[0001] The present invention relates to an apparatus for automatic wire bonding, in particular
wedge bonding using aluminium wire, which apparatus includes means for monitoring,
during the bonding process, the quality of the bond between the wire and the surface
to which it is to be bonded.
[0002] Wire bonding is the process of making electrical connections in semiconductor components
by means of fine metal wire, typically wire with a diameter of from 12 microns to
500 microns. Examples of electrical connections which can be made using wire bonding
techniques include connections between the contact surfaces of discrete or integrated
chips and the contact leads of their packages, and, in the case of hybrid circuits,
the connections between inserted monolithic elements and the film circuit which contains
them.
[0003] A number of wire bonding techniques have been developed, and one which has been particularly
successful is a microwelding technique using ultrasound. An automatic wire bonding
apparatus on which such a technique can be operated is described in German Patent
Application No. P 33 43 738. Aluminium wire, in contact with the contact surface to
which it is to be bonded, is moved vigorously in the direction of the surface to which
it is to be bonded so that its oxide layer breaks open. The wire is then subjected
to pressure, and a permanent junction is created between the two materials. Motion
of the wire is generated by an ultrasonic transducer excited by an ultrasonic generator
to produce high-frequency mechanical vibrations.
[0004] In the particular wire bonding process known as wedge bonding, the ultrasonic energy
is supplied in the range of 1 to 50 watts, depending on the wire size used. The ultrasonic
energy is directed to the aluminium wire by a special tool known as a "wedge". The
wire is fed through a hole at the bottom of the wedge. When the wedge with the aluminium
wire touches the surface to which the wire is to be bonded, movement is stopped. The
wire is pressed down with a small defined force, known as the bonding weight, and
the wire is slightly deformed. This small deformation is known as the "pre-deformation".
Ultrasonic energy is now switched on, and the welding process starts. During this
time, the diameter of the aluminium wire is reduced by a few microns, the actual reduction
depending on the size, physical properties and the precise chemical nature of the
wire.
[0005] It is important in an automatic wire bonding apparatus to have as much control as
possible over the process, and to be able to determine whether or not a bond has been
successfully made. In particular, it is important to be able to ascertain when the
wedge with the aluminium wire touches the surface to which the wire is to be bonded,
so that movement of the wedge can be stopped. It would also be very useful for the
operator of the wire bonding apparatus to ascertain whether a bond has been successfully
made at the time of bonding rather than during a subsequent test routine. Because
of the very rapid throughput of an automatic wire bonding apparatus, it would be advantageous
if the bonding could be monitored immediately at the time of bonding, so that after
the formation of an unsatisfactory bond the process can be stopped and the bonding
conditions checked to prevent the production of a large number of unsatisfactory bonds,
with the consequent wastage of time and expensive components and materials.
[0006] Most wire bonding machines currently in commercial use are only able to check whether
a successful bond has been made after bonding is completed, using a test known as
the loop-pull test. This test is typically used as a destructive test method in which
samples are tested to destruction by pulling the loop between two bonds and noting
the breaking force which is required, and the point at which the break occurs. In
general, bonding is considered to be satisfactory if the wire breaks at the point
approximately equidistant between the two bonds at which the force is applied; if
the break occurs at the bond itself, with the wire lifting away from the surface to
which it was supposed to be bonded, then this is due to the bonding being insufficient.
If, alternatively, the wire breaks close to the bond, at the so-called heel, then
this is generally the result of over-bonding, when too much pressure or too much ultrasonic
energy has been applied to the wire, and the wire has been too highly deformed.
[0007] A number of methods have been proposed to check at the time of bonding whether or
not a successful bond has been produced, but none of these proposed methods is totally
successful, or suitable for the full range of bonds which the apparatus is required
to make. In addition, these proposed methods have required expensive equipment.
[0008] One method which has been proposed is to determine whether there is an electrical
contact between the aluminium wire and the surface to which it is to be bonded. This
method can only be used when the surface is one which can be connected to a definite
voltage. In practice, this means that the method can only be used where bonding is
to a lead frame.
[0009] In an alternative proposal, data from a number of good bonds - frequency and current
of the ultrasonic generator used for welding - is sampled electronically, and reference
values are produced, against which similar data from all subsequent bonds is compared.
