11 Veröffentlichungsnummer:

**0 371 376** A2

(2) EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89121511.3

(51) Int. Cl.5: H01H 9/00

22) Anmeldetag: 21.11.89

3 Priorität: 01.12.88 DE 3840529

Veröffentlichungstag der Anmeldung: 06.06.90 Patentblatt 90/23

Benannte Vertragsstaaten:
AT DE FR GB SE

71) Anmelder: MASCHINENFABRIK REINHAUSEN GMBH Falkensteinstrasse 8 D-8400 Regensburg(DE)

© Erfinder: Bleibtreu, Alexander Wöhrdstrasse 7 D-8400 Regensburg(DE)

- Stufenwähler für Stufentransformatoren mit konzentrischen Antriebswellen.
- (57) Zylindrischer Stufenwähler für Stufentransformatoren, bei dem feststehende Kontakte (4) in mindestens zwei übereinanderliegenden Kreisbahnen (I,...,VI) angeordnet sind und bei dem für jede Kreisbahn eine Kontaktbrücke (5) vorgesehen ist, deren inneres Ende an einem in der Ebene der Kreisbahn liegenden Kontaktring (6) schleift und deren äußeres Ende schrittweise mit den Stufenkontakten des entsprechenden Kreises in Verbindung gelangt. Die Kontaktbrücken unterschiedlicher Ebenen werden mittels zweier rohrförmiger Antriebswellen (7, 8) geführt, die an ihren oberen Enden mittels eines Aussetzgetriebes (2) angetrieben werden. Die eine Antriebswelle (8) - die innere - erstreckt sich mindestens teilweise innerhalb der anderen Antriebswelle (7). Sie ist in ihrem außerhalb der äußeren Antriebswelle (7) liegenden Bereich auf den Durchmesser der äußeren Antriebswelle aufgeweitet und mit dem aufgeweiteten unteren Ende in einem zentrischen NLager (11) des Stufenwählers geführt. Die äußere ← Antriebswelle ist an ihrem unteren freien Ende auf der inneren Antriebswelle mittels mehrerer Führungsklötze (12), die zwischen beiden Antriebswellen angeordnet sind, gelagert.

## Stufenwähler für Stufentransformatoren mit konzentrischen Antriebswellen

Die Erfindung bezieht sich auf einen zylindrischen Stufenwähler für Stufentransformatoren, wie er im Oberbegriff des Patentanspruches näher bezeichnet ist. Derartige Stufenwähler sind bekannt: CH-PS 395 243.

1

Die Bauweise dieser Stufenwähler führt zu einer gewissen Uneinheitlichkeit diverser Bauteile des Stufenwählers je nachdem, ob diese Bauteile der äußeren oder der inneren Antriebswelle zugeordnet sind. So müssen die die äußere Antriebswelle umschließenden Kontaktringe z.B. einen grö-Beren Durchmesser aufweisen als die Kontaktringe, die die innere Antriebswelle umschließen, da die innere Antriebswelle auch in ihrem freiliegenden Teil üblicherweise einen kleineren Durchmesser besitzt. Auch die Führung der Kontaktbrücken gestaltet sich unterschiedlich je nachdem, ob die Führung von der äußeren Antriebswelle mit dem größeren Durchmesser oder von der inneren Antriebswelle mit dem kleineren Durchmesser erfolgen muß. Da nun die betroffenen Stufenwähler in einer Vielzahl von Varianten benötigt werden, ist man bemüht, diese Varianten nach dem Baukastenprinzip aus einer möglichst kleinen Zahl von einheitlichen Einzelteilen herzustellen. Es ist klar, daß somit die bekannte Bauweise diesen Forderungen nicht voll entspricht. Es ist deshalb Aufgabe der Erfindung, den angesprochenen Stufenwähler so zu verbessern, daß sich die Vielzahl der benötigten unterschiedlichen Einzelteile verringert.

Diese Aufgabe wird bei dem eingangs genannten Stufenwähler erfindungsgemäß durch die im Kennzeichen des Patentanspruches angegebene Mittel gelöst.

Der mit der Erfindung erzielte Vorteil liegt im wesentlichen darin, daß nunmehr für die erforderlichen Varianten des Stufenwählers einheitliche Kontaktringe und auch einheitliche Führungen der beweglichen Kontaktbrücken Verwendung finden können, völlig unabhängig davon, ob diese der äußeren oder der inneren Antriebswelle zuzuordnen sind.

