[0001] This invention relates to a dynamometer and a method of using the same.
Background of the Invention
[0002] In the prior art used aboard an undersea cable laying and cable recovery ship, cable
tension is measured during cable laying and cable recovery operations. Classically
the cable slides over a friction plate of a dynamometer and deflects the cable path.
A fraction of the tension is detected by the resulting movement of the friction plate
and a strain gauge in a load cell. The signal representing that fraction of the tension
is amplified into a signal representing the full magnitude of the tension.
[0003] The process of sliding the cable over the friction plate of a dynamometer is a source
of error in the tension measurement. The metal friction plate provides a chute through
which the cable slides. That plate wears as the cable slides through and is gouged
and nicked as chains and fittings are handled. After these defects are incurred, the
dynamometer produces erroneous tension readings because of slight changes in the cable
deflection angle resulting from the wear and tear. Additional error in the tension
reading is caused by the force of friction between the cable and the friction plate,
as the cable slides over it. This force is greatly dependent upon the coefficient
of friction between the cable and the friction plate. Error signals, arising from
all of the aforementioned sources of error, are superimposed on the desired tension
signal detected by the load cell. Together, all of these signals are amplified and
applied to a readout device.
[0004] The resulting tension reading includes inaccuracies which are acceptable for undersea
cables containing coaxial copper transmission media. Such inaccuracies are acceptable
because copper is a malleable material that will stretch readily without breaking
if a desired maximum tension is exceeded for brief periods.
[0005] Currently in undersea cables, optical fibers are being substituted for the coaxial
copper transmission media. The optical fibers are much more fragile than the copper.
Maximum allowable tension in the resulting optical fiber cable is critical because
the optical fibers stretch very little without breaking. Acceptable error in tension
readings on optical fiber cables is very low. Thus it is necessary to substantially
reduce the sources of errors encountered when making tension measurements with a dynamometer.
Summary of the Invention
[0006] This problem is solved by an improved dynamometer and a method of using that dynamometer.
In the dynamometer, a multi-roller sheave is interposed between a cable supply and
the cable destination that the cable rolls over the multi-roller sheave. While the
cable is rolling over the sheave, the center axis of the cable changes direction from
one side of the multi-roller sheave to the other side. Tension in the cable produces
a force against the sheave, causes the multi-roller sheave to move and strain a strain
gauge. A signal produced by the strain gauge is amplified into a signal that accurately
indicates the magnitude of tension in the cable.
[0007] The method includes the steps of (1) pulling the cable to roll over a multi-roller
sheave so that the center axis of the cable changes direction from one side of the
multi-roller sheave to the other side; (2) in response to the tension in the cable
and change of direction of the center axis, moving the multi-roller sheave a distance
related to the magnitude of the tension in the cable; (3) straining a strain gauge
in proportion to the distance the multi-roller sheave moves; and (4) producing a signal
proportional to the strain in the strain gauge for indicating the magnitude of tension
in the cable.
[0008] Friction and wear between the optical fiber cable and the dynamometer are eliminated
for all practical purposes. Very accurate readings of cable tension are obtained.
The apparatus and method can be used for measuring tension during the manufacture
or use of many other elongate items, e.g., lines, strings, ribbons, filaments, threads,
strands, fibers, ropes, hoses, tubes, wires and others.
Brief Description of the Drawing
[0009] A more complete understanding of the features and advantages of the invention can
be gained by reading the following detailed description with reference to the drawing
wherein
FIG. 1 is a diagrammatic sketch of the stern of a ship deploying undersea cable;
FIG. 2 is a perspective view of a spring mounted base plate upon which a multi-roller
sheave can be mounted;
FIG. 3 is a sideview of a cantilever spring mounting arrangement for supporting a
load:
FIG. 4 is a sideview of a bending beam load cell for determining the magnitude of
a force;
FIG. 5 is a sideview of a multi-roller sheave segment which can be mounted on the
spring mounted base plate of FIG. 2;
FIG. 6 is a schematic diagram of a Wheatstone bridge circuit of a load cell that produces
an electrical signal which is proportional to a force; and
FIG. 7 is a diagrammatic sketch of an arrangement for bending an elongate element
over a multi-roller sheave during a manufacturing process for the purpose of determining
the tension in the elongate element.
Detailed Description
[0010] Referring now to FIG. 1, there is shown a diagram of the stern section 20 of an undersea
cable laying ship. A propeller 22 provides thrust for moving the ship through ocean
water 23. A rudder is positioned for steering. In the hold of the ship, there is an
open tank 27 for storing a very long length of cable 28. The cable 28 is pulled up
out of the tank 27, bent around a smooth guide surface 30, and moved toward the stern
for deployment to the bottom of the ocean. There is a dynamometer 34 mounted on the
ship deck 32 for determining the tension in the cable as it pays out of the hold and
over a stern cable guide surface 35 into the ocean water 23.
[0011] As the propeller 22 moves the ship forward (to the right in FIG. 1). the cable 28
is pulled from the ship and is deployed to the bottom of the ocean. At the dynamometer
34, the cable 28 rolls over a multi-roller sheave 37 which is part of the dynamometer.
As the cable is rolling over the multi-roller sheave 37, the cable bends and changes
the direction of the center axis of the cable. This change of direction of the cable
center axis produces a vertical, downwardly directed force on the dynamometer 34.
That force is proportional to the force of tension in the cable 28. The dynamometer
34 is arranged to produce a signal accurately representing the magnitude of tension
in the cable 28.
[0012] Although FIG. 1 shows only deployment of cable over the stern of a ship, deployment
over the bow and recovery of cable over the stern or bow are accomplished with similar
dynamometer arrangements. Details of the dynamometer 34, the multi-roller sheave 37
and the on-deck mounting arrangements thereof for FIG. 1 are presented in FIGS. 2,
3, 4, 5, and 6.
[0013] Referring now to FIG. 2, there is shown a solid steel base plate 50 with mounting
brackets 52 affixed under each corner. The plate 50 forms a solid base for affixing
the multi-roller sheave 37, which is shown in detail in FIG. 5. Two side cantilever
rods 53 and two end cantilever rods 55 are fixed to the ship deck, or to a platform
mounted to the deck, by brackets 57. The opposite ends of the cantilever rods 53 and
55 are inserted into the mounting brackets 52. A load cell 58 is interposed between
the steel base plate 50 and the ship deck. A vertical force, imparted from the multi-roller
sheave 37 of FIG. 5 to the steel base plate 50 of FIG. 2, is divided proportionally
among the four cantilever rods and the load cell 58.
[0014] FIG. 3 shows the arrangement of the cantilever rod 53 spring in a clearer sideview.
At one end of the cantilever rod 53, it is inserted into the mounting bracket 52 that
is affixed to the steel base plate 50. The other end of the cantilever rod 53 is held
in the clamping bracket 57 which is fixed to the deck or platform 33. A force 59,
one portion of the force created by the tension in the cable 28 of FIG. 1, is applied
downward vertically so as to deflect the cantilever rod 53. The free end of the rod
53 deflects a vertical distance that is proportional to the magnitude of the force
59. There is very little vertical clearance between the bottom of the mounting bracket
52 and the deck or platform 33 to prevent excessive strain of the load cell which
is shown in FIG. 2. Cantilever rod springs are used to provide side-to-side and end-to-end
stiffening for preventing the base plate 50 and the multi-roller sheave from swaying
in response to a misaligned cable rolling through the sheave, or to pitch and roll
motion of the ship.
[0015] In FIG. 4 there are shown details of the bending beam load cell 58 which is mounted
between the ship deck or platform 33 and the steel base plate 50. A package 60 containing
a strain gauge, arranged in a Wheatstone bridge, is affixed to a flexible steel bar
of the load cell 58. A downwardly directed force 62 represents a portion of the whole
force from the multi-roller sheave 37 of FIG. 5. This portion of the force is applied
to the bending beam load cell 58 for deflecting it. There is only a small vertical
clearance between the bottom of the load cell 58 and the deck or platform 33 for preventing
excessive strain of the load cell.
[0016] Referring now to FIG. 5, there is shown a detailed sideview of the multi-roller sheave
37 of FIG. 1. In FIG. 5 the cable 28 bends over the sheave 37 so that the center axis
of the cable changes direction by an angle ϑ. The force F on the multi-roller sheave
37 is directly proportional to the tension T in the cable, as represented by the expression

The axes 65 of several steel rollers 68 are positioned on the circumference of a
circle with a very large radius ρ relative to the diameters of the rollers. The cable
passes over the rollers, which are free to rotate, reducing friction between the cable
and the sheave to nil. Spacing between the rollers is chosen so that the cable 28
is constrained to a bending radius at all points along the multi-roller sheave 37
that exceeds the minimum bending radius for the cable. An arrow F, representing the
force resulting from tension in the cable 28, is directed downward vertically toward
the steel base plate 50 of FIG. 2.
[0017] Dimensions for the design of the multi-roller sheave 37 are governed by the following
equation, which is derived by considering the sum of forces and the sum of moments
that a bent cable is subjected to:

ρ = radius of curvature,
R =

= curvature,
dR = the derivative of the curvature,
t = angle between rollers,
dt = the derivative of the angle between rollers,
EI = cable bending stiffness
T = cable tension.
[0018] In addition to the rollers 68, shown in FIG. 5, other rollers mounted on vertically
oriented axes, not shown, may be installed along both sides of the sheave 37 to further
reduce friction between the cable and the sheave. These rollers with the vertical
axis are positioned for the same conditions as the rollers on the horizontal axes.
[0019] FIG. 6 shows a Wheatstone bridge arrangement for detecting strain in the strain gauge
which is fixed to the bending beam of the load cell 58 of FIG. 4. In FIG. 6 there
are two fixed resistors R1 and R2, an adjustable resistor R3, and a strain gauge variable
resistance RG. Those are configured in a classical bridge arrangement with a source
of d.c. voltage 70 connected between two diagonally opposite nodes 71 and 72 of the
bridge. Output voltage from the bridge is taken from nodes 73 and 74 and is amplified
through an amplifier 78. The amplified output is applied to a meter 80 for indicating
the magnitude of the bridge output which accurately represents strain in the strain
gauge resistor RG and tension in the cable 28 of FIGS. 1 and 5.
[0020] Ideally the resistance of strain gauge resistor RG is the only resistance which varies
in the bridge. The resistor RG should vary only in response to changes in the strain
of the bending beam load cell 58 of FIG. 4. Initial balancing of the bridge is accomplished
by adjusting the resistor R3 until the output voltage is zeroed. Thereafter readings
on the meter 80 are directly related to changes in the strain of the strain gauge
resistor RG and can be calibrated to represent the tension in the cable 28.
[0021] Additional details of the construction and operation of the load cell are presented
in "Pressure and Strain Measurement Handbook and Encyclopedia", published by OMEGA
Engineering Inc., dated 1985, pages F-3, F-4, F-11, F-12, E-36, E-37, E-43 and E-44.
[0022] Referring now to FIG. 7, there is shown a sketch of another embodiment of the invention.
A source reel, drum, or spool 90 continuously supplies an elongate element 92, such
as a filament, thread, fiber, string, stranded cable, rope, tube, hose, wire, line,
ribbon, or optical fiber cable, for some purpose such as a manufacturing process,
construction process, testing, or inspection. A block 93 represents the station or
stations of a manufacturing or testing process along the path that the elongate element
travels to a takeup reel 95. Along the way, the elongate element 92 rolls over a multi-roller
sheave 97 where the center axis of the elongate element 92 changes direction, or is
displaced, by a displacement angle ϑ. Friction between the elongate element 92 and
the multi-roller sheave 97 is negligible because the element rolls over the rollers.
Tension in the elongate element 92 causes a force 100 which is directed vertically
downward on the multi-roller sheave 97. A load cell 102 including a strain gauge
is strained by the force 100 directly proportional to the tension in the elongate
element 92. The load cell produces an output signal at a meter 105 in response to
the strain of the load cell. That signal has a magnitude directly proportional to
the magnitude of the tension in the elongate element 72. Error caused by the force
of friction between the elongate element and the sheave 97 is negligible.
