(19)
(11) EP 0 347 926 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
27.12.1989 Bulletin 1989/52

(21) Application number: 89111414.2

(22) Date of filing: 22.06.1989
(51) International Patent Classification (IPC)4C07C 249/00, B01J 21/06
(84) Designated Contracting States:
AT BE DE ES FR GR IT NL SE

(30) Priority: 23.06.1988 IT 2107688

(71) Applicant: ENICHEM S.p.A.
I-20124 Milano (IT)

(72) Inventors:
  • Padovan, Mario
    I-20125 Milano (IT)
  • Genoni, Fausto
    I-21017 Samarate Varese (IT)
  • Leofanti, Giuseppe
    I-20010 Canegrate Milano (IT)
  • Petrini, Guido
    I-28066 Galliate Novara (IT)
  • Roffia, Paolo
    I-21047 Saronno Varese (IT)
  • Cesana, Alberto
    I-20048 Carate Brianza Milano (IT)

(74) Representative: Barz, Peter, Dr. et al
Patentanwalt Kaiserplatz 2
80803 München
80803 München (DE)


(56) References cited: : 
   
       


    (54) Catalytic process for the manufacture of oximes


    (57) The invention concerns a catalytic process for the manufacture of oximes by ammoximation of the corresponding carbonyl compounds, characterized in that the catalyst is a solid composition consisting of silicon, titanium and oxygen, chemically combined with each other, and in that the titanium amount, expressed as TiO₂, ranges from 1 to 95% by weight, the XR diffractogram of said composition being a smooth-trend line (halo), typical of the amorphous solids.


    Description


    [0001] European patent 208,311 teaches how to obtain cyclo­hexanone-oxime in the liquid phase from cyclohexanone, ammonia and hydrogen peroxide, in the presence of a catalyst consist­ing of a crystalline compound having a zeolitic structure; this structure, however, requires a treatment of the silicon compounds and of the titanium compounds with proper organic compounds, which are known as templating agents (in particular tetraalkyl-ammonium hydroxides or salts thereof) and which can be synthesized only with extreme difficulty; sometimes the silicon and/or titanium source consisted of an amorphous solid material (see European patent 299,430 and European patent ap­plication 88 116 870), but the treatment with templating agents was nevertheless assumed to be unavoidable for obtain­ing a catalytically active structure. The preparation of said crystalline structure required a very long operative (residen­ce) time and the use of high temperatures and pressures; fur­thermore, it was necessary yo submit the catalyst to complex post-treatments.

    [0002] The Applicant has now found that the synthesis of the oximes (starting from carbonyl compounds, H₂O₂ and NH₃) can be promoted also by catalysts, based on titanium and sili­con, which do not exhibit said zeolitic structure and which can be prepared without any use of templating agents in a very short time.

    [0003] In its widest form, the invention concerns a cata­lytic process for the manufacture of oximes by reacting in the liquid phase the corresponding carbonyl compounds with ammonia and hydrogen peroxide (ammoximation), the catalyst being selected from the solid compositions consisting at least of silicon, titanium and oxygen, chemically combined with each other, said compositions being characterized by a XR diffrac­togram, obtained by utilizing the K α radiation of copper in the (2 ϑ) range from 10 to 40°, in which the peaks, which are typical of the crystalline solids, are replaced by a smooth-­trend line (halo), typical of the amorphous solids, an example being represented by diffractograms A, B, D, E, F, G and H in figure 1. Said compositions are furthermore characterized, op­ tionally, also by those XR diffractograms which exhibit, besides said halo, the typical reflexes of anatase and/or of rutile and/or of brookite; an example is represented by dif­fractogram C on figure 1. The infrared spectrum of said compo­sitions (obtained through infrared spectrophotometry in the range from 400 to 1300 cm⁻¹), has an intermediate trend bet­ween the trend of the amorphous silica spectra and the trend of the titanium oxide spectrum, which are known from the prior art; reference should be made in this connection to: "Infrared Analysis of Polymers, Resins and Additives; An Atlas"; (Volume 2; Carl Hauser VERLAG Muenchen (1973); spectrum 2317 for sili­ca; spectra 2353 and 2354 for titanium dioxide). An example of the infrared spectra of said compositions are spectra A, B, C, D, E, F, G and H on fig. 2. Depending on the selected titanium source, on the catalyst preparation method and on the amount of titanium, other bands, alien to amorphous silicas and to titanium-silicalites, for instance the band at 750 cm⁻¹ de­scribed in example 4, may optionally appear in said infrared spectrum.

