[0001] The present invention pertains to the filtering of airborne overspray from an airflow.
[0002] Spray booths have long been used in many industrial applications to provide significant
advantages in maintaining health and safety standards. In general, without spray booths,
workers spraying paints, chemicals, or other materials onto a workpiece would be subject
to overspray which is directed toward the workpiece, but which does not stay in contact
therewith. One type of spray booth for removing such overspray typically has a ventilation
system for establishing an airflow which induces the overspray to travel across one
or more filtering stages.
[0003] U.S. Patent No. 4,484,513, assigned to the assignee of the present invention, for
example, discloses an improved spray booth having multiple water-wash stages. A first
water-wash stage consists of vertically oriented metal baffles having very shallow
flanges pointing in a direction opposite to the direction of the overspray. The shape
of the baffles provides advantages in maintaining a water flow traveling across the
flat, front surfaces of the baffles, i.e., those surfaces extending toward the overspray.
Many of the airborne paint particles are trapped by the water flowing down the baffles
and carried down the baffles to an underlying tank. Because these baffles are the
first wash, a large amount of paint particles are trapped and carried into the tank
down below the baffles. Chemical coagulants are added to the water to coagulate the
paint particles collected in the water reservoir into a scum that floats and is removed
by skimming techniques. The baffles are very effective as a first filtering stage,
it has been found that the baffles over a period of time accumulate significant concentrations
of overspray material, particularly on the edges of the baffles and extending away
from the direction of overspray. This requires that periodic maintenance be performed
on the baffles to wipe the accumulated paint from the metal baffles. The paint is
a sticky material that does not readily wipe off. The amount of paint sludge accumulating
in the tank is quite large and it must be removed either by shutting down the system
and scooping out the paint or by sludge removal devices. It is, of course, desirable
to reduce the amount of maintenance required to achieve high levels of filtering efficiency.
The water in the tank also must eventually be disposed of and it is contaminated water
because of the chemicals therein and this water is not easily disposed of. Thus, there
is a need for an efficient manner to assist in removing paint spray in such water
wash booths.
[0004] The coagulant chemicals added to the water add to the yearly cost of running a spray
booth as does the cost of cleaning the booth and its down time during cleaning. The
amount of sludge collected is another problem since it may be hazardous waste which
must be incinerated because of the toxic solvents retained in the paint sludge. Disposal
costs for this collected paint sludge are normally about $300 per barrel.
[0005] Another problem exists with high solids paint that does not cure or become a dry
solid until it is baked and the solvent is driven off. High solid paint, if emitted,
will fall on automobiles or other surfaces and, because it is still wet, it can bake
on an automotive engine hood when the engine heats the hood and is exposed to sunlight.
High solids paint is also expensive and the recovery of overspray for reuse is also
desirable.
[0006] There is also a need to increase booth efficiency and the present invention is directed
toward providing increased both efficiency by providing a pre-baffle system which
can collect approximately 80% of the overspray before the overspray reaches the usual
filtering stages in the booth. The preferred pre-baffle system only reduces the air
flow by about 1/16 or less so that the air flow requirements can still be maintained.
[0007] Another advantage of the pre-baffle system is that it can be made of disposable baffles
which can be replaced, for example, on a weekly basis and which can be baked to remove
the solvents from the paint sludge thereon to dry completely the paint on the baffles
which then can be disposed of as non-hazardous waste. By collecting paint particles
on the pre-baffles, the amount of overspray impinging on the normal filter stages
may be reduced to 20% so that the amount of sludge in the water and the amount of
paint collected on the baffles or other filter elements in the booth is drastically
reduced. Less cleaning, less water and less sludge on the booth filter stages results
in substantial savings. When the filter stages are dry fibrous filter panels as in
dry booth, the collection of 80% of the overspray on the pre-baffle system means that
the dry filter panels need be changed only once in five times of the current changes.
Also, improved air flow may be found in dry booths for longer periods of time because
the pre-baffle system helps distribute the air more uniformly across the dry filter
panel face. Without the pre-baffle system, the air tends to be more concentrated at
the center of the panel face which first fills with paint and then the air and particles
are forced outside of the center. This redirection of air in these dry filter booths
causes air turbulence and adversely effects the spray pattern of paint being applied
to an article in the booth. However, with the pre-baffle system the uniformity of
the air pattern is improved in a dry booth to reduce the disturbance of the paint
spray pattern.
[0008] Because the pre-baffle system can collect 80% of the overspray, it has been found
desirable to collect high solid paint overspray for re-use. The high cost of high
solid paint and its retention of its liquid state makes it worthwhile to do so. The
preferred baffles are made of inexpensive material and, after baking the high solid
paints thereon, these disposable pre-baffles may be economically incinerated or lawfully
used in a landfill.
[0009] It is an object of the present inventicn to provide pre-baffle system for a spray
booth.
[0010] Another object of the present invention is to provide disposable pre-baffles which
can be rapidly and easily exchanged when their useful life has expired.
[0011] A further object of the present invention is to provide disposable pre-baffles which
are easily fabricated from inexpensive materials such as fire-resistant paperboard.
[0012] These and other objects of the present invention which will become apparent from
studying the appended drawings and accompanying description.
[0013] In the drawings, wherein like elements are referenced alike,
FIG. 1 is a perspective view of a spray booth illustrating aspects according to the
present invention;
FIG. 2 is a front elevational view of the spray booth of FIG. 1;
FIG. 3 is a fragmentary cross-sectional view taken along the line 3-3 of FIG. 2;
FIG. 4 is a fragmentary cross-sectional view taken along the line 4-4 of FIG. 2;
FIG. 5 is a fragmentary view of a baffle assembly shown in a completely assembled
configuration;
FIG. 6 is an exploded perspective view of the baffle assembly of FIG. 5;
FIG. 7 is a perspective view of the completed baffle assembly;
FIG. 8 is a perspective view of a paper product blank from which the baffle is formed;
FIG. 9 is a perspective view of a baffle formed from the blank of FIG. 8; and
FIG. 9A is a perspective view of a spring clip for applying to a baffle to hold the
baffle in a channel shape.
FIG. 10 is a fragmentary cross-sectional view taken along the line 10-10 of FIG. 9.
FIG 11 illustrates wet booth filter stages having a pre-baffle system in front thereof.
FIG. 12 compares spray booth emissions using the baffles of the present invention
versus the same spray booth without such baffles.
FIG. 13 is a graph of the emissions of FIG. 12 on a yearly basis in the terms of gallons
per year.
[0014] Referring now to the drawings, and especially to FIG. 1, a spray booth is generally
indicated at 10. The spray booth accommodates an article 11 being sprayed from a spray
device 13. The article is located in a front section 12 of the spray booth, in front
of a pre-baffle system 20, constructed according to principles of the present invention.
Alternatively, articles 11 may be supported on a conveyor track 15 and passed laterally
through front section 12, passing through openings 16, 17 formed in sidewalls 18,
19 of front section 12. The conveyor track 15 and other similar conveyor arrangements
adapt spray booth 10 for use in a high production environment where the total volume
of solid articles sprayed onto articles 11 and creating overspray can be very considerable.
[0015] As pointed out above, when a spray is directed onto article 11 using either electrostatic
or pressurized airstream techniques, it is inevitable that a substantial percentage
of the solid airborne spray particles will not adhere to the article and will pass
from the work area to a filter stage. A fan 22 creates an air flow 24 in front section
12 of the spray booth, carrying the overspray in the vicinity of article 11 toward
the rear of the spray booth. After being drawn through multiple filter stages the
induced air is discharged by fan 22, as indicated by the arrows 32.
[0016] In the illustrated embodiment, the filter stages are wet filter stages which use
water to wet the overspray and may be constructed according to United States Patent
No. 4,484,513, a disclosure of which is herein incorporated by reference. The chamber
30, for example, may contain two water-wash filter stages such as shown in FIG. 11
wherein a water wash baffle system 35 is used. Water flows from an overhead pipe 33
into an upper reservoir 37 and down along the front faces of fore and after baffles
39. Paint overspray impinges on the water film on the baffles 39 and falls down into
the water reservoir 41 in which the water with the chemical coagulants to make the
sludge 43 shown floating on the surface of the water in the reservoir 41. The air
having pushed through these wet baffles 39 flows downwardly and under an inclined
wall 47 into a spray chamber 49 in which a water spray device 51 which causes a water
spray and turbulence to wet overspray particles to cause them to drop into the reservoir
41. The present invention may also be used with so-called "dry booths" where filter
media pads, mounted as removable panels, replace the water-wash stages described above.
[0017] In accordance with the present invention, a pre-baffle system 20 using disposable,
low cost, channel shaped baffles 21 are placed in front of the normal filtering means
which may be in the form of water filters 35 and 49 such as disclosed in U.S. 4,484,513
or dry fibrous filter panels. The preferred pre-baffle system 20 may capture as much
as 80% of the overspray so that only 20% of the overspray need be removed by the water
wash filters 35 and 49. By removing as much as 80% of the overspray, the subsequent
filters will not accumulate so much paint thereon and need not be cleaned so often.
Also, because 80% of the paint is collected on the pre-baffles, only 20% of the paint
will be dropping into the reservoir water so that less sludge is accumulated, skimmed,
and disposed of at about $300 per barrel of sludge. The chemicals added to the water
and the amount of water to be disposed can be drastically reduced to provide further
savings. The amount of booth cleaning of the booth sidewalls and the metal baffles
39 is also substantially reduced. Also, the spray booth emission can be cut substantially
as shown by graphs in FIGS. 12 and 13. By way of example only, a standard booth with
96% efficiency and emitting 7.9 grains of particulate per 1,000 cfm can be improved
to 1.58 grains with the addition of the pre-baffle system 20. In gallon of paint per
year, this translates into 312 gallons without the invention and only 62 gallons after
the pre-baffle system 20 is installed.
[0018] The preferred and illustrated pre-baffle system is comprised of a plurality of inexpensive
and disposal baffles 36 which are preferably made of paperboard impregnated with a
fire retardant material. By making the baffles so cheaply, they may be used for a
period of time, e.g., one week and then removed and disposed of. This is in contrast
to the permanent metal baffles 39 that are made of more expensive material and are
not connected in the booth for ready replacement as are the disposable filter baffles
36. The illustrated baffles usually begin to lose their shape and sag after one week
as the paperboard material becomes wet and loses its strength and as the wet of paint
accumulated thereon pulls downwardly on the baffle. The preferred baffles are channel
shaped. Manifestly, the baffles 36 may be made of other materials and may have other
shapes and fall within the purview of this invention.
[0019] The filtering according to United States Patent No. 4,484,513 is more than 98% efficient
in its removal of airborne overspray particles. When the filter stage 20 is placed
upstream of the initial filter stage described in United States Patent No. 4,484,513,
an even higher efficiency is achieved, and due to the efficient prefiltering the filter
panel greatly extends the life of the downstream filter stages. When used in conjunction
with downstream water-wash stages, the filter panel according to the present invention
greatly reduces the chemical usage needed to treat the wash water so as to render
the water effective as a wash media and so as to replenish water that has cycled through
the filter stages, allowing a closed cycle operation with little or no make-up water.
[0020] The initial pre-baffle system 20 of the preferred embodiment comprises a filter panel
84 which is preferably constructed of a spaced-apart plurality of disposable filtering
baffles 36 (see FIGS. 5-7). The disposable baffles 36 include an intermediate wall
38 having edges 40, 42 from which sidewalls 44, 46 extend in a direction toward the
article 11, i.e., in the direction of overspray. The intermediate wall 38 and the
sidewalls 44, 46 together comprise a channel having a recess 50 of generally U-shaped
cross-sectional configuration. As will be emphasized in discussing the airflow pattern
over the baffles, preferred baffles have their channel recesses 50 open toward the
direction of overspray to accumulate as much overspray thereon as possible.
[0021] Referring now to FIGS. 8-10, the baffles 36 are preferably formed from an integral
sheet or a blank 54 of inexpensive material so that they can be thrown away after
usage. A typical material is a paperboard, or other suitable board-like paper product
impregnated with a fire retardant chemical. The blank 54 is slit with a low and folded
along lines. 56, 58 to form the sidewalls 44, 46. A low knife cut or score is a limited
penetration of blank 54, and does not extend completely therethrough. In the preferred
embodiment, mounting apertures 60, 62 are formed in the intermediate wall 38, adjacent
the end of the baffle, and located intermediate the fold lines 56, 58 of blank 54.
Referring especially to FIG. 10, an eyelet or hollow rivet is installed in each mounting
aperture 62. The rivet includes enlarged faces 68, 70. Blank 54 is formed of paperboard
stock. Other materials suitable for use in the baffles will be discussed below.
[0022] The airflow through a commercial spray booth is quite large, typically in the range
of 100 fpm or more. The air flows toward the open channels of the baffles and impinges
paint particles on the intermediate wall 38, the interior surface 44a, 46a and the
exterior surfaces 44b, of the sidewalls.
[0023] The material from which the baffle is formed is preferably rigid and self-supporting.
If desired, however, the baffles may be made of a material which does not have the
strength or rigidity necessary to be self-supporting if a separate support structure
is provided therefor. For example, an open wire or expanded metal framework backing
may be provided throughout substantial portions of the baffle length. However, such
is generally not preferred since additional maintenance is required for the open wire
or metal supports. It is generally preferred that the baffles be generally self-supporting
so as to require only a minimum of supporting framework so that, when the filtering
efficiency of the baffles drops below a desired limit, the only maintenance required
is the replacement of the baffle.
[0024] Referring now to FIGS. 1-4, the first pre-baffle system 20 consists of a filter panel
generally indicated at 84 comprising a spaced-apart plurality of baffles 36 mounted
to a framework 86, supported by structural members of the spray booth. The framework
86 consists of two cross members 88, 90 laterally coextensive with the front section
12. The cross members 88, 90 are mounted with brackets (not shown) to a wall 92 in
front section 12. Wall 92, facing article 11 and the direction of overspray, has a
central opening 94.
[0025] Referring to FIG. 4, cross members 88, 90 are preferably U-shaped in cross-section
so as to have two vertically extending walls, each wall supporting a row of baffles.
FIG. 4, for example, shows a cross member 88 having vertical walls 94, 96. Referring
to FIG. 3, the bottom cross member 90 has a similar U-shaped cross-section, with a
central horizontal wall 98 intermediate a forward wall 100 and a rearward wall 102.
The cross members 88, 90 form concave recesses generally opposing each other as can
be seen in the right-hand portion of FIG. 1.
[0026] In addition to the static loading on the baffles produced by the airflow, the baffles,
due to their lightweight and relatively large surface area, could undergo a vibratory
or fluttering motion during operation of the spray booth. However, vibratory fatigue,
especially for paperboard baffles weakened by a high moisture environment, has not
proven to be a problem with the filter apparatus according to the present invention.
The mounting of the baffles with a brass eyelet and an elongated spring clip, in addition
to the substantial backing support provided by the cross members provides sufficient
strength and support while allows easy replacement of the baffles.
[0027] As can be seen most clearly in FIG. 3, the framework 86 disposes the plurality of
baffles in two spaced-apart planar arrays with the baffles of one planar array staggered
with respect to the baffles of the other baffle array. For example, the baffles in
the frontal planar array of FIG. 3 are spaced apart by a distance
d significantly less than the width
r of the baffle recess 50. The baffles of the rearward planar array are centered with
respect to the spacing between adjacent baffles of the frontal array. As a result,
airflow carrying the overspray is directed onto the baffles of either the frontal
row or the rearward row, or both, exiting in the gaps 108 formed between the forward
edges of the sidewalls of the rearward row of baffles and the intermediate walls of
the baffles positioned in the forward row.
[0028] The low pressure created by the fan 22 draws air (see arrows 24) containing the overspray
through two rows of baffles to provide to a pre-baffle or first filtering, step. As
can be seen from the illustration of FIG. 3, no leakage is permitted around this pre-baffle
20. As mentioned briefly above, the airflow through the pre-baffle 20 is substantial,
and is in the neighborhood of 100 fpm. In one commercial embodiment according to the
present invention, the baffles had a width of approximately 6 inches and a length
of approximately 8 feet, and were unsupported between their top and bottom end portions.
Referring to FIG. 4, for example, approximately the first 3 inches at the end portions
of the baffles are supported by the front and rear walls 94, 96 of cross member 88,
with the support extending to the lateral edges of the intermediate walls 38, where
outside corners of the channel members are formed.
[0029] Referring now to FIGS. 5-7, the cross members 88, 90 include reinforcing channels
112 at each location along the cross member where an end of a baffle is attached.
The reinforcing channels 112 have a cross-sectional configuration slightly larger
but otherwise similar to that of the baffles, with an intermediate wall 114 intermediate
sidewalls 116, 118. As indicated in FIG. 3, the sidewalls 116, 118 extend the full
depth of the sidewalls 44, 46 of the baffles. The nested close fit of the baffle end
portions within reinforcing channels 112 maintains a close control over the cross-sectional
shape of the baffles.
[0030] A mounting stud 122 is secured to the intermediate wall 114 of reinforcing channel
112 and extends in the direction of the article 11 and the overspray generated nearby
the article. As indicated above, the intermediate wall 38 of the baffles 36 has grommets
66 installed adjacent their upper and lower end portions. The grommets have a central
aperture dimensioned to receive the mounting stud 122 with a relatively close fit.
The grommets provide an inexpensive means to maintain the location of the baffles
and prevent tearing of the paperboard about the aperture which would allow the baffles
to sag or drop downwardly because of their weight and the weight of the paint accumulated
on the baffles. In order to prevent the baffle from disengaging the mounting studs
122, hinged spring clips 126 are located immediately adjacent the mounting studs,
at each end of the mounting plates.
[0031] The spring clips 126 include a body portion 128 attached to reinforcing channel 112
and cross member 88 by a rivet 130, or the like. Clip 126 further includes an arm
132 having a T-shaped end 134 and a free end 136. The T-shaped end of arm 132 is received
in a pair of arcuate sections 140 formed at one end of body 128. The T-shaped end
134, when mated with the arcuate sections 140 of body 128, mount the arm 132 for pivoting
between an open position remote from the baffle and a closed position in contact with
the baffle. The two positions of arm 132 may be seen with reference to FIG. 4 wherein
the upper position, drawn in phantom, illustrates the open position where arm 132
is swung clear of baffle 36, permitting its removal and subsequent replacement. Given
the relative proportions of the T-shaped end 134 of arm 132 and the arcuate portions
140, arm 134 can be releasably locked at either the open or closed position. When
deflected from the open position, the arm is swung against the intermediate wall 38
of the baffle with a resilient bias force which maintains the backing plate in secure
engagement with the cross member. For example, FIG. 4 illustrates baffles of both
forward and rearward rows clamped against the walls 94, 96 of cross member 88.
[0032] For purposes of illustration but not limitation, one commercial embodiment of a filter
panel constructed according to principles of the present invention, the sidewalls
of the baffles were separated by a distance
r of approximately 6 inches. The spacing between opposing sidewalls of adjacent baffles
d was approximately 4 inches, while the gap
g between the baffles of forward and rearward rows was approximately 2 inches. The
baffles of the embodiment were approximately 8 feet in length, with the grommets 66
spaced approximately 2 inches from the free ends of the baffles. Approximately 7-1/2
feet of each baffle mid-section was, according to one aspect of the present invention,
able to be left unsupported during operation of the spray booth.
[0033] As airflow 24 enters pre-baffle system 20, a significant portion of the airflow impinges
upon the intermediate walls 38 of the baffles in the forward row or planar array of
baffles. As indicated by the arrows in FIG. 3, airflow is deflected by intermediate
walls 38 onto the adjoining sidewalls 44, 46. These walls 38, 44 and 46 all are impinged
by paint particles and where high solid paint is collected on the walls, it remains
wet and slides down these walls to underlying paint collector 135. Upon emerging from
the recess 50 of a front-row baffle, the deflected airflow flows directed between
the baffles of the forward row and is directed into the recesses 50 of the second,
rearward row of baffles. Thus, the portion of the incoming airflow 24 previously deflected
by the frontal row of baffles undergoes a second impingement on the rear baffles as
paint particles not impinging on the first row of baffles are directed toward the
exposed surface of the intermediate wall 38 of baffles in the rearward row. Air impinging
upon the intermediate wall is deflected onto the sidewalls 44, 46 where further paint
collection may take place. Thereafter, airflow exits the recess 50 of the rearward
array of baffles so as to pass through the gap 108, where is exits between the baffles
of the rearward row, and flows toward subsequent, downstream filtering stages.
[0034] As will be appreciated by those skilled in the art, it is extremely important that
a balanced airflow be maintained in the spraying chamber of a spray booth, so that
articles being treated receive a uniform coverage. It has been found that the baffle
and filter panel according to principles of the present invention improves the uniformity
of the airflow in the region of the article being sprayed. Thus, an additional advantage
of filter apparatus constructed according to the present invention is that the need
for costly re-spray operations is greatly reduced, if not eliminated.
[0035] Although it is generally preferred that the baffles be arranged in a planar array
generally normal to the average direction of airflow at that point in the airflow
where the prefiltering is to take place, other arrangements are, of course, possible.
Further, when two planar rows of baffles are used as a prefilter or pre-baffle assembly,
the planar rows need not be arranged parallel to each other, as was described above.
Also, although the baffles are preferably disposed in planar rows, the present invention
is directed to baffles disposed along curved surfaces or, with baffles disposed one
behind the other, virtually any two- or three-dimensional nonplanar array of the baffles
can be provided. Thus, a variety of baffle arrangements are possible with the present
invention, and many different types of airflow imbalances can be readily corrected
by disposing the baffles to create a non-uniform airflow resistance across the cross
section of an airflow passageway in the spray booth along which overspray travels
toward the spray booth filter stage.
[0036] Referring to FIG. 8, the commercial embodiment according to principles of the present
invention employs blanks 44 having a width or minor peripheral dimension of approximately
10 inches, and the aforementioned length or major peripheral dimension of approximately
18 feet. The sidewalls 44, 46 had a width of approximately 2 inches, with the remaining,
intermediate wall 38 having a width of approximately 6 inches. These dimensions, along
with the spacing indicated herein between the forward and rearward rows of baffles
and between the baffles of a given row, were found to provide sufficient turbulence
and area to remove as much as 80% of the airborne overspray particles.
[0037] If desired, the baffles may be coated with one or more different types of materials
to improve their operating and safety characteristics. For example, the baffles may
be coated with materials that enhance their wetting properties. If desired, the sprayed
coating could provide over most, if not all, of the surface of the baffle, and thus
the substrate of the baffle can be chosen for optimal surface qualities, without necessarily
regarding its surface absorption qualities.
[0038] Those skilled in the art will appreciate the hazardous nature of many materials which
are sprayed onto articles or which provide a vehicle for those materials. For example,
on spraying lacquer paints, lacquer thinner or the like is usually used to prepare
the lacquer paint for spraying. Lacquer thinner is a flammable material and accordingly,
precautions must be taken to prevent the risk of fire or explosion should a cloud
of the lacquer thinner become ignited. As mentioned above, the preferred material
for the baffles 36 is a paperboard product. It may be desirable to coat the paperboard
baffles with a flame-retardant material so as to render the baffles non-combustible.
There are several ways of making the baffles flame-retardant. Herein, paperboard stock
is impregnated with a conventional fire retardant material to make the baffles conform
to safety standards for use in a spray booth. Other manners of making the baffles
fire retardant include coatings which may be applied in any suitable manner, as by
spraying, by powdered coatings, or by fluidized bed techniques, for example.
[0039] The tops and bottoms of the baffles 36 are both attached in the same manner and it
is preferred that the bottom channel 90 be a collector with a downwardly sloped surface
91 that leads to an opening 93 through which the paint drips into a collecting bucket
95 below the opening 93. High solid paints are wet and will coat the pre-baffles 36
into the collecting trough surface 91 and flow down into the bucket. In high solids
paint applications, more paint may become overspray than is painted on the articles.
If 80% of this overspray is captured by the pre-baffles, a significant amount can
be collected for re-use; thus providing additional economies. Manifestly, the collecting
means may take other forms than the bucket 137 and inclined surface 91 which is spaced
immediately below the lower ends of the baffles 36.
[0040] Preferably, spring metal clips 139 of a U-shaped configuration are used to engage
and hold the U-shaped configuration. The preferred baffles are shipped flat and are
formed into a channel shape at the site of the booth and the spring metal clips are
applied to the outside of the channel to hold the sides of the channels against spreading
outward and returning to their flat state.
[0041] The spring metal clip may take the form of FIG. 9 in which the clip is of a U-shaped
configuration having a central web 151 to be placed against the exterior side of backwall
38 of the baffle and having side arms 153 and 155 to abut and hold the baffle sidewalls
44 and 46 at right angles to the backwall 38. The spring clips have their legs 153
and 155 flexible to be expanded apart when being shoved on to the back side of the
channel-shaped baffle. The spring gripping force of the legs 153 and 155 provides
a tight frictional grip with the sidewalls of the baffle to prevent sliding of the
clip down the baffle. Usually, two clips per baffle are sufficient to retain the shape
of the baffle with the clips being spaced equidistantly from each other and the upper
and lower connections to the cross members. Thus, means are provided to hold the pre-baffles
in their channel shape. Herein, this means may be re-used with the clips being removed
from a coated baffle and being applied to a new baffle just to be erected into a channel
shape.
[0042] It will thus be seen that the objects hereinbefore set forth may readily and efficiently
be attained and, since certain changes may be made in the above construction and different
embodiments of the invention without departing from the scope thereof, it is intended
that all matter contained in the above description or shown in the accompanying drawings
shall be interpreted as illustrative and not in a limiting sense.
1. In a spray booth to remove paint overspray particulates from air flowing through
the booth, said booth comprising: a booth housing, a spray chamber in the housing
for spraying articles and generating the paint overspray particulates, a disposable
filter assembly having a plurality of disposable baffles for impingement by a majority
of the overspray paint particulates, said disposable filter assembly collecting a
majority of the particulates from the air, adjacent disposable baffles being spaced
from each other by slots through which cleaner air flows after impingement on the
baffles, forward faces on said disposable baffles adapted to be covered with paint
particulates while the slots remain substantially open and unclogged to allow a substantially
uniform air flow through the slots between adjacent disposable baffles, means releasably
connecting the disposable baffles for removal and replacement after substantially
paint accumulation on the forward faces thereof, water wash means for wetting substantially
all but a small percentage of the overspray particulates from the cleaner air, tank
means for collecting the wetted particulates and having chemicals in the water to
agglomerate the wetted paint particulates, said tank means collecting less than one-half
of the overspray particulates, and discharge means for discharging the air with the
particulate emissions being substantially reduced by the pre-filter assembly.
2. The paint spray booth of Claim 1 in which the disposable baffles are channel-shaped
and extend vertically with vertical slots therebetween, said baffles having forwardly-facing
flanges on opposite sides of a central web to cause the air to impinge the particulates
on the web to coat the same with a substantially thick paint coating.
