(12)

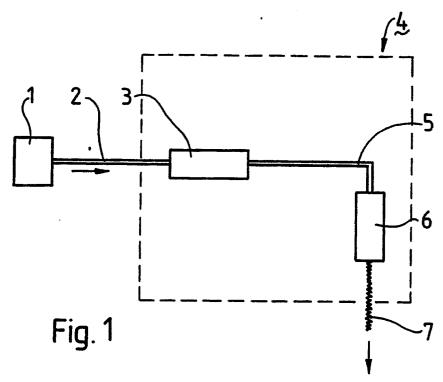
EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89115305.8

(51) Int. Cl.5: **D02G** 1/12

2 Anmeldetag: 19.08.89

Ein Antrag gemäss Regel 88 EPÜ auf Ersetzung der Beschreibung, Ansprüche und Zusammenfassung liegt vor. Über diesen Antrag wird im Laufe des Verfahrens vor der Prüfungsabteilung eine Entscheidung getroffen werden (Richtlinien für die Prüfung im EPA, A-V, 2.2).


- 3 Priorität: 29.08.88 CH 3204/88
- Veröffentlichungstag der Anmeldung: 23.05.90 Patentblatt 90/21
- Benannte Vertragsstaaten:
 CH DE IT LI

- 71) Anmelder: MASCHINENFABRIK RIETER AG Postfach 290 CH-8406 Winterthur(CH)
- © Erfinder: Schellenberg, Hans J.C. Heerstrasse 63
 CH-8406 Winterthur(CH)
 Erfinder: Nabuion, Werner
 Schneihalde 116
 CH-8455 Rüdlingen(CH)
 Erfinder: Wirz, Armin
 Im Grund

CH-8475 Ossingen(CH)

- (S) Verfahren zur Beheizung in Textilmaschinen.
- (5) Ein Streckwerk für eine Düsenspinnmaschine hat

eine Druckstange im Vorverzugsfeld.

EP 0 369 121 A1

10

15

20

30

35

Diese Erfindung bezieht sich auf ein Streckwerk für ein flyerloses Spinnverfahren.

Die Entwicklung der flyerlosen Spinnverfahren bis zur Mitte der 60-iger Jahre ist im Buch "Die Streckwerke der Spinnereimaschinen" von Dr. Ing. Walter Wegener (Springer-Verlag, Ausgabe 1965, Seite 193 bis 243) zusammengefasst. Im gleichen Buch werden die Konstruktionen und Arbeitsweise der verschiedensten Streckwerksanordnungen erläutert. Insbesondere wird auf den Seiten 245 und 246 der 1965-Ausgabe das sogenannte "Druckstangenstreckwerk" für die Hochleistungsstrecke der damaligen englischen Firma Platt Brothers (Sales) Ltd. erklärt und dargestellt.

In der Zwischenzeit sind einige weitere flyerlose Spinnverfahren entwickelt worden, die auf der Basis einer Streckwerkspeisung des zu verspinnenden Fasermaterials arbeiten sollten. Die Streckwerke für solche Spinnverfahren müssen mit einem sehr hohen Gesamtverzug arbeiten, welcher den Verzug der heute konventionellen Ringspinnmaschine weit übersteigt. Letztere Maschine ist natürlich dazu konzipiert, das vom Flyer vorverstreckte Vorgarn zu verarbeiten.

Das Vorgarn ist schon leicht gedreht, und das Streckwerk einer Ringspinnmaschine hat dementsprechend zwei Aufgaben:

- die Drehungen des Vorgarnes aufzuheben,
- das von der Drehung gelöste Material auf die Garnnummer zu verfeinern (zu verstrecken).

Die erste Aufgabe wird vom Vorverzugsfeld des Streckwerkes erledigt, wobei ein sehr niedriger Verzug (1.1 bis 1.3) ausreicht. Das eigentliche Verziehen geschieht im Hauptverzugsfeld normalerweise mit dem maximal möglichen Verzug für ein einziges Verzugsfeld (ca. 40-, bis manchmal 50-fach).

Ein Hochverzugsstreckwerk umfasst daher normalerweise mindestens ein Vorverzugsfeld und ein Hauptverzugsfeld, d.h. mindestens drei Walzenpaare. Dabei ist es heutzutage wohlbekannt, spezielle Massnahmen zu treffen, um die Faserführung im Hauptverzugsfeld zu optimieren. Die Druckstange im vorerwähnten "Druckstangenstreckwerk" der Firma Platt Brothers gehört zu dieser Kategorie von Massnahmen.