    [0004] Some of these compositions are known from the lite­rature as binary oxides or mixed oxides; see for example "Ad­vances in Catalysis; Vol. 27 (1978), pages 136-138 (Academic Press Publisher). The absence, in the XR diffractogram, of the reflexes typical of titanium-silicalite, the peak diffracto­gram of which is reported by the Journal of Catalysis [Volume 61 (1980). Pages 390-396] and the absence from the infrared spectrum of the absorption band at about 550 cm⁻¹, bound - as it is known - to the structural vibrations of the zeolitic structures of the PENTASIL type, as it is described for in­stance by Breck [ZEOLITES; volume 4 (1984), pages 369-372], proves the absence of zeolite-structure-showing crystalline phases typical of the titanium-silicalite, including the phas­es consisting of crystallites having a size below the X-ray resolution (resolving) power.

    [0005] The titanium amount in said compositions (expressed as TiO₂) ranges from 1 to 95% and preferably from 4.5 to 50% by weight. The surface area of said compositions is preferably from 10 to 800 and, even better, from 200 to 800 m²/g; the pore volume of the same compositions ranges from 0.1 to 2.5 cm³/g and the average diameter of the pores is greater than 0.70 nm and preferably ranges from 1 to 40 nm.

    [0006] The new catalysts have been used also in continuous operations, for many tens of hours, without any sign of exhau­stion, with yields equal to and sometimes higher than the ones of the discontinuous tests, and they have proved to be very active not only in the case of the ammoximation of aldehydes and ketones, but also in the case of other organic syntheses, such as e.g. the synthesis of N,N-dialkyl-hydroxylamines, which is described in European patent application 88/117,950.

    [0007] Aldehydes which can be catalytically converted into oximes are generally the aldehydes of formula R₁CHO, where R₁ is selected from alkyl, cycloalkyl, aryl or heterocyclic groups (containing O, N or S in the ring), having 1 to 20 carbon atoms. Alkyl group means also an arylalkyl group, a cycloalkyl-alkyl group or an alkyl group substituted with heterocyclic groups; aryl group means also an alkyl-aryl group, a cycloalkyl-aryl group or an aryl group substituted with heterocyclic groups; cycloalkyl group means also an al­kyl-cycloalkyl group, an aryl-cycloalkyl group or a cycloalkyl group substituted with heterocyclic groups; heterocyclic group means also an alkyl-, cycloalkyl- or aryl-heterocyclic group.

    [0008] Ketones which can be catalytically converted into oximes are generally the ketones of formula R₂-CO-R₃, where R₂ and R₃, equal to or different from each other, have the same meaning as R₁ and can be linked at their end, thus forming a carbocyclic or heterocyclic ring. Excellent results were ob­tained in the ammoximation of acetone, cyclohexanone, methyl-­ethyl-ketone(butan-2-one), acetophenone, benzophenone, ter­butyl-cyclohexanone, cyclo-dodecanone, enanthic aldehyde (1-­heptanal) and benzaldehyde.

    [0009] The catalyst can be prepared starting from various titanium and silicon sources, according to methods which are known for the preparation of heterogeneous catalysts; as com­pared with the crystalline compounds showing zeolitic-structu­re, the catalyst of the invention can be prepared by means of a very simplified method and the influence of the catalyst cost on the oxime synthesis process is remarkably reduced.

    [0010] Without limiting at all the scope of the invention, a few alternatives are cited hereinbelow.

    [0011] The catalyst of the invention can be prepared by hy­drolysis of alcoholic solutions containing silicon and tita­nium alcoholates; see for example the Journal of Non-crystal­line Solids, 82 (1986), pages 97-102.

    [0012] As an alternative, the catalyst can be obtained from aqueous solutions of soluble compounds of silicon and of tita­nium, by means of co-precipitation with a base (for example ammonium hydroxide); see for example the Journal of Catalysis, 35 (1974); pages 225-231; and still the same Journal of Cata­lysis, 105 (1987), pages 511-520.

    [0013] According to another alternative, a commercial amor­ phous silica showing a great surface area (for example a microspheroidal product) and a high pore volume can be impre­gnated with aqueous solutions or non-aqueous solutions of so­luble titanium compounds, resorting for example, to the inci­pient wetness technology; see e.g. Applied Catalysis, 32 (1987), pages 315-326; and Langmuir 3 (1987), pages 563-567.

    [0014] According to a still further alternative, a volatile titanium compound can be adsorbed as a vapour by a commercial amorphous silica having a high surface area and a high pore volume; see for example Applied Catalysis, 23 (1986), pages 139-155.

    [0015] After its preparation, the catalyst can be directly utilized for the ammoximation, or it can be calcined in a stream of air, or of another gas or under vacuum, at tempera­tures from 50 to 800°C. As a soluble source of titanium, the following ones can be cited, merely as an example:
    - alkyl-titanates and in particular tetraisopropyl-titanate and di-isopropyl-bis(triethanolamine)-titanate;
    - titanium halides and in particular titanium tetrachloride (TiCl₄) and titanium trichloride (TiCl₃);
    - complex titanates and in particular ammonium hexafluorotita­nate (NH₄)₂TiF₆;
    - combinations and equivalents thereof.

    [0016] The conversion of ketones (or of aldehydes) into oximes must be generally carried out in the liquid phase at a temperature from 25 to 100°C, preferably from 40 to 90°C (even better from 60 to 90°C); tests carried out at 15°C supplied quite unsatisfactory results. The reaction can be generally conducted at atmospheric pressure or at pressures slightly higher than the atmospheric pressure, in order to maintain dissolved, in the reaction medium, at least an ammonia amount corresponding to the synthesis requirement. The catalyst can be arranged on a fixed bed (in particular a trickle bed) or finely dispersed in the reaction medium, provided the reactors have a wall compatible with hydrogen peroxide. If the reaction is performed discontinuously, it is advisable to use 0.1 to 50 parts by weight (preferably 1 to 20 parts) of catalyst for 100 parts of ketone or of aldehyde; if the reaction is performed incontinuous, a space velocity from 0.1 to 200 kg/hour of ketone or of aldehyde per kg of catalyst is advisable. The H₂O₂/ketone (or aldehyde) molar ratio must generally range from 0.3 to 2.5 and preferably from 0.5 to 1.3, where H₂O₂ means hydrogen peroxide at a 100% purity degree (dilution water being therefore excluded). The NH₃/H₂O₂ molar ratio must be equal to or higher than 1 (preferably 1.5), otherwise disturbing parallel reactions would take place. The reaction medium may consist of water or of an organic solvent; excep­tional results were obtained by the use, of a solvent, of t.butyl alcohol and/or cyclohexanol, optionally in admixture with dioxane or toluene. The tert.butanol (and/or cyclohexan­ol)/ketone (or aldehyde) molar ratio shall generally range from 0.1 to 100. At the end of the reaction, the oxide can be separated in different ways, for instance by means of an ex­traction with proper solvents such as benzene, toluene, or the same ketones (or aldehyde) utilized for the synthesis, whereby a hydrophobic organic phase and an aqueous phase are formed. Oxime and unreacted ketone (or aldehyde) flow into the organic layer; the aqueous layer, containing the NH₃ excess as well as traces of ketone (or aldehyde) and of oxime, can be usefully recycled to the reaction area. As an alternative, the extrac­ tion may be conducted simultaneously with the synthesis, by operating in a two-phase system; this system can be profitably prepared by using a couple of solvents having different cha­racteristics, for example tert.butanol (hydrophilic) and to­luene (hydrophobic). When ammoximation is conducted in conti­nuous, it is suggested to maintain the space velocity from 0.1 to 200 kg/h of ketone or of aldehyde (preferably from 2 to 200 kg/h) per kg of pure catalyst (binders excluded) and to feed the ketone or the aldehyde in admixture with the organic sol­vent, for instance tert.butanol (and/or cyclohexanol); in the ammoximation reactor it is advantageous to use the trickle-bed technology. One of the alternatives is the continuous reaction in a suspended bed, under stirring; in this case it is advis­able to feed the reactants through dipping pipes submersed beneath the liquid level.

    [0017] The following examples are supplied in order to illustrate the invention; however they are by no way to be construed as to be a limitation of the scope thereof.

    EXAMPLE 1



    [0018] 30 g of a microspheroidal silica, as it is usually available, having a surface area of 408 m²/g, a pore volume equal to 2 cm³/g and an average particle diameter equal to 0.105 mm, were impregnated, according to the incipient wetness technology, with 65 cm³ of an aqueous solution, containing 45% by weight of di(isopropyl)-bis(triethanolamine)-titanate of formula: (C₃H₇O)₂Ti(C₆H₁₄NO₃)₂, marketed by Dynamit Nobel under the trade-name TEAT. After a 4-hour rest in the air, the impregnated silica was dried in an oven at 80°C and then cal­cined in the air at 500°C for 6 hours. The thus obtained cata­lyst contained 12.3% by weight of titanium, expressed as TiO₂. The corresponding X-ray diffractogram is marked with the let­ter A on figure 1. In the infrared spectrum of the catalyst prepared according to this example (spectrum A in figure 2), an absorption band with a maximum substantially at 960 cm⁻¹ appears. A band very near to said band of spectrum A is indi­cated by U.S. patent 4,410,501 as to be typical of titanium silicalites and as a proof of the presence of titanium in the zeolitic structure of silicalite, because this band does not appear in the infrared spectrum of pure silicalite, nor in the infrared spectrum of titanium oxides. However, that is not quite exact; in the present case, the presence of a band with a peak at about 960 cm⁻¹ is not sufficient, alone, to prove the presence of structural Ti. The same band appears in fact also in the infrared spectrum of the amorphous silica, utiliz­ed by the Applicant for preparing the catalyst, while for a complete identification of titanium silicalite also a second typical band, with a peak at about 550 cm⁻¹, is necessary, said band being missing in the new catalysts of the present invention.

    EXAMPLE 2



    [0019] Into a glass reactor, equipped with a stirrer and a heating jacket, beforehand blanketed with an inert gas (nitro­gen) there were introduced 7.5 g of the catalyst powder ob­tained according to example 1; 21 g of water (1.17 moles), 25 g of t.-butyl alcohol (0.34 moles) and 4 g of ammonia (0.24 moles) were then added. The whole was stirred and 10.34 g of cyclohexanone (0.105 moles) were charged, thus forming a two-­phase (solid-liquid) system, which was maintained homogeneous by intense stirring. The temperature was raised up to 80°C by conveying a thermostatic liquid into the reactor jacket. Then, by means of a metering pump, an aqueous solution of hydrogen peroxide, at 33% by weight, began to be fed to the reactor. During heating, the pressure slightly rose above the atmo­spheric pressure. H₂O₂ was added in 5 hours and an overall amount of 11.33 g of H₂O₂ (0.096 moles) was fed in; during the addition, the pressure inside the autoclave decreased. The re­sulting suspension was additioned, after cooling, with ethyl ether and was stirred for a few minutes; the aqueous phase and the ethereal phase were then separated from the catalyst by means of filtration. The liquid phases were separated in a se­paratory funnel, and the gas-chromatographic analysis revealed a cyclohexanone conversion equal to 97.6% and a selectivity to oxime equal to 97.5%; the oxime yield (with respect to H₂O₂) was equal to 88.2%. Data and results are recorded on Table 1.

    EXAMPLE 3



    [0020] 30 g of the amorphous silica of example 1 were impregnated with 60 cm³ of a 6M aqueous solution of HCl con­taining 6.2 g of TiCl₄; after a 4-hour rest in the air, the impregnated silica was dried in an oven at 120°C for 16 hours and calcined in the air at 200°C for 6 hours. The resulting catalyst contained 8.1% by weight of titanium, expressed as TiO₂. The corresponding XR diffractogram is indicated by the letter B on figure 1; it does not appreciably differ from dif­fractogram A of example 1. The corresponding infrared spectrum is marked with letter B on figure 2 and does not exhibit ap­preciable differences from spectrum A of example 1.

