung jeweils im Bereich des bzw. der Enden mit einer offenen Stirnseite weniger stark erfolgt als im mittleren Bereich und ggf. in dem Endbereich mit geschlossener Stirnseite des Hohlkör-

4

5

10

15

pers, wobei die Abschwächung der Durchwirbelung in der Weise dosiert ist, daß die damit verbundene schwächere äußere Wärmeabfuhr etwa der stärkeren Innenkühlung in diesen Endbereichen entspricht.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Durchwirbelung durch Druckluftzufuhr mit zonenweise unterschiedlichem Druck vorgenommen wird.

8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Durchwirbelung zeitweilig nur im mittleren Bereich und ggf. im Bereich der geschlossenen Stirnseite vorgenommen wird.

 Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit einem Behälter zur Aufnahme eines Kühlmittelbades und mit einer Drehvorrichtung zur Drehung horizontal liegender zylindrischer Hohlkörper in dem Kühlmittelbad,

bad, dadurch gekennzeichnet, daß unterhalb der gedachten Achse des zylindrischen Hohlkörpers und unterhalb des vorgesehenen Badspiegels des Kühlmittels ein System von Düsen (2, 2a, 2b) angeordnet ist, durch die Druckgas in das Kühlmittelbad einblasbar ist.

10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Düsensystem als horizontal angeordnetes Rohrstück ausgebildet ist, dessen Wand im Bereich seiner obersten Mantellinie zahlreiche Bohrungen aufweist.

11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Düsen (2, 2a, 2b) einzeln oder zonenweise zusammengefaßt mit voneinander unterschiedlichen Betriebsdrücken beaufschlagbar sind.

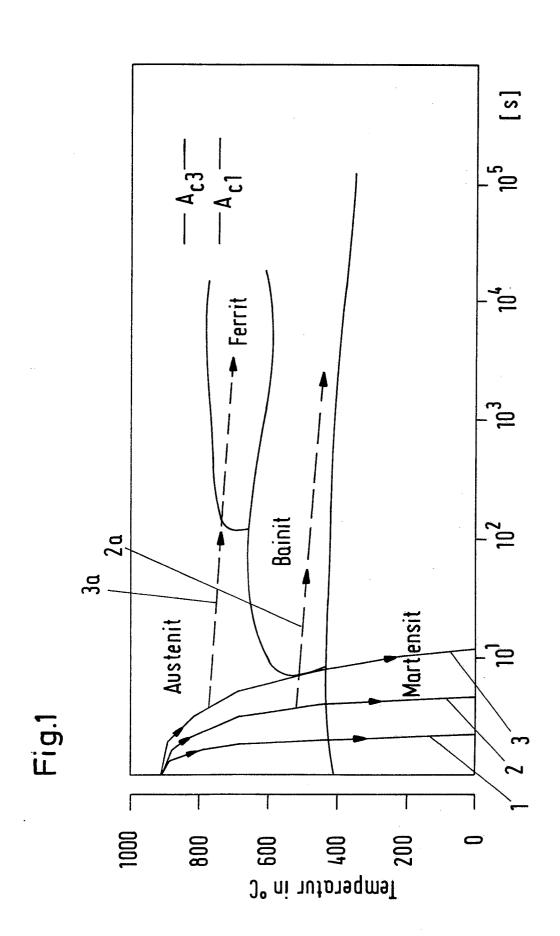
12. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Drehvorrichtung auf unterschiedliche Höhen gegenüber dem Badspiegel einstellbar ist.