3. The paint spray booth of Claim 1 or Claim 2 including collection means at the bottom
of the disposable baffles to collect paint flowing down the webs for reuse.
4. The paint spray booth of any of Claims 1 to 3 in which the disposable baffles are
formed of a paper material for low cost and for disposable by burning.
5. The paint spray booth of any of Claims 1 to 4 in which a fire retardant material
is on said disposable baffles.
6. A disposable baffle assembly for a paint spray booth, said baffle assembly comprising:
a plurality of disposable baffles each having a body, said baffles being formed of
paper-based material to provide a low-cost and incineratable paint collector, a pair
of elongated, parallel flanges and a central web extending therebetween on each of
said baffles defining a channel-shaped body for collecting paint on the web by impinging
particulates being trapped by the flanges from sliding off the web with air flowing
about the flanges, a support for mounting the disposable baffles in vertical positions
with vertical air flow slots between adjacent disposable baffles allowing air to flow
uniformly as paint builds a thick coating on the web, and detachable means for detachably
connecting the disposable baffles to the support for replacement thereof after coating
of the webs with thick layer of paint.
7. A disposable filter assembly in accordance with Claim 6 in which a fire-retardant
material is impregnated into the paper-based material of the bodies.
8. A disposable baffle assembly in accordance with Claim 6 or Claim 7 in which the
detachable means comprises a plurality mounting studs on the support means and stud-receiving
apertures in the webs of the channel-shaped bodies.
9. A disposable baffle assembly in accordance with Claim 8 in which a resilient means
biases the channel-shaped bodies to retain them on the studs.
10. In a spray booth to remove paint overspray particulates from air flowing through
the booth, said booth comprising: a booth housing, a spray chamber in the housing
for spraying articles and generating the paint overspray particulates, a disposable
filter assembly having a plurality disposable baffles for impingement by a majority
of the overspray paint particulates, said disposable filter assembly collecting a
majority of the particulates from the air, said disposable baffles being in the shape
of elongated channel-shaped bodies having a central web between a pair of parallel,
forwardly-projecting side flanges, said flanges of adjacent baffles being spaced
from each other by vertical slots through which cleaner air flows after impingement
on the web of the baffles, the webs on said disposable baffles adapted to be covered
with paint particulates while the slots remain substantially open and unclogged to
allow a substantially uniform air flow through the slots between adjacent disposable
baffles, means releasably connecting the disposable baffles for removal and replacement
after substantially paint accumulation on the forward faces thereof, a second filter
means for filtering substantially all but a small percentage of the overspray particulates
from the cleaner air, discharge means for discharging the air with the particulate
emissions being substantially reduced by the pre-filter assembly.
11. The paint spray booth of Claim 10 in which the disposable baffles are formed of
a paper material for low cost and for disposable by burning.
12. The paint spray booth of Claim 11 in which a fire retardant material is on said
disposable baffles.
13. A method of operating a paint spray booth comprising the steps of: spraying articles
with a paint spray and generating overspray paint overspray particulates, impinging
at least a majority of the paint overspray particulates onto disposable filter baffles
to coat the forward faces thereof with overspray particulates, flowing air in a substantially
uniform manner through slots between adjacent disposable filter baffles, flowing the
cleaner and the remaining overspray particulates through a water wash to wet overspray
particulates leaving only a small percentage of overspray particulates for emission,
collecting the wetted overspray particulates in a tank of water containing chemicals
for agglomerating, discharging the cleaned air with reduced emissions because of the
filtering by the disposable baffles, accumulating paint on the disposable baffles
until a thick coat of paint is accumulated thereon, removing the disposable baffles
from the booth and disposing of the baffles with the paint thereon, and installing
new disposable baffles in the booth to collect paint overspray particulates.
14. A method in accordance with Claim 13 in which the disposable baffles are paper-based
material and including the further step of incinerating the disposable baffles with
the paint thereon.
15. A method in accordance with Claim 13 or Claim 14 including the step of replacing
chemicals and water in the tank means at substantially-reduