11 Veröffentlichungsnummer:

0 356 897 A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89115531.9

(51) Int. Cl.5: H01H 9/00

2 Anmeldetag: 23.08.89

3 Priorität: 31.08.88 DE 3829489

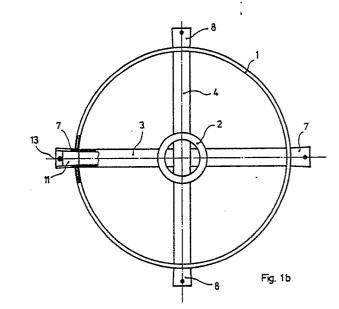
Veröffentlichungstag der Anmeldung: 07.03.90 Patentblatt 90/10

Benannte Vertragsstaaten:
AT DE ES FR GB SE

71) Anmelder: MASCHINENFABRIK REINHAUSEN
GMBH
Falkonsteinstrasse 8

Falkensteinstrasse 8 D-8400 Regensburg(DE)

2 Erfinder: Bleibtreu, Alexander


Wöhrdstrasse 7

D-8400 Regensburg(DE)

Erfinder: Pillmeier, Leo, Ing.(grad.)

Holzgartenstrasse 40 D-8400 Regensburg(DE)

- ② Zylindrischer Stufenwähler für Stufentransformatoren mit Isolierstofflager für Antriebswelle.
- Zylindrischer Stufenwähler für Stufentransformatoren, bei dem in mehreren Ebenen kreisförmig angeordnete feststehende Stufenkontakte in der Wand eines Isolierstoffzylinders (1) sitzen und bei dem die Antriebswelle für die beweglichen Kontakte an ihrem unteren Ende in einem Lager 2 aus Isolierstoff gelagert ist. Das Lager 2 ist dabei mittels Streben aus Isolierstoff am unteren Ende des Isolierstoffzylinders befestigt. Die Streben sind als rohrförmige Stangen (3, 4) ausgebildet, die quer zur Längsausdehnung des Isolierstoffzylinders (1) verlaufen und die sowohl das Lager (2) wie auch mit ihren beiden Enden (7, 8) die Wand des Isolierstoffzylinders (1) durchdringen. Die Enden jeder Stange sind geschlitzt (9) und mit der Wand des Isolierstoffzylinders verkeilt.

EP 0 356 897 A2

Zylindrischer Stufenwähler für Stufentransformatoren mit Isolierstofflager für Antriebswelle

Die Erfindung bezieht sich auf einen zylindrischen Stufenwähler für Stufentransformatoren gemäß Oberbegriff des Patentanspruches 1. Derartige Stufenwähler sind bekannt: AT-C 162 527. Sie haben sich in der Praxis jedoch kaum durchgesetzt, da es schwierig ist, hier unter ausschließlicher Verwendung von Isolierstoffteilen zu einer zufriedenstellenden stabilen Ausführung und Anordnung des Lagers der Antriebswelle zu gelangen.

Es ist deshalb Aufgabe der Erfindung, den eingangs genannten Stufenwähler so weiterzuentwickeln, daß unter Verzicht auf jegliche metallische Konstruktionsteile eine einfache und feste Zentrierung des Lagers mit gleichzeitiger Stabilisierung des Zylinders erreicht wird. Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Patentanspruches 1 angegebenen Mittel gelöst.

Der mit der Erfindung erzielte Vorteil liegt im wesentlichen in der konsequenten Vermeidung von metallischen Befestigungsteilen sowie in einer sicheren Zentrierung des Lagers und vor allem auch in einer großen Stabilität. Letzteres wird erreicht, indem als Streben rohrförmige Stangen, also z.B. gewickeltes GFK-Material, Verwendung finden, die sich auf Grund ihrer großen mechanischen Festigkeit auch leicht sowohl in der Wand des Isolierstoffzylinders wie auch im Lagerklotz verkeilen lassen. Die Fixierung des Lagers kann hierbei schon allein dadurch erfolgen, daß zwei Stangen die Lagerbuchse über Kreuz in unterschiedlichen Ebenen durchdringen. Die in der Wand des Isolierstoffzylinders steckenden Enden der Stangen werden geschlitzt und durch von außen eingetriebene Keile aufgeweitet, so daß sie jeweils fest in der Wand des Isolierstoffzylinders sitzen. Um hierbei ein Ausweichen der Wand des Isolierstoffzylinders zu vermeiden, kann ein an der Innenseite der Wand anliegender Querstift vorgesehen werden oder es können auf die Stangen besondere Distanzrohre geschoben

In zweckmäßiger Weise kann die Lagerbuchse auf einem Isolierstoffklotz aufgesetzt sein, wobei der Isolierstoffklotz mit Bohrungen versehen ist, durch welche die Stangen gesteckt sind. In diesem Fall können auch zwei in einer Ebene parallelliegende Stangen Verwendung finden. Eine besonders stabile Ausführung erhält man dabei, wenn sich jeweils zwei und zwei parallele Stangen in unterschiedlichen Ebenen kreuzen.

Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden nachstehend näher beschrieben, wobei jeweils lediglich die Anordnung des Lagers im unteren Bereich des Stufenwählers bzw. des Isolierstoffzylinders dargestellt ist. Es zeigen:

Fig. 1a und 1b eine Ausführung mit zwei sich kreuzenden Stangen,

Fig. 2a und 2b eine Ausführung mit zwei parallelen Stangen,

Fig. 3a und 3b eine Ausführung mit kreuzweise angeordneten parallelen Stangen,

Fig. 4 und Fig. 5 je eine Befestigung einer Stange in der Wand des Isolierstoffzylinders.

Gemäß Figur 1a und 1b wird die zentrisch im Isolierstoffzylinder 1 angeordnete Lagerbuchse 2 mittels zweier kreuzweise angeordneter rohrförmiger Stangen 3, 4 aus gewickeltem Isoliermaterial gehalten. Jede Stange 3 bzw. 4 steckt dabei in einer Bohrung 5 bzw. 6 der Lagerbuchse 2, und zwar in unterschiedlichen Ebenen. Die Enden 7, 8 der Stangen 3, 4 stecken in entsprechenden Bohrungen, die in der Wand des Isolierstoffzylinders 1 vorgesehen sind. Die Enden 7,8 der rohrförmigen Stangen 3, 4 sind dabei mit Schlitzen 9 versehen, und sie sind ferner durch eingetriebene Keile 11 aufgeweitet, so daß sie fest und unverrückbar in der Wand des Isolierstoffzylinders 1 sitzen. Die Keile 11 sind dabei durch Nocken 13 gegen Herausrutschen gesichert (vergleiche auch Fig. 4 und

Gemäß Figur 2a und 2b ist die eigentliche Lagerbuchse 21 Bestandteil eines speziellen Isolierstoffklotzes 22. Dieser Isolierstoffklotz 22 ist mit zwei parallelen Bohrungen 23, 24, die seitlich an der eigentlichen Lagerbuchse 21 vorbeilaufen, versehen, so daß der Isolierstoffklotz 22 und damit die Lagerbuchse 21 mittels zweier parallelliegender rohrförmiger Stangen 31, 41 fixiert werden kann. Um ein seitliches Ausweichen des Isolierstoffklotzes 22 zu vermeiden, sind über die Stangen 31, 41 Distanzrohre 25, 26 geschoben. Sie liegen am Isolierstoffklotz 22 und an der Wand des Isolierstoffzylinders 1 an und tragen gleichzeitig auch zur Stabilisierung des Isolierstoffzylinders 1 bei. Die Befestigung der Enden 7 der Stangen 31, 41 erfolgt dabei auf dieselbe Art wie zuvor beschrieben.

Gemäß Figur 3a und 3b ist die Lagerbuchse 21 wiederum Bestandteil eines speziellen Isolierstoff-klotzes 27, der in diesem Fall jedoch je zwei sich kreuzende parallele Bohrungen 28, 29 aufweist, durch die je zwei parallel verlaufende sich kreuzende Stangen 32, 33 und 34, 35 gesteckt sind. Die beiden parallelen Stangen 32, 33 liegen dabei natürlich in einer anderen Ebene als die beiden anderen Stangen 34, 35. Es ist ohne weiteres einzusehen, daß diese etwas aufwendige Ausführung zu einer hohen Stabilität auch des Isolierstoffzylinders 1 führt.

Aus Figur 4 ist ersichtlich, wie die in der Wand des Isolierstoffzylinders 1 sitzende rohrförmige

Stange 3 befestigt ist. Sie ist mit einem Schlitz 9 versehen, so daß das Ende 7 aufgeweitet werden kann. Von außen ist ein Keil 11 eingetrieben, der mittels Nocken 13 in entsprechende Ausnehmungen 14 der Stange 3 eingreift und so am Herausrutschen gehindert ist. Um ein Verformen des Isolierstoffzylinders 1 zu vermeiden, ist über die Stange 3 ein Distanzrohr26 geschoben, welches einerseits am hier nicht dargestellten Lager und andererseits an der Wand des Isolierstoffzylinders 1 anliegt.

Gemäß Figur 5 ist an Stelle eines Distanzrohres ein Querstift 37 aus Isolierstoff vorgesehen, der an der Innenseite der Wand des Isolierstoffzylinders 1 anliegt und so zu einer festen Verankerung der Stange 3 in der Wand des Isolierstoffzylinders beiträgt. Selbstverständlich ist auch hier das Ende 7 der Stange 3 wiederum mit einem Schlitz 9 versehen und mittels Keil 11 aufgeweitet. Der Querstift 37 ist mittels Aussparung 38 am Herausfallen gehindert.

Erwähnt sei noch, daß das hier beschriebene untere Ende des Isolierstoffzylinders 1 auch als eigenständiger Isolierstoffring ausgeführt werden kann, der dann unten an den eigentlichen zylindrischen Körper des Stufenwählers angefügt wird. Selbstverständlich können auch anstelle der in den Figuren dargestellten Lagerbuchsen Lagerzapfen verwendet werden, auf die dann die z.B. rohrförmig ausgebildete Antriebswelle aufgesetzt wird.

Ansprüche

1. Zylindrischer Stufenwähler für Stufentransformatoren, bei dem in mehreren Ebenen kreisförmig angeordnete feststehende Stufenkontakte in der Wand eines Isolierstoffzylinders (1) sitzen und bei dem die Antriebswelle für die beweglichen Kontakte an ihrem unteren Ende in einem Lager (2, 21) aus Isolierstoff gelagert ist, wobei das Lager mittels Streben aus Isolierstoff am unteren Ende des Isolierstoffzylinders befestigt ist, dadurch gekennzeichnet,

daß die Streben als rohrförmige Stangen (3, 4, 31, 41, 32 33, 34, 35) ausgebildet sind, die quer zur Längsausdehnung des Isolierstoffzylinders (1) verlaufen und die sowohl das Lager (2, 21) wie auch mit ihren beiden Enden (7, 8) die Wand des Isolierstoffzylinders (1) durchdringen, wobei die beiden Enden jeder Stange geschlitzt (9) und mit der Wand des Isolierstoffzylinders verkeilt sind.

2. Zylindrischer Stufenwähler nach Anspruch 1, dadurch gekennzeichnet, daß das Lager als einfache Buchse (2) ausgebildet ist und daß zwei Stangen (3, 4) in unterschiedlichen Ebenen des Zylinders vorhanden sind, die sich überkreuzend durch die Zylinderachse verlau-

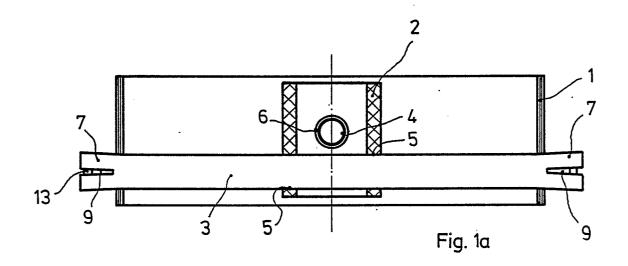
fen.

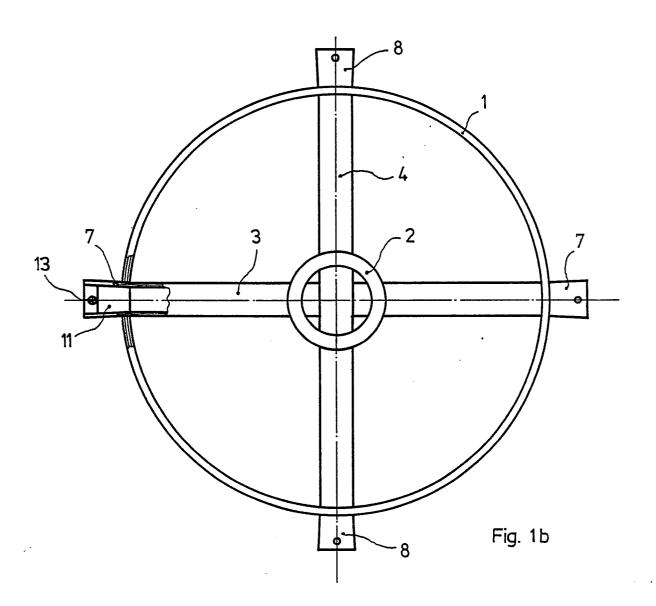
3. Zylindrischer Stufenwähler nach Anspruch 1, dadurch gekennzeichnet, daß das Lager aus einem Isolierstoffklotz (22) mit aufgesetzter Lagerbuchse (21) besteht und daß zwei in derselben Zylinderebene liegende parallel verlaufende den Isolierstoffklotz durchdringende Stangen (31, 41) vorhanden sind.

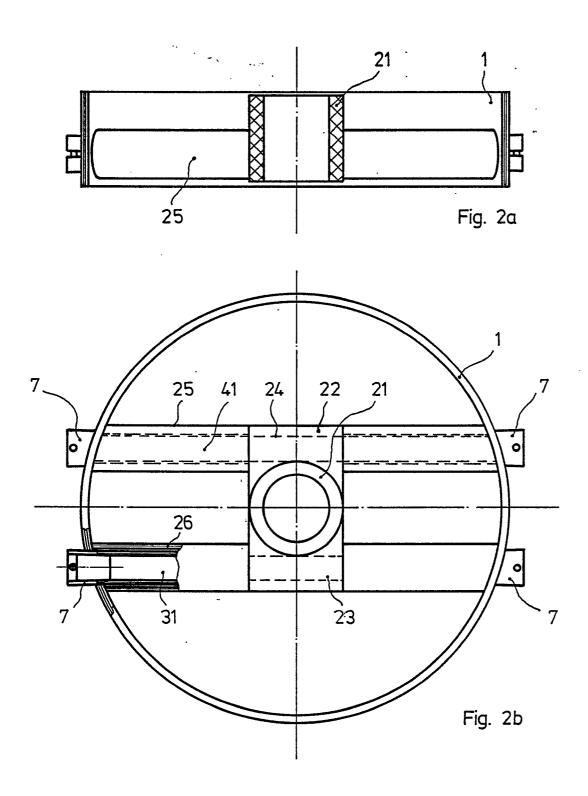
4. Zylindrischer Stufenwähler nach Anspruch 1, dadurch gekennzeichnet, daß das Lager aus einem Isolierstoffklotz (27) mit aufgesetzter Lagerbuchse (21) besteht und daß vier Stangen (32 bis 35) vorhanden sind, die paarweise parallel in zwei Ebenen liegen, wobei das eine Paar (32, 33) zum anderen Paar (34, 35) um 90° versetzt ist

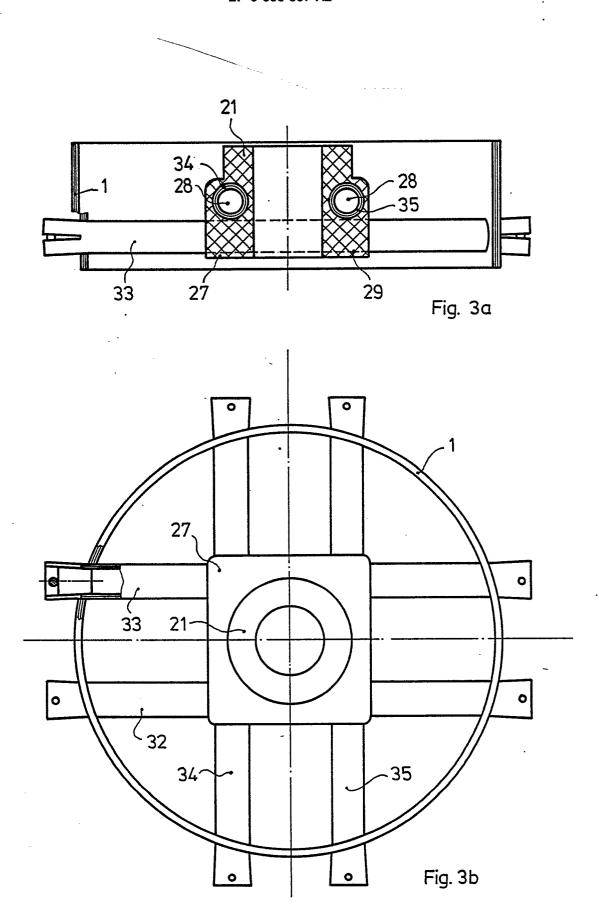
5. Zylindrischer Stufenwähler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stangen (3, 4, 32 - 35) mit an der Innenwand des Isolierstoffzylinders (1) anliegenden Querstiften (37) aus Isolierstoff versehen sind.

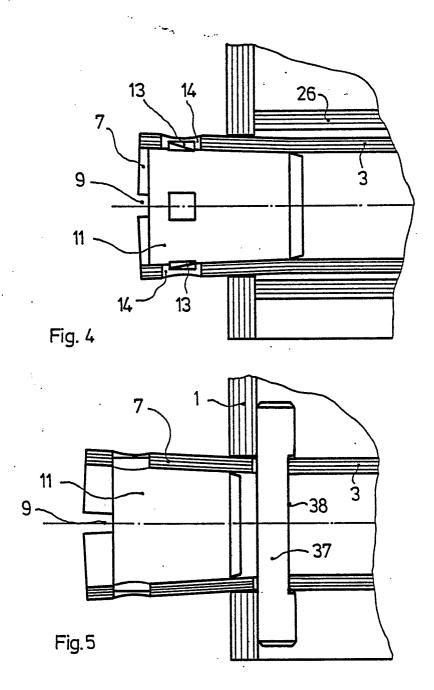
6. Zylindrischer Stufenwähler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß auf den Stangen (31, 41) zwischen Lagerbuchse bzw. Klotz (22) und Wand des Isolierstoffzylinders (1) Distanzrohre (25, 26) vorgesehen sind.


30


35


40


50


55