This method works well with units with reproducible manufacturing parameters such
as lead frames, but is not suitable in commercial hybrid applications where components
and bonds have broad tolerances.
[0010] Alternative proposals include measuring the amount of aluminium wire used, and measuring
the deflection of the transducer, which converts electrical signals to mechanical
movement, during bonding. Neither of these proposals have proved satisfactory in practice.
[0011] It is an object of the present invention to provide an automatic wire bonding apparatus
in which the above disadvantages are reduced or substantially obviated and, in particular
to provide an automatic wire bonding apparatus in which bond formation can be monitored
at the time of bonding.
[0012] The present invention provides an automatic wire bonding apparatus, for wedge-bonding
using aluminium wire, which apparatus comprises a bonding head comprising a bonding
tool mounted on an ultrasonic transducer, a bonding tip of the tool being arranged,
in the operation of the machine, to press aluminium wire against the contact surface
of an electronic or electrical component, the wire being drawn from a suitable wire
supply, and a wire clamp by which the wire drawn from the wire supply may be clamped,
the wire clamp being movable backward and forward generally in the direction in which
the wire is fed appropriately to position the free end of wire drawn from the spool
after completion of a bonding operation, characterised in that the automatic wire-bonding
apparatus further comprises means for monitoring, during bonding, the quality of the
bond formed between the wire and the surface to which it is to be bonded, by identifying
those bonds which do not fall within predetermined maximum and minimum values for
deformation of the wire due to ultrasonic excitation.
[0013] The means according to the invention for monitoring the quality of the bond during
bonding, can be used to determine whether or not a bond is successfully formed, and
can also be used to determine whether the bond satisfies the requirements defined
for its proposed end use.
[0014] The means according to the invention for monitoring the quality of the bond comprises
a sensor for determining the change in position of the wedge during the bonding process.
Suitable sensors include linear response distance measuring sensors, in particular
linear response moving coil sensors or optical sensors. Linear response moving coil
sensors, for example a 1 Mhz L-C resonator with a linear change of output amplitude,
have proved to be particularly suitable.
[0015] The automatic wire bonding apparatus according to the invention preferably further
comprises means for comparing, during bonding, the relative deformation/time curve
for each bond against a standard relative deformation/time curve.
[0016] The invention will now be further described with reference to the accompanying drawings,
which illustrate an embodiment of the machine according to the invention in which;
Figure 1 is a diagrammatic view of a part of an automatic wire bonding machine, comprising
means for monitoring the quality of the bond showing the bonding head with the transducer
with bonding wedge and wire clamp;
Figure 2 is a view in enlarged scale, showing the deformation of the bonding wire;
Figure 3 is a graph showing wedge position against time, with curves indicating satisfactory
and unsatisfactory bonding;
Figure 4 shows the generation of an error signal when bonding is unsatisfactory;
Figure 5 is a block diagram showing the monitoring of wire bond formation;
Figure 6 is a block diagram showing the monitoring of wire bond formation and analysis
of the relative deformation/time curve; and
Figure 7 is a graph showing relative deformation against time, with curves indicating
satisfactory and unsatisfactory deformation/time characteristics.
[0017] As can be seen from Figure 1, an automatic wire bonding machine comprises a bonding
wedge 2 which is attached to a horn 4 of an ultrasonic vibration transducer 6. The
horn 4 is pivoted at 24 and comprises an upwardly extending plate which is urged clockwise
by a bondweight spring 14. Wire 8 for bonding to a component 16 is fed from a wire
feed spool 10 to jaws 12 of a wire clamp (not shown). The bondweight spring 14 is
provided to apply, in known manner, a force to the bonding wire 8 where it touches
the surface 16 to which the wire 8 is to be bonded. The machine also comprises distance
measuring equipment comprising a sensor 18 to measure the movement of the plate 20,
in the direction 22, during a bonding operation. It will be seen that movement of
the plate 20 is directly proportional to movement of the wedge 2, which is itself
directly dependent on the deformation of the bonding wire 8 during the bonding process.
[0018] In operation of the machine, the wedge 2 is first brought in contact with the wire
8 against the component 16. Control means (not shown) then allows the spring 14 to
assert itself to cause a predeformation of the wire 8 by the wedge 2 and the plate
20 to move into a zero position. The reading of the sensor 18, that is the level after
predeformation, is taken as the zero value for the measurement of deformation on ultrasonic
excitation. The ultrasonic transducer 6 is then switched on, and the wedge 2 causes
further deformation of the wire 8 to bond the wire to the component 16 and movement
of the wedge 2 is sensed by the sensor 18. When there is no further deformation, the
ultrasonic transducer 6 is switched off, thus ensuring that the ultrasonic excitation
time for each bond is minimised, while ensuring that bond quality is acceptable, thereby
optimising the machine utilisation.
[0019] The movement of the plate 20 is sensed by the sensor 18 and signals indicating the
position of the wedge 2 are fed to control circuitry diagrammatically shown in Figure
3.
[0020] Figure 2 shows, in an enlarged scale, the deformation of the wire 8, due to the effect
of the wedge 2.
[0021] Figure 5 is a block diagram, showing how the sensor according to the invention is
used to control an automatic wire bonding machine.
[0022] A linear sensor 101 senses the movement of a metal plate, and produces amplitude
variations in a sine-wave oscillator 102. The variable AC Signal 103 is fed to a rectifier
104, which converts the AC-Signal to a DC-Voltage 105. The variations in DC-Voltage
are small, so are therefore amplified at an amplifier 106, which produces an amplified
signal 107.
[0023] The amplified signal 107 represents a direct measurement of the distance between
the moving metal plate and the sensor 101. As ultrasonic power is switched on; the
"enable" signal is raised by the bonder. At this point, the initial distance of the
plate to the sensor 101, as represented by signal 107, is memorized in a "sample and
hold" circuit 108.
[0024] The memorized signal 109, and the new signal 107 are fed to a differential amplifier
110. The output 111 of this amplifier gives an absolute value for the wire deformation
in real time, as the ultrasonic power is applied.
[0025] The deformation signal 111 is tested by the window discriminator 112, to see whether
it is within the two (adjustable) limits, that is the maximum and minimum allowable
deformations as shown in Figure 4.
[0026] When the ultrasonic energy is switched off, the enable signal is switched back to
the inactive state. With this switching, the error signal 113 is latched in at the
error latch 114 and is available to control the bonder.
[0027] After a short time delay, the sample and hold circuit 108 is switched back into the
sample mode, and the system is ready for the next measurement.
[0028] Figure 6 is a block diagram, showing additional means to Figure 5, showing how the
sensor according to the invention can additionally be used to analyse the relative
deformation/time curve and compare it with a standard relative deformation/time curve.
[0029] The pre-processing of the signal coming from the sensor is identical up to point
107 in Figures 5 and 6. At point 107, a computer controlled analog to digital converter
120 produces a digital signal 121 which can be processed by a microcomputer system
122 which uses a special program to analyse the relative deformation/time curve in
addition to the processing already discussed in the description of Figure 5 above.
The microprocessor system 122 comprises a central processing unit 123, a programmable
memory 124 and a data memory 125 which are linked via a host interface 126 to a host
computer link 127. Information on bond quality and the deformation/time curve is continuously
relayed to the host computer during the bonding operation.
[0030] The following sequence of operations is suitably followed, to use the means for bond
quality control according to the invention, in a practical system for monitoring an
automatic wire bonding process.
[0031] During the wire bonding process, bonds are formed between the wire and different
contact surfaces, having different characteristics. For example, where the wire is
being used to make a connection between a component and a substrate, different bonding
parameters, such as bonding time and bonding power, are required for the wire/substrate
bond and the wire/component bond. The bonding parameters required for a particular
bond are specified as a channel of the ultrasound generator.
Step 1
[0032] Vertical axis in home position.
Step 2
[0033] The ultrasound generator channel is selected. The linear sensor voltage is sampled
and stored as a reference.
Step 3
[0034] The wedge is moved vertically to a ramp position. At the ramp position, which is
close to the position at which the wedge is expected to contact the surface to which
the wire is to be bonded, the wedge is then moved more slowly.
Step 4
[0035] When the vertical movement to the Ramp Position is completed, the wire clamp is opened
and the sensor is activated with a touch down sensor function.
Step 5
[0036] The Bondweight is switched on, and the wire is predeformed.
Step 6
[0037] The wedge is moved vertically to the bondheight, which corresponds to the actual
height of the substrate or component. The actual sensor voltage is compared continuously
to the stored reference voltage. Vertical motion is stopped when the voltage difference
has the programmed value, which shows that the wire has touched the surface and gives
the absolute over-travel distance. The actual voltage is stored as a new reference
value for bond quality evaluation.
Step 7
[0038] The Ultrasonic generator is switched on. The voltage change of the distance sensor,
which is caused by the deformation of the wire with the US-power, is sampled.
Step 8
[0039] The US-Generator is switched off. The wire clamp is closed. The shape of the deformation
curve is evaluated to determine whether it meets the programmed specifications. The
machine is stopped if the deformation is not within the preset limits.
Step 9
[0040] The wedge is moved vertically to return to the Zero-Position.
[0041] In operation, the equipment according to the invention is used to determine whether
the bonds being formed by an automatic wire bonding machine are within the specification
required for their intended end use. The equipment would normally be supplied pre-programmed
for standard requirements, but is freely programmably for any particular end use specification.
In practice, the operator would record the deformation for a number of satisfactory
and unsatisfactory bonds, and from this ascertain the maximum and minimum levels for
acceptable bond quality.
[0042] Figure 3 is a graph of bonding wedge height against time, for a number of different
sets of bonding conditions. During the bonding operation, the height of the wedge
corresponds to the deformation. The deformation represents the zero level, that is
the reference level after predeformation from which the absolute value of the wire
deformation due to US excitation is measured. The time represents the end of predeformation,
when the ultrasonic power is switched on. The time represents the end of deformation
and the points for each curve a, b, c and d represent the times at which the US power
is switched off. Curve A shows a bond in which the deformation is good, and the bonding
satisfactory. Curve B shows a bond where the ultrasonic energy has been switched on
for too long. While the bond is satisfactory, the additional ultrasonic time is a
wasted time which reduces the throughput of the machine.
[0043] Curve C shows a bond where the deformation is too high. Under such circumstances,
the wire would be flattened too much. It is normally acceptable for the wire to be
flattened so that the final horizontal dimension is up to 2½ times its initial diameter.
Where the wire is flattened too much, the finished bond occupies too much of the surface
of the component. A further disadvantage of over bonding is that the wire will tend
to break at the heel, close to the bond, when the wire is pulled, with insufficient
strength. Over deformation is caused by too high a bondweight, too high ultrasonic
energy or toc long an ultrasonic excitation time, coupled with the energy being too
high.
[0044] Curve D shows a bond where the deformation is not sufficiently high. This results
in a bond between the wire and the surface which is too weak, with a tendency for
the wire to lift off and come away from the substrate.
[0045] As a general rule, one would expect satisfactory bonding where the predeformation
is a maximum of one-third of the total deformation, the remaining two-thirds being
due to ultrasonic excitation.
[0046] The dotted lines on the graph in Figure 4 labelled max and min indicate the maximum
and minimum allowable limits for the deformation. As can be seen from the double headed
arrows, and as has been discussed above, these maximum and minimum limits can be adjusted
depending on the end use requirements of the device or component being bonded.
[0047] As is shown in Figure 4, curve 2 falls within the maximum and minimum limits for
deformation, and so generates an error signal "1" which means that the bond is acceptable.
Curve 1 falls below the minimum level for deformation, and so generates an error signal
"0" which means that the bond is unacceptable. Curve 3 is above the maximum limit
for deformation, and so also generates an error signal "0".
[0048] As is shown in Figure 7, the shape of the curve of relative deformation against time
during ultrasonic bonding can be used to check the quality of the bond. The curve
(a) shows correct deformation/time performance. However, in curve (b), the maximum
deformation is reached in a very short time, compared to the average time which is
needed to reach the maximum relative deformation. This can be due to a number of reasons:
for example, the bonding wire may not have been placed accurately under the wedge,
the surface may not have been of acceptable quality or the bond height sensing may
have been incorrect.
[0049] The shape of the deformation/time curve can give information about possible bond
problems and can also indicate a deterioration in bond quality, where bonds still
meet the deformation requirements, so that the operator can stop the bonding process
and make any necessary adjustments to the machine before a sensing problem develops.