    EXAMPLE 4



    [0021] 8 g of TiO₂ were dissolved at 80°C in 30 cm³ of an aqueous solution of HF at 50% by weight in a platinum dish. To the thus obtained limpid solution, 100 cm³ of a solution at 17% by weight of NH₄F were added. It was slowly evaporated and drying was carried out at 100°C during 16 hours. The resulting product was corresponding to ammonium hexafluorotitanate (NH₄)₂TiF₆; 30 g of the amorphous silica of example 1 were im­pregnated (according to the incipient wetness technique) with 60 cm³ of an aqueous solution of (NH₄)₂TiF₆ at 5.6% by weight. After impregnation, the silica was allowed to rest during 4 hours at room temperature and then it was calcined at 300°C for 2 h in the air. The thus obtained catalyst contained 4.6% by weight of titanium, expressed as TiO₂. The corresponding XR diffractogram is reported in figure 1 and is indicated by let­ter C; it shows the presence of the more intense reflex of anatase (d = 0.352 nm; 2 ϑ = 25.3°); see card JCPDS - 21 - 1272. The corresponding infrared spectrum is marked with let­ter C in figure 2; all the bands of spectrum A of example 1 appear therein. Apparent is also a band with the peak at about 750 cm⁻¹, which is due to the use of the particular titanium source (ammonium hexafluorotitanate) in the preparation of the catalyst. This statement is proved by the results of a blank test (in the absence of of titanium) carried out beforehand; the same amophours silica of example 1 had been impregnated (by means of the incipient wetness technique) with an aqueous solution of ammonium fluoride (NH₄F) free from titanium; after a 4-hour rest at room temeprature and a calcination in the air at 300°C for 24 hours, the product was characterized by a spectrum in which, in the absence of titanium, said band at 750 cm⁻¹ was clearly apparent (see figure 3).

    EXAMPLE 5



    [0022] 50 g of an amorphous microspheroidal silica having a surface area of 408 m²/g and a pore volume equal to 2.10 cm³/g were calcined at 300°C for 1 hour and subsequently impregnated with 115 cm³ of a solution consisting of 35 cm³ of tetraisopropyl-orthotitanate and of 80 cm³ of isopropyl al­cohol, which had been previously dehydrated on a molecular sieve (zeolite 4A). The so impregnated silica was allowed to rest during 4 hours at room temperature; then it was dried at 120°C for 16 hours. The resulting catalyst contained 16.4% by weight of titanium, expressed as TiO₂. The corresponding XR diffractogram is indicated by letter D in figure 1 and does not appreciably differ from diffractogram A of example 1. The corresponding infrared spectrum is shown in figure 1 and is indicated by letter D; it does not exhibit appreciable diffe­rences from spectrum A of example 1.

    EXAMPLE 6



    [0023] Example 5 was repeated, the drying being followed by a calcination in the air at 300°C for 2 hours. The resulting catalyst contained 16.4% by weight of titanium expressed as TiO₂. The corresponding XR diffractogram is marked with letter E in figure 1 and does not significantly differ from diffrac­togram A of example 1. The corresponding infrared spectrum is shown in figure 2 and is indicated by letter E; it does not exhibit significant differences as compared with spectrum A of example 1.

    EXAMPLE 7



    [0024] Into a 500 cm³ flask, maintained in an inert gas at­mosphere (N₂), 100 g of tetraethyl-orthosilicate and 21 g of tetraisopropyl-orthotitanate were charged. To the limpid solu­tion of the two alcoholates, 100 cm³ of deionized water were added under stirring and by means of a slow dropping ( 5 cm³/minute). At the end, the resulting gel was left under stirring during four hours. Filtration, drying at 120°C for 16 hours and calcination at 300°C in the air for 2 hours were carried out. The resulting catalyst contained 18.2% by weight of titanium expressed as TiO₂. The corresponding XR diffracto­gram is marked with letter F in figure 1; it exhibits no reflex which could be considered as an index of the presence of crystalline phases. The corresponding infrared spectrum is reported in figure 2 and is indicated by letter F; all the bands which are present in spectrum A of example 1 appear therein. The position of the peak of some bands (in particular of the most intense band with the peak at about 1100 cm⁻¹) ap­pears slightly shifted towards lower values of the wave num­ber. Such phenomenon is typical of the compositions containing Ti, Si and O which are obtained by co-precipitation from solu­ble compounds of titanium and silicon. In this connection, re­ference should be made, for example, to the article by L.G. Karakchiev in KINETIKA I KATALIZ., vol. 6, No. 5 (September-­October 1965) pages 904-908.

    EXAMPLE 8



    [0025] 50 g of an amorphous silica, marketed by GRACE under the trade-name GRADE 360, having a surface area equal to 600 m²/g and a pore volume equal to 1.1 cm³/g, were calcined at 300°C for 2 hours and were subsequently impregnated with 70 cm³ of tetraisopropyl-orthotitanate. The silica, so impregnat­ed, was allowed to rest during 4 hours at room temperature; then it was dried at 120°C for 16 hours and calcined at 300°C in the air during 2 hours. The resulting catalyst contained 26.0% by weight of titanium expressed as TiO₂. The correspond­ing XR diffractogram is marked with letter G in figure 1. The corresponding infrared spectrum is shown in figure 2 and is indicated by letter G; it does not exhibit appreciable diffe­rences from spectrum A of example 1.

    EXAMPLE 9



    [0026] To a solution of 75 g of tetraisopropyl-orthotitana­te and 75 g of tetraethyl-orthosilicate in 150 cm³ of anhy­drous isopropyl alcohol there were added, under stirring and at room temperature, 150 cm³ of H₂O. Stirring was carried on four 4 hours, then the product was filtered and the resulting solid was dried at 120°C during 16 hours. The catalyst, so ob­tained, contained 38.2% by weight of titanium, expressed as TiO₂; the corresponding XR diffractogram is marked with letter H in figure 1. The corresponding infrared spectrum is reported in figure 2 and is indicated by letter H; all the bands pre­sent in spectrum A of example 1 appear therein. The position of the peak of such bands is shifted towards lower values of the wave number, analogously with what had been observed in connection with example 7; furthermore, in the range from 400 to about 800 cm⁻¹, the spectrum shape is appreciably modified as compared with the one typical of the amorphous silica due to the emerging of the wide absorption band of titanium oxide, as it is known from the literature. In this connection, refe­rence should be made, for example, to the article by L.G. Ka­rakchiev in KINETIKA I KATALIZ., vol. 6, No. 5 (September-Oc­tober 1965), pages 904-908.

    EXAMPLES 10 TO 16



    [0027] Example 2 was repeated, the catalyst of example 2 being replaced by the catalysts prepared according to examples 3 to 9; the results are reported in Table 1.
    Table 1
    EXAMPLE 2 10 11 12 13 14 15 16
    Catalyst from ex. 1 from ex.3 from ex.4 from ex.5 from ex.6 from ex.7 from ex.8 from ex. 9
    TiO₂ (%) 12.3 8.1 4.6 16.4 16.4 18.2 26.0 38.2
    Pore volume (cm3/g) 0.8 1.5 0.8 1.9 1.9 0.66 1.0 0.23
    Surface area (m2/g) 345 354 231 364 389 318 499 422
    Average diam. of pores (nm) 9 17 14 21 20 8 8 2
    XR diffract. A B C D E F G H
    I.R. spectrum A B C D E F G H
    Ketone conversion (%) 97.6 91.9 64.2 95.7 99.5 98.8 99.3 96.0
    Ketone selectivity to oxime (%) 97.5 94.2 100.0 98.7 97.4 97.0 93.7 94.8
    Oxime yield (on H₂O₂) (%) 88.2 82.0 64.6 89.2 90.0 87.1 87.4 88.0



    Claims

    1. A catalytic process for the manufacture of oximes, by reacting in the liquid phase the corresponding car­bonyl compounds with ammonia and hydrogen peroxide, characte­rized in that the catalyst is a solid composition consisting at least of silicon, titanium and oxygen, chemically combined with each other, wherein the titanium amount, expressed as TiO₂, ranges from 1 to 95% by weight, on the whole composi­tion, and wherein the XR diffractogram of said composition (obtained by means of the K α radiation of copper) is showing, in the (2 ϑ) range from 10° to 40°, a smooth-trend line (halo), which is typical of the amorphous solids.
     
    2. A catalytic process for the manufacture of oximes, by reacting in the liquid phase the corresponding car­bonyl compounds with ammonia and hydrogen peroxide, charac­terized in that the catalyst is a solid composition consisting at least of silicon, titanium and oxygen, chemically combined with each other, wherein the titanium amount, expressed as TiO₂, ranges from 1 to 95% by weight, on the whole composi­tion, and wherein in the XR diffractogram (obtained by means of K α radiation of copper) of said composition, in the range (2 ϑ) from 10° to 40°, the reflexes typical of the crystalline solids are replaced by a smooth-trend line (halo), which is typical of the amorphous solids.
     