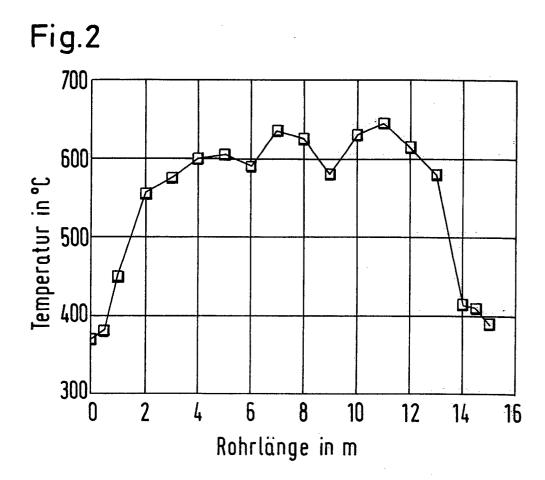
25

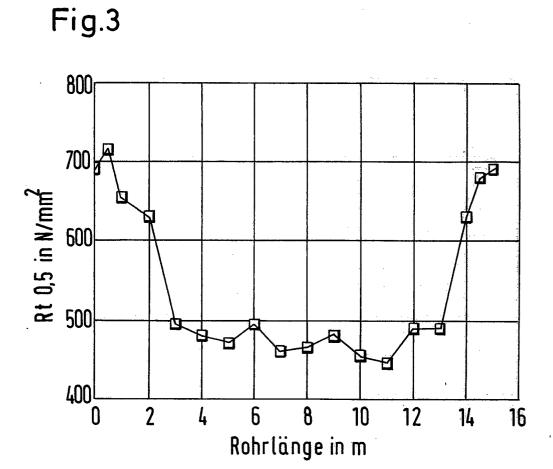
20

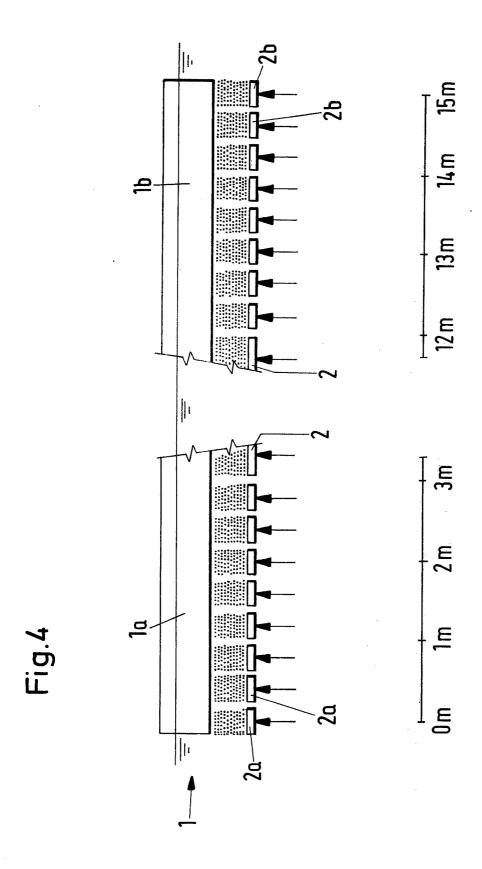
30

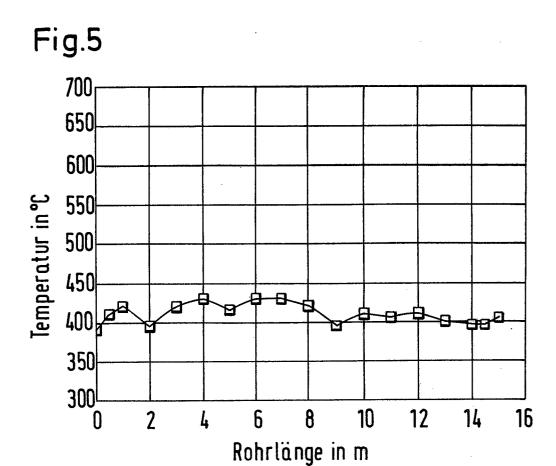
35

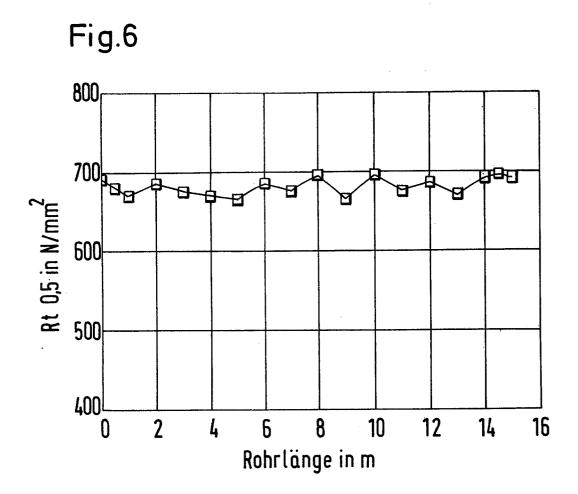

40


45


50


55


60



EUROPÄISCHER RECHERCHENBERICHT

89 73 0122

EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokum der maßgebli	ents mit Angabe, soweit erforderlich, chen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
Y,D	DE-C-3 721 665 (M/ * Ansprüche 1,5 *	NNESMANN)	1,2,4,5	C 21 D 9/08 C 21 D 1/64
Y	PATENT ABSTRACTS OF 160 (C-289)[1883], JP-A-60 33 309 (DAI 20-02-1985 * Zusammenfassung *	DO TOKUSHUKO K.K.)	1,2,4,5	C 21 D 1/63
A	US-A-3 695 598 (UC * Ansprüche 1,3; Fi	UUE) gur 1 *	1	
A	EP-A-0 086 988 (KF * Ansprüche 2,3,4,1	RUPPERT ENTERPRISES) .3 *	1	
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
				C 21 D
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
Recherchenort DEN HAAG		Abschlußdatum der Recherche 07-09-1989	WITT	Priifer TBLAD U.A.
	KATEGORIE DER GENANNTEN I	OOKUMENTE T: der Erfindun	g zugrunde liegende	Theorien oder Grundsätze

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument