1 Numéro de publication:

0 354 832 A1

12

DEMANDE DE BREVET EUROPEEN

2 Numéro de dépôt: 89402192.2

22) Date de dépôt: 02.08.89

(s) Int. Cl.5: F 41 A 19/63

F 41 A 21/20

30 Priorité: 09.08.88 FR 8810730

Date de publication de la demande: 14.02.90 Bulletin 90/07

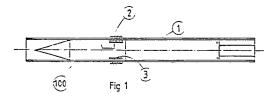
Etats contractants désignés:
AT BE CH DE ES GB GR IT LI LU NL SE

(7) Demandeur: THOMSON-BRANDT ARMEMENTS
Tour Chenonceaux 204, rond-point du Pont de Sèvres
F-92516 Boulogne-Billancourt (FR)

72 Inventeur: Lamarque, Etienne THOMSON-CSF SCPI Cédex 67 F-92045 Paris la Défense (FR)

> Rabuel, Jacques THOMSON-CSF SCPI Cédex 67 F-92045 Paris la Défense (FR)

> Sikora, Jean THOMSON-CSF SCPI Cédex 67 F-92045 Paris la Défense (FR)


Mandataire: Benoit, Monique et al THOMSON-CSF SCPI F-92045 PARIS LA DEFENSE CEDEX 67 (FR).

(4) Lance-projectiles à commande par induction.

(g) L'invention concerne un lance-projectiles à commande par induction.

Les tubes de guidage (1) sont en acier inoxydable austénitique à résistivité élevée, transparent au phénomène d'induction, ce qui permet d'obtenir une résistance mécanique optimale tout en bénéficiant des avantages d'une commande par induction entre un inducteur (2) bobiné sur chaque tube (1) et un induit (3) bobiné sur le projectile (100).

L'invention s'applique à tous types de lance-roquette au sol ou aéroporté.

EP 0 354 832 A1

LANCE-PROJECTILES A COMMANDE PAR INDUCTION.

15

L'invention concerne un lance-projectiles à commande par induction.

1

Un lance-projectiles, tel qu'un lance-roquettes par exemple, est constitué d'une pluralité de tubes de guidage de projectiles réunis entre eux par des entretoises à l'intérieur d'une enveloppe, des moyens de liaison électriques assurant notamment la mise à feu et la télécommande des projectiles.

Il est connu, par le brevet français 2431673 déposé au nom de la Demanderesse, d'utiliser des tubes de guidage en matière isolante et d'effectuer autour de ces derniers et de chaque projectile un bobinage d'induction par lequel il est possible de transmettre, sans l'intermédiaire de prises supplémentaires, les signaux et l'énergie nécessaire à la programmation, ainsi que la mise à feu de la roquette. Il se trouve qu'une telle structure ne présente pas les qualités de résistance mécanique requises dans le cas de certaines applications.

La présente invention a précisément pour objet de pallier cet inconvénient et concerne un lance-roquettes qui allie à la fois les avantages de la commande par induction et ceux d'une structure métallique très résistante.

Elle concerne également une nouvelle architecture permettant une mise en place de circuits de commande particulièrement protégés car ils se trouvent en grande partie à la périphérie de la structure

L'invention concerne plus précisément un lanceprojectile à commande par induction comportant une pluralité de tubes de guidage (1) des projectiles (100) équipés chacun respectivement d'un inducteur (2) et d'un induit (3) capable de transmettre par induction des signaux et l'énergie nécessaire à la charge, la programmation, la mise à feu des projectiles (100); caractérisé en ce que chacun de ces tubes de guidage (1) est réalisé en matériau métallique amagnétique, à résistivité (ρ) élevée capable d'assurer la fonction de guidage grâce à une bonne résistance mécanique tout en présentant une transparence au phénomène d'induction.

L'invention sera mieux comprise à l'aide des explications qui vont suivre et des figures jointes parmi lesquelles:

- la figure 1 est une vue schématique illustrant un tube de guidage d'un projectile équipé de moyens de commande conformément à l'invention;
 - la figure 2 est une variante de réalisation;
- la figure 3 illustre un détail de la structure conforme à l'invention:
- la figure 4 illustre schématiquement la disposition les uns par rapport aux autres des moyens de commande selon l'invention.

Pour plus de clarté, les mêmes éléments portent les mêmes références dans toutes les figures.

Comme le montre la figure 1, un enroulement inducteur (2) est bobiné sur le tube de guidage qui, selon une caractéristique essentielle de l'invention, est un tube métallique (1), le métal constituant ce

tube étant d'une nature déterminée comme cela est précisé ci-dessous. Un enroulement induit (3) est bobiné sur le projectile qui, dans le cas présent, est par exemple une roquette (100). Les enroulements doivent au moins à un instant donné se trouver face à face. Dans ces conditions, l'excitation de l'inducteur par des impulsions électriques permet de transmettre par voie électromagnétique de l'énergie et des informations au projectile par l'intermédiaire

La figure 1 illustre une variante dans laquelle, au repos, avant le lancement, l'inducteur (2) et l'induit (3) se font face.

La figure 2 illustre une variante dans laquelle l'induit (3) se présente face à l'inducteur (2) seulement lors de déplacement dans le tube de quidage (1) du projectile (100) qui, au repos, se trouve à l'arrière du tube (1). Dans ce cas, la longueur (1) de l'inducteur (2) est adaptée en fonction de la vitesse d'éjection (V) du projectile de telle sorte que l'induit (3) se trouve face à l'inducteur (2) durant un temps suffisant pour que la commande par induction puisse avoir lieu.

Comme cela a été dit précédemment, une caractéristique importante de l'invention réside dans le choix du matériau constituant le tube de guidage (1). Il s'agit d'un acier possédant les caractéristiques suivantes:

- une résistivité (ρ) la plus élevée possible pour diminuer au maximum les courants de Foucault;
- la perméabilité relative du matériau doit être la plus proche possible de 1, ce qui est la caractéristique d'un matériau amagnétique.

On constate que l'accroissement du pourcentage de nickel augmente la résistivité du matériau. Cependant, cet accroissement tend à diminuer la résistance mécanique de l'alliage. La Demanderesse a fait une sélection dans le choix du matériau qui conduit à l'obtention conjuguée d'une résistance mécanique du tube, et d'une résistance face aux agents agressifs résultant de la combustion du propulseur du projectile ou des gaz générés par la détente d'une charge d'expulsion, et ceci sans nuire à la résistivité qui est un paramètre essentiel dans l'application considérée, comme cela a été dit précédemment. Le matériau choisi pour le tube métallique (1) est un acier inoxydable austénitique tel que répondant à l'appellation normalisée de Z.6.CN.18-10 ou Z.2.CN.D.17-12.

Pour éviter tout risque de court-circuit, comme le montre la figure 3, les paliers (51) supportant le tube (1) sont isolés électriquement de celui-ci par une baque isolante (50).

La figure 4 illustre schématiquement une nouvelle architecture du circuit électrique mis en oeuvre selon la présente invention. Ce circuit comprend:

- un Boîtier Interface Lance-Roquettes, dit BILR
- un palier porte-inducteur (22);
- une prise d'alimentation (33) du lance-roquettes;
- un flasque (44) pour prise de mise à feu des

de l'induit (3).

2

45

50

55

5

10

15

20

25

30

35

40

45

50

55

60

roquettes;

- trois câbles de liaison électrique A-B-C reliant entre eux ces sous-ensembles.

Le BILR (10) assure, à partir des ordres provenant de la prise (33), les fonctions énoncées ci-après. Il assure l'initiation des inducteurs (2) pour permettre la transmission par couplage électromagnétique de la charge et de la temporisation d'une fusée située sur la tête du projectile. Il génère des ordres de mise à feu du dispositif électropyrotechnique de la charge propulsive du projectile.

Selon une caractéristique de l'invention, l'électronique du BILR (10) est moulée dans un boîtier (70) métallique servant d'écran aux perturbations électromagnétiques. Ce boîtier (70) est fixé sur la partie supérieure de la structure (90) du lance-roquette, par exemple entre les points d'accrochage (71, 72) de l'ensemble à un aéronef (non représenté) qui le porte. Le palier porte-inducteurs (22) sert au positionnement des inducteurs (2) autour des tubes lanceurs (1) (dont un seul est représenté sur la figure 4), et ceci quelque soit leur nombre.

La prise (33) d'alimentation du lance-roquettes assure le transfert des informations entre l'aéronef et le BILR (10). Le flasque (44) servant de porte-prise de mise à feu est un palier situé à l'extrémité arrière du lance-roquettes. Il accomplit au moins deux fonctions: le maintien de chaque tube de guidage (100) et le support et le positionnement des prises de mise à feu correspondant à chacun des tubes.

Selon une autre caractéristique de l'invention, les câbles de liaison sont au nombre de trois, référencés (A), (B) et (C). Le premier (A) relie le BILR (10) à la prise d'alimentation (33) du lance-roquettes. Le second (B) relie le BILR (10) au palier (22) porte-inducteur (2). Le troisième (C) relie le BILR (10) au flasque (44) porte prises de mise à feu. Chacun de ces câbles qui sont blindés, comporte une pluralité de conducteurs également blindés. Ils sont fixés à la périphérie de la structure (90) contrairement à ce qui se passe dans l'art connu, tout en étant carénés, puis s'épanouissent au droit du flasque (44) et du palier (22) pour atteindre les inducteurs et les prises de mise à feu correspondants.

Il s'agit là d'une organisation simple du circuit électrique et des différents éléments de commande du lance-projectiles qui se trouvent à la périphérie de la structure.

L'invention s'applique à tous types de lance-projectiles fixes ou aéroportés. Elle assure une bonne résistance mécanique tout en permettant une commande électrique souple et sûre.

Revendications

1. Lance-projectiles à commande par induction comportant une pluralité de tubes de guidage (1) des projectiles (100) équipés chacun respectivement d'un inducteur (2) et d'un induit (3) capable de transmettre par induction des signaux et l'énergie nécessaire à la charge, la programmation, la mise à feu des

projectiles (100); caractérisé en ce que chacun de ces tubes de guidage (1) est réalisé en matériau métallique amagnétique, à résistivité (ρ) élevée, présentant une résistance mécanique capable d'assurer la fonction de guidage tout en présentant une transparence au phénomène d'induction.

2. Lance-projectiles selon la revendication 1, caractérisé en ce que ce matériau est un acier au nickel, austénitique.

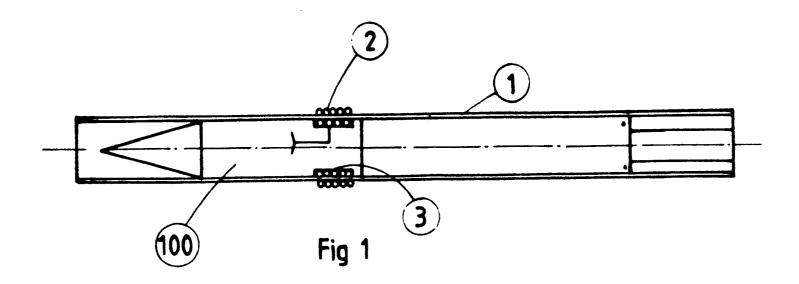
3. Lance-projectiles selon l'une des revendications 1 et 2, caractérisé en ce que l'inducteur (2) est positionné face à l'induit lorsque le projectile (100) est au repos dans son tube de guidage (1).

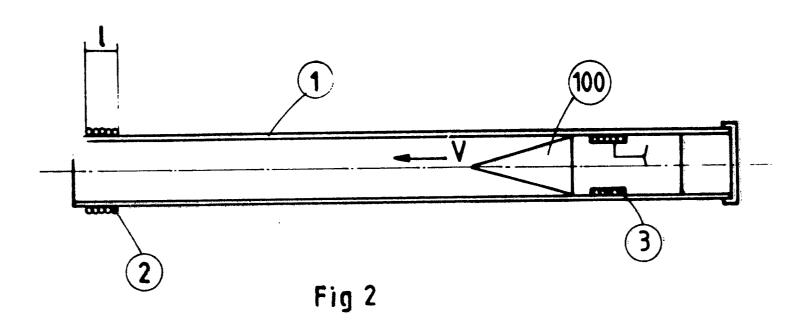
4. Lance-projectiles selon l'une des revendications 1 et 2, caractérisé en ce que l'inducteur (2) est positionné à l'avant du tube de guidage (1), côté sortie du projectile (100) et l'induit (3) est positionné sur le projectile (100) se trouvant au repos, à l'arrière du tube de guidage (1), la longueur (1) de l'inducteur (2) étant telle qu'en fonction de la vitesse (V) d'éjection du projectile (100), l'induit (3) de celui-ci se trouve face à l'inducteur (2) durant un temps suffisant pour que la commande par induction puisse s'accomplir.

5. Lance-projectiles selon l'une des revendications précédentes, caractérisé en ce que les paliers (51) supportant le tube (1) sont isolés électriquement de ces derniers par une bague isolante (50).

6. Lance-projectiles selon l'une des revendications précédentes, caractérisé en ce que le boîtier d'interface lance-roquettes, BILR (10), est moulé dans un boîtier métallique (70) fixé sur la partie supérieure de la structure (90) du lance-projectiles.

7. Lance-projectiles selon la revendication 6, caractérisé en ce que ce boîtier (70) est fixé entre les points d'accrochage (71, 72) de l'ensemble à l'aéronef qui le porte.


8. Lance-projectiles selon l'une des revendications précédentes, caractérisé en ce qu'un conducteur blindé (A) relie le BILR (10) à une prise d'alimentation (33).


9. Lance-projectiles selon l'une des revendications précédentes, caractérisé en ce qu'un conducteur blindé (B) relie le BILR (10) au palier (22) qui porte les inducteurs (2) bobinés sur les tubes de guidage (1).

10. Lance-projectiles selon l'une des revendications précédentes, caractérisé en ce qu'un conducteur blindé (C) relie le BILR (10) à unflasque (44) porte prise de mise à feu.

11. Lance-projectiles selon l'une des revendications 8, 9, et 10, caractérisé en ce que ces conducteurs blindés (A, B, C) sont fixés à la périphérie de la structure (90) tout en étant carénés, puis s'épanouissent au droit du flasque (44) et du palier (22) pour atteindre les inducteurs (2) et les induits (3).

65

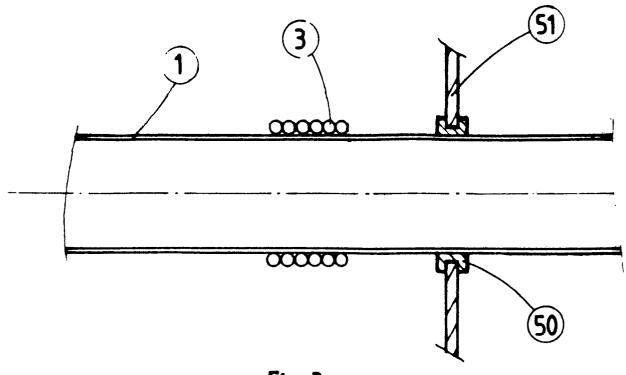
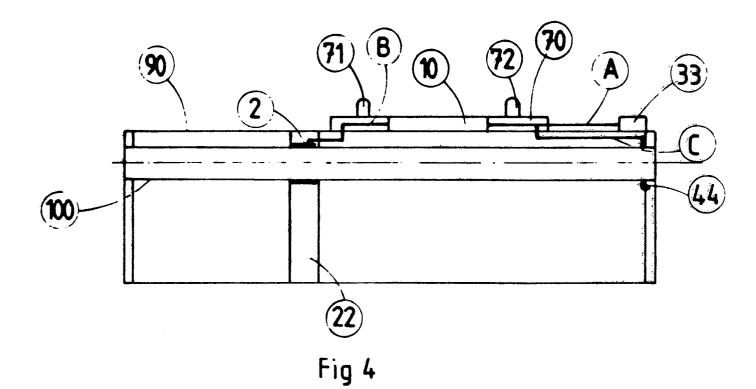



Fig 3

RAPPORT DE RECHERCHE EUROPEENNE

EP 89 40 2192

DC	CUMENTS CONSIDE	ERES COMME PERTIN	ENTS	
atégorie	Citation du document avec des parties per	indication, en cas de besoin, tinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
D,Y	1-6,24-27; page 4,	-32; page 3, lignes lignes 6-17; page 5, , lignes 17-21; page	1-11	F 41 A 19/63 F 41 A 21/20
Y	GB-A-1 158 716 (AB * Page 1, lignes 45 24-47 *	BOFORS) -60; page 2, lignes	1-11	
Y	FR-A-1 508 326 (EN * Page 1, lignes 40 lignes 1-12; figure	-63,71-80; page 2,	3,4	
Y	US-A-3 841 197 (MO * Column 2, lignes *		5	
Y	US-A-4 412 475 (HO * Column 2, lignes		6,7	
	US-A-4 099 038 (PU * Column 2, lignes		8-11	DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
				A 41 A F 41 F F 42 C
	ésent rapport a été établi pour tou ieu de la recherche	Date d'achèvement de la recherche		Examinateur
	HAYE	18-10-1989	TRIA	NTAPHILLOU P.

- X: particulièrement pertinent à lui seul
 Y: particulièrement pertinent en combinaison avec un autre document de la même catégorie
 A: arrière-plan technologique
 O: divulgation non-écrite
 P: document intercalaire

- T: theorie ou principe à la base de l'invention
 E: document de brevet antérieur, mais publié à la
 date de dépôt ou après cette date
 D: cité dans la demande
 L: cité pour d'autres raisons

- & : membre de la même famille, document correspondant