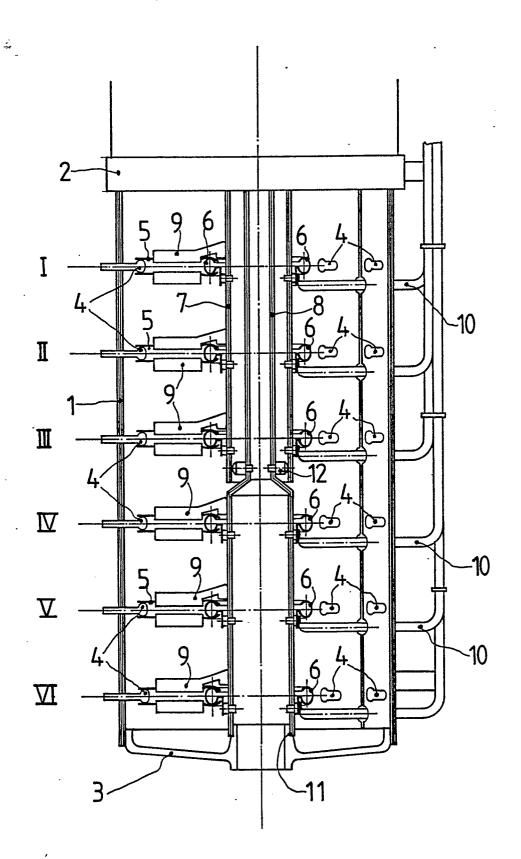
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird nachstehend näher beschrieben. Die Figur zeigt in schematischer Darstellung einen Längsschnitt des neuen Stufenwählers.

Wie ersichtlich, besitzt der neue Stufenwähler ein zylindrisches Gehäuse 1, das oben mit einem Getriebe 2 und unten mit einem Lagerschild 3 versehen ist. Das Gehäuse 1 trägt in mehreren untereinander angeordneten Ebenen I, II...VI kreisförmig in der Zylinderwand sitzende feststehende Stufenkontakte 4. Jeder Ebene I bis VI ist eine bewegliche Kontaktbrücke 5 zugeordnet, die eine

Verbindung mit je einem Schleifring 6 herstellt. Axial in der Zylindermitte erstrecken sich innerhalb der Schleifringe 6 zwei konzentrische Antriebswellen 7, 8, die vom Getriebe 2 her wechselweise betätigt werden können. Eine Antriebswelle 7, die äußere, reicht etwa bis zur Mitte des zylindrischen Gehäuses 1. Sie erstreckt sich über die drei oberen Kontaktebenen I, II, III und ist mit drei Mitnehmern 9 für die Kontaktbrücken 5 versehen. Die drei Kontaktringe 6 der Ebenen I, II, III sind lose um die Antriebswelle herum angeordnet und im wesentlichen durch die Anschlußleitungen 10, mit denen sie fest verbunden sind, fixiert. Innerhalb der beschriebenen äußeren Antriebswelle 7 erstreckt sich die innere Antriebswelle 8, die dann allerdings noch weiter reicht, und zwar bis zum unteren Lagerschild 3 des zylindrischen Gehäuses 1, wo sie im Lager 11 gelagert ist. Hierbei ist diese Antriebswelle 8, sobald sie die äußere Antriebswelle 7 verlassen hat, auf genau demselben Durchmesser wie die äußere Antriebswelle 7 aufgeweitet, und dieser aufgeweitete Teil der inneren Antriebswelle 8 erstreckt sich analog der äußeren Antriebswelle über ebenfalls drei untereinander angeordnete Kontaktebenen IV bis VI. Es ist ohne weiteres ersichtlich, daß die diesem Teil der Antriebswelle zugeordneten Kontaktringe 6 und Mitnehmer 9 der Kontaktbrücken 5 in ihrer konstruktiven Ausführung mit den Teilen, wie sie der äußeren Antriebswelle 7 zugeordnet sind, völlig übereinstimmen. Wie bereits ausgeführt, ist die innere Antriebswelle 8 in einem Lager 11 des Lagerschildes 3 gelagert. Die äußere Antriebswelle 7 ist hingegen mittels mehrerer Kunststoffklötze 12, die am unteren Ende der äußeren Antriebswelle 7 zwischen der äußeren und der inneren Antriebswelle angeordnet sind, geführt.

## Ansprüche

Zylindrischer Stufenwähler für Stufentransformatoren, bei dem feststehende Kontakte (4) in mindestens zwei übereinanderliegenden Kreisbahnen (I,...,VI) angeordnet sind und bei dem für jede Kreisbahn eine Kontaktbrücke (5) vorgesehen ist, deren inneres Ende an einem in der Ebene der Kreisbahn liegenden Kontaktring (6) schleift und deren äußeres Ende schrittweise mit den Stufenkontakten des entsprechenden Kreises in Verbindung gelangt, wobei mindestens zwei in unterschiedlichen Ebenen liegende Kontaktbrücken von je einer eigenen rohrförmigen Antriebswelle (7, 8) geführt werden, die innerhalb der Kontaktringe in Achsrichtung des Stufenwählers verlaufen und an ihren oberen Enden mittels eines Aussetzgetriebes


50

40

(2) angetrieben werden, wobei die eine Antriebswelle (8) - die innere - mindestens teilweise innerhalb der anderen Antriebswelle (7) - der äußeren - verläuft.

dadurch gekennzeichnet,

daß die innere Antriebswelle (8) in ihrem außerhalb der äußeren Antriebswelle (7) liegenden Bereich auf den Durchmesser der äußeren Antriebswelle aufgeweitet ist und daß die äußere Antriebswelle an ihrem unteren freien Ende mittels mehrerer Führungsklötze (12), die zwischen beiden Antriebswellen angeordnet sind, geführt wird, wobei lediglich die innere Antriebswelle mit ihrem aufgeweiteten unteren Ende in einem zentrischen Lager (11) des Stufenwählers geführt ist.