[0023] The foregoing describes some embodiments of the invention and the method for using
the same. Those embodiments and the method together with other embodiments and methods
made obvious in view thereof are considered to be within the scope of the appended
claims.
1. A method for measuring tension in an elongate element, the method comprising the
steps of:
pulling the elongate element and rolling it over a multi-roller sheave:
at the multi-roller sheave, changing the direction of the center axis of the elongate
element;
in response to the change of direction and the tension, moving the multi-roller sheave
a distance related to the magnitude of the tension in the elongate element;
straining a strain gauge in proportion to the distance the multi-roller sheave moves;
and
indicating the magnitude of the tension in the elongate element in response to the
strain in the strain gauge.
2. A method for measuring tension, in accordance with claim 1, comprising the further
step of:
limiting friction between the elongate element and the multi-roller sheave to a negligible
magnitude over a range of tensions and of element speeds.
3. A method for measuring tension, in accordance with claim 2, comprising the further
step of:
producing a magnitude of tension reading that excludes significant error caused by
friction between the multi-roller sheave and the elongate element.
4. A method for measuring tension, in accordance with claim 3, comprising the further
step of:
constraining side-to-side movement of the multi-roller sheave while dividing a force,
caused by changing the direction of the center axis of the elongate element and the
tension in the elongate element, into parts proportional to the magnitude of the tension.
5. A method for measuring tension, in accordance with claim 1, wherein the multi-roller
sheave is designed to an expression

wherein
T = tension in the elongate element,
F = force on the multi-roller sheave, and
ϑ = angle of deflection of the cable.
6. A method of measuring tensile stress in a cable, the method comprising the steps
of:
pulling the cable over a multi-roller sheave and changing the direction of the center
axis of the cable at the multi-roller sheave;
moving the multi-roller sheave in response to the tensile stress in the cable;
stressing a strain gauge in response to movement of the multiroller sheave; and
indicating the magnitude of tensile stress in the cable in response to stress in the
strain gauge.
7. A method for measuring tension, in accordance with claim 6, comprising the further
step of:
limiting friction between the elongate element and the multi-roller sheave to a negligible
magnitude over a range of tensions and of element speeds.
8. A method for measuring tension, in accordance with claim 7, comprising the further
step of:
producing a magnitude of tension reading that excludes significant error caused by
friction between the multi-roller sheave and the elongate element.
9. A method for measuring tension, in accordance with claim 8, comprising the further
step of:
constraining side-to-side movement of the multi-roller sheave while dividing a force,
caused by changing the direction of the center axis of the elongate element and the
tension in the elongate element, into parts proportional to the magnitude of the tension.
10. A method for measuring tension, in accordance with claim 9, wherein the multi-roller
sheave is designed to the expression

wherein
T = tension in the cable,
F = force on the multi-roller sheave, and
ϑ = angle of deflection of the cable.
11. Apparatus for measuring tension in a cable, the apparatus comprising
a ship;
a multi-roller sheave affixed to the ship;
a cable;
means for propelling the ship and thereby pulling the cable to roll it over the multi-roller
sheave and, at the multi-roller sheave, to change the direction of a center axis of
the cable;
a load cell affixed to the ship;
means for translating movement of the multi-roller sheave to strain of the load cell;
and
the load cell, responsive to the strain, generates a signal indicating a magnitude
of tension in the cable.
12. Apparatus for measuring tension in a cable, in accordance with claim 11, wherein
the multi-roller sheave is configured to assure that the cable bends with a radius
of curvature at least as great as the minimum bending radius of the cable and that
the cable rolls over the multi-roller sheave with negligible friction between the
multi-roller sheave and the cable.
13. Apparatus for measuring tension in a cable, in accordance with claim 12, further
comprising
means, responsive to the signal, for producing a magnitude of tension reading that
excludes significant error caused by friction between the multi-roller sheave and
the cable.