Es ist auch bekannt zur Verbesserung der Faserführung im Vorverzugsfeld (besonders bei Verarbeitung von Kurzstapelfasern), ein den Faserstrom umgebenden Kon densor zwischen dem Eingangsund Mittelwalzenpaaren einen Zweizonenstreckwerkes vorzusehen. Dabei kann aber die Neueinführung einer Lunte (eines Bandes oder eines Vorgarnes) in einen solchen Kondensor zu Problemen führen.

Es ist ferner aus DE-PS 945 822 bekannt, ein Luntenspannungssensor im Vorverzugsfeld anzuordnen und den Vorverzug anhand des Ausgangssignals von diesem Sensor zu regeln. Der Sensor umfasst einen Fühler, der den Faserstrom umlenken muss, um ein Spannungssignal erzeugen zu können. Dabei muss die vom Fühler hervorgerufene Umlenkung variabel sein, sodass das Ausgangssignal sich mit der Luntenspannung ändern kann.

Die Erfindung sieht ein Hochverzugsstreckwerk mit mindestens einem Vorverzugsfeld und mindestens einem Hauptverzugsfeld vor. Vorzugsweise ergibt das Hauptverzugsfeld einen Verzug grösser als 30 und das Vorverzugsfeld einen Verzug grösser als 2, d.h. das Streckwerk ergibt einen Gesamtverzug von mindestens 60.

Die Erfindung ist dadurch gekennzeichnet, dass ein Element zur vorbestimmten Umlenkung des Faserstroms im Vorverzugsfeld angeordnet ist. Das Vorverzugsfeld kann eines vom einer Mehrzahl solcher Felder sein, wobei jedes Feld mit einem jeweiligen Element zur Faserumlenkung versehen werden kann. Das Element kann vorteilhafterweise auch als Faserstrombegrenzungsmittel zur Begrenzung der Ausbreitung des Faserstromes im Vorverzugsfeld ausgebildet werden. Da aber ein solches Element den Faserstrom nicht umgibt, sondern in mindestens einer Richtung freilässt, entstehen aus dieser Anordnung keine Zusatzprobleme bei der Neuein führung der Lunte in das Streckwerk.

Die vorbestimmte Umlenkung des Faserstroms kann dadurch erreicht werden, dass das Element entweder starr auf einem Träger oder derart auf einem Träger montiert ist, dass das Element nicht unter dem vom Faserstrom ausgeübten Druck nachgeben kann.

Das Verhältnis Breite: Höhe der Lunte am Element sollte so gewählt werden, dass möglichst viele Fasern einer Reiskraft am Element ausgesetzt werden. Dieses Verhältnis ist vorzugsweise mindestens 3: 1 und noch besser mindestens 4: 1 sein. Das Element liegt vorteilhafterweise im Mittelbereich des Vorverzugsfeldes d.h. im mittleren Drittel des Anstandesder beiden Klemmpunkte des Vorverzugsfeldes.

Das Streckwerk kann mit Vorteil in einer Spinnmaschine eingesetzt werden, welche einer Vorlage aus unverdrehtem Material zu einem Garn verarbeitet. Dabei kann der tex-Wert dieses Materials bei der Einfuhr in das Streckwerk denjenigen des Ringspinnvorgarnes bei weitem übertreffen, z.B. über 1000 tex liegen. Aus diesem Grund muss die Gesamtanordnung einen sehr hohen Verzug (von mehr als 150) aufweisen, was einen relativ hohen Verzug im Vorverzugsfeld (vorzugsweise mindestens 4) notwendig macht.

Als Beispiel wird eine Ausführung gemäss dieser Erfindung nun anhand der beiliegenden Zeichnungen näher erläutert werden. Es zeigt:

- Figur 1 schematisch und in Seitenansicht eine Streckwerkanordnung gemäss dieser Erfin-

50

55

5

10

dung,

- Figur 2 (in einem grösseren Massstab) ein Detail aus der Gesamtanordnung und

- Figur 3 eine Variante der Anordnung gemäss Fig.2.

Das in der Figur 1 dargestellte Streckwerk ist für eine Düsenspinnmaschine konzipiert und umfasst ein Lieferwalzenpaar LP, ein Mittelwalzenpaar MP und Eingangswalzenpaar EP. Das zu verspinnende Fasermaterial wird aus einer geeigneten nicht dargestellten Vorlage von links nach rechts in das Streckwerk eingezogen, verstreckt und vom Lieferwalzenpaar LP an eine nicht gezeigte Düsenanordnung zum Falschdrallspinnen befördert. Das Vorlagematerial hat ein tex von über 1000.