    3. The process of claim 1 or 2, characterized in that in said XR diffractogram also the reflexes typical of anatase and/or of rutile and/or of brookite appear.
     
    4. The process according to anyone of the preceding claims, wherein said compositions are characterized also by an infrared spectrum of the type shown in figure 2.
     
    5. The process of claim 4, wherein said infrared spectrum comprises also a band at 750 cm⁻¹.
     
    6. The process according to anyone of the preceding claims, wherein said compositions contain a titanium amount (expressed as TiO₂) from 1 to 50%, preferably from 4.5 to 50% by weight.
     
    7. The process according to anyone of the preceding claims, wherein said compositions have a surface area from 10 to 800 (preferably from 200 to 800) m²/g, a volume of the pores from 0.1 to 2.5 cm³/g and an average pore diameter greater than 0.70 nm and preferably from 1 to 40 nm.
     
    8. The process according to anyone of the preceding claims, wherein said compositions are obtained by using, as a titanium source, a compound selected from:
    - alkyl-titanates and in particular tetraisopropyltitanate and di-isopropyl-bis(triethanolamine)-titanate;
    - titanium halides and in particular titanium tetrachloride (TiCl₄) and titanium trichloride (TiCl₃);
    - complex titanates and in particular ammonium hexafluorotita­nate (NH₄)₂TiF₆;
    - combinations and equivalents thereof.
     
    9. The process according to anyone of the preceding claims, wherein said compositions are obtained by using, as a titanium source, a compound selected from TiCl₄; (NH₄)₂TiF₆; tetraisopropyl-titanate; di-isopropyl-bis(triethanolamine)-­titanate.
     
    10. The process according to anyone of the preced­ing claims, wherein the oxime is obtained by means of catalyt­ic ammoximation of an aldehyde of formula R₁CHO, where R₁ is selected from the alkyl, cycloalkyl, aryl or heterocyclic groups having from 1 to 20 carbon atoms.
     
    11. The process of any of claims 1 through 9, where­in the oxime is obtained by means of ammoximation of a ketone of formula R₂-CO-R₃, where R₂ and R₃, like or different from each other, have the same meaning as R₁ in claim 10 and can be linked, at their ends, to form a carbocyclic or heterocyclic ring.
     
    12. The process of anyone of claims 1 through 9, wherein the oxime is obtained by ammoximation of a compound selected from acetone, cyclohexanone, methyl-ethyl-ketone, acetophenone, benzophenone, t.butyl-cyclohexanone, cyclo-dode­canone, enanthic aldehyde and benzaldehyde.
     
    13. The process of anyone of the preceding claims, wherein the catalytic compositions are obtained by hydrolizing alcoholic solutions of a silicon alcoholate and of a titanium alcoholate.
     
    14. The process of anyone of the preceding claims, wherein the catalytic compositions are obtained from aqueous solutions of water-soluble silicon compounds and of water-so­luble titanium compounds, by means of co-precipitation with a base and in particular with ammonium hydroxide (NH₄OH).
     
    15. The process of anyone of the preceding claims, wherein the catalytic compositions are obtained by impregnat­ing an amorphous silica with an aqueous solution of a water-­soluble titanium compound.
     
    16. The process of any of the preceding claims, whe­rein the catalytic compositions are obtained by causing a vo­latile titanium compound, in the vapor form, to be absorbed by an amorphous silica.
     
    17. The process of anyone of the preceding claims, wherein the catalytic compositions are prepared by impregnat­ing an amorphous silica with the non-aqueous solution of a ti­tanium compound which is soluble in the non-aqueous medium.
     
    18. The process of anyone of the preceding claims, wherein the catalytic compositions are calcined, before being used, at a temperature from 50 to 800°C.
     
    19. A catalytic solid composition, particularly suited for the manufacture of oximes, by means of ammoximation of the corresponding carbonyl compounds, consisting at least of silicon, titanium and oxygen, chemically combined with each other, characterized by a titanium amount, expressed as TiO₂, from 1 to 95% by weight, on the whole compositions, and by a XR diffractogram (obtained by means of K α radiation of cop­per) showing, in the (2 ϑ) range from 10 to 40°, a smooth-­trend line (halo), which is typical of the amorphous solids.
     




    Drawing