Das Eingangswalzenpaar EP und Mittelwalzenpaar MP bilden zusammen ein Vorverzugsfeld mit einem Verzug vorzugsweise im Bereich 4 - 8. Das Mittelwalzenpaar MP und Lieferwalzenpaar LP bilden zusammen ein Hauptverzugsfeld mit einem Verzug vorzugsweise grösser als 30 und möglicherweise von ungefähr 40. Das gezeigte Streckwerk ist als ein sogenanntes Doppelriemchenstreckwerk ausgeführt, d.h. die obere und die untere Walze des Mittelwalzenpaares MP sind je mit einem Riemchen R versehen, welches sich von der jeweiligen Walze in das Hauptverzugsfeld erstreckt, um die Faserführung in diesem Verzugsfeld zu verbessern. Diese Anordnung ist aber nicht erfindungswesentlich. Ein Alternativlösung, welche sich auf einer sogenannten Kepastreckwerkanordnung beruht, ist in unserer schweizerischen Patentanmeldung Nr. 2723/88 beschrieben worden, und könnte auch im Zusammenhang mit dieser Erfindung benutzt werden.

Gemäss dieser Erfindung, ist eine Druckstange D im Vorverzugsfeld dem Eingangswalzenpaar EP nachgestaltet, um den Faserstrom FS in diesem Feld leicht umzulenken und dadurch die Faserführung in diesem Verzugsfeld zu verbessern. Eine solche Verbesserung der Faserführung ist durch eine Verbesserung, der von der Spinnstelle erzielbaren Garnwerte nachweisbar und zwar durch eine Erhöhung der Reissfestigkeit und Dehnung und einer Reduktion der CV Uster-Werte, Dünnstellen, Dickstellen und Nissen.

Die Verbesserung entsteht dadurch, dass insbesondere die kürzeren (aber vorzugsweise möglichst vielen) Fasern an der Druckstange einer Reibkraft ausgesetzt werden. Diese Reisskräfte an der Druckstange begrenzen die Beschleunigungsstrecke im Verzugsfeld, d.h. die Strecke wohin kürzere Fasern auf die höhere Geschwindigkeit des nachgeschalteten Walzenpaares beschleunigt werden.

In einer bevorzugten Ausführung (wovon eine Variante die in der Figur 2 dargestellt ist) wird die Faserführungsfläche F der Druckstange D mit

"Schulter" S zur seitlichen Begrenzung der Ausbreitung des Faserstromes im Vorverzugsfeld versehen. Die Fläche F sollte als eine in der Richtung des Faserflusses konvex abgerundete Fläche gebildet werden.

Die Druckstange D, welche als Umlenkelement für den Faserstrom dient, ist vorzugsweise starr auf einem nichtgezeigten Halter montiert. Letzterer kann stationär vom Gestell des Streckwerkes getragen werden. Die Stange D könnte aber um die eigene Längsachse drehbar sein.

Die Position der Druckstange im Vorverzugsfeld ist für die optimale Wirkung wichtig. Sie ist vorzugsweise ungefähr in der Mitte des Feldes (zwischen den beiden, dieses Feld begrenzenden Klemmlinien) angebracht.

Figur 1 zeigt die Druckstange auf der "unteren" Seite der Lunte d.h. auf der gleichen Seite wie die positiv angetriebenen Walzen. Die Druckstange könnte aber auch auf der anderen Seite der Lunte angeordnet werden. Die notwendige Umlenkung der Fasern ist sehr klein; eine Umlenkung von ca 1 mm gegenüber der Bahn der Fasern in der Abwesenheit der Stange reicht zur Erzielung der notwendigen Reibkraft und der damit verbundenen Verbesserungen.

Die Stange ist nicht unbedingt rund (zylindrisch) hat aber vorzugsweise die schon erwähnte konvex abgerundete, faserführende Fläche F. Diese Fläche F. kann aber auch in der Querrichtung eine konvexe Form aufweisen, wiedies in Fig. 3 gezeigt ist. Diese Figur zeigt auch mit gestrichelten Linien die bevorzugte Gestaltung der Lunte an der Druckstange, nämlich als eine relativ dünne, breite Schicht. Die Breite dieses Schicht steht vorzugsweise im Verhältnis 4: 1 oder mehr zur Schichttiefe.

Figur 1 zeigt zwei mögliche Stellungen der beiden Walzen des Eingangspaares EP gegeneinander. Die obere (Druck-) Walze kann entweder senkrecht oberhalb der untern Walze angeordnet werden (gestrichelt) oder in der Richtung der Vorlage versetzt sein (vollausgezogen). Letztere Variante ist für die Kombination mit einer Luntenstopvorrichtung gemäss unserer schweize rischen Patentanmeldung Nr. 2.957/88 vorteilhaft.

Die Länge des Vorverzugsfeldes (zwischen der Klemmlinien der Walzenpaaren EP und MP) kann normalerweise (ohne Druckstange) nicht erheblich länger als die mittlere Stapellänge des zu verarbeitenden Materials sein. Der Gebrauch einer faserführenden Stange ermöglicht aber die Verlängerung des Vorverzugsfeldes, was für Bediengungsarbeiten im Vorverzugsfeld günstig ist, da die Einstellarbeit bei einer Aenderung des Stapels dadurch reduziert wird.

55

Ansprüche

1. Ein Hochverzugsstreckwerk für ein flyerloses Spinnverfahren mit mindestens einem Vorverzugsfeld und mindestens einem Hauptverzugsfeld dadurch gekennzeichnet, dass ein Element zur vorbestimmten Umlenkung des Faserstromes im Vorverzugsfeld angeordnet ist.

2. Ein Streckwerk nach Anspruch 1, dadurch gekennzeichnet, dass das Element starr auf einem stationären Halter montiert ist.

3. Ein Streckwerk nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Vorverzug grösser als 2-fach ist.
 4. Ein Streckwerk nach einem der vorangehenden Ansprühen, dedurch gekonnzeichnet.

4. Ein Streckwerk nach einem der vorangenenden Ansprüche, dadurch gekennzeichnet, dass das dem Streckwerk vorgelegte Band schwerer als 1000 tex ist.

- 5. Ein Streckwerk nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Element mit der Breite des Bandes begrenzenden Schulterversehen ist.
- 6. Ein Streckwerk nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Breite des Bandes am Element mindestens die dreifache Tiefe des Bandes entspricht.
- 7. Ein Steckwerk nach einer der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Element im Mittelbereich des Vorverzugsfeldes liegt.

5

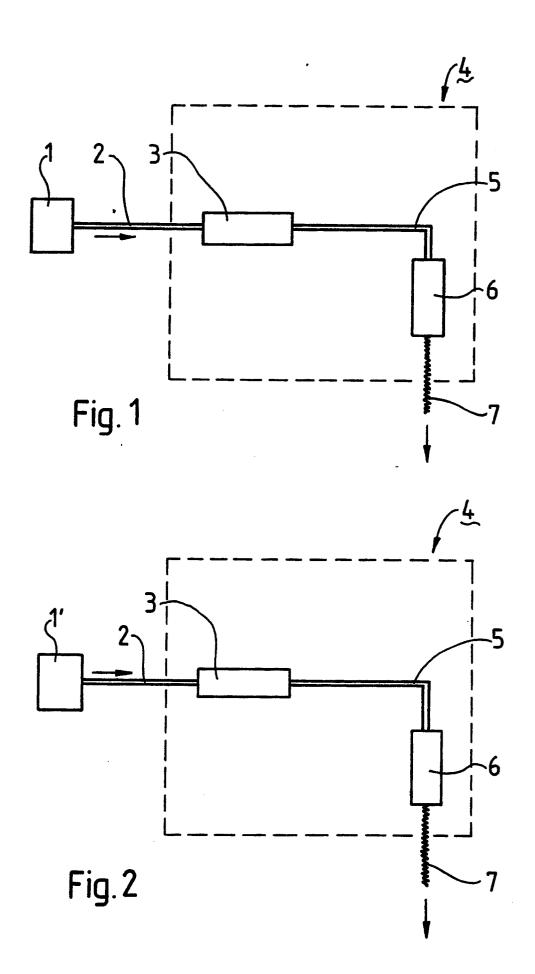
10

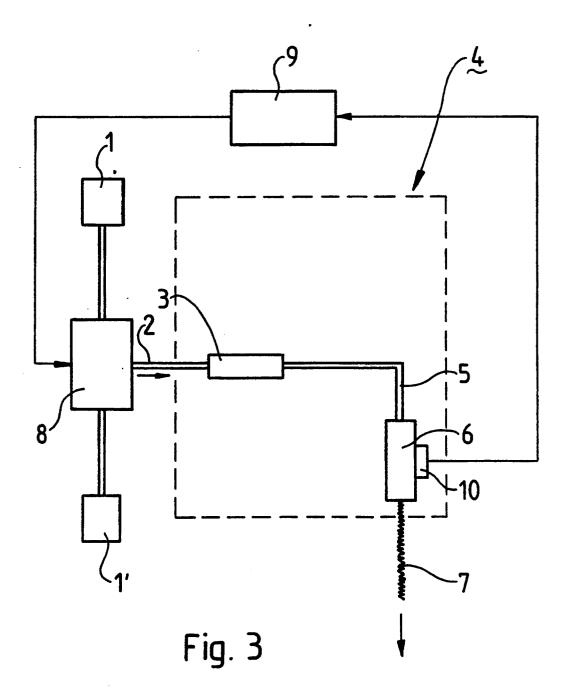
15

20

25

30


35


40

45

50

55

ERKLÄRUNG,

die nach Regel 45 des Europäischen Patentübereinkommens für das weitere Verfahren als europäischer Recherchenbericht gilt Nummer der Anmeldung

EP 89 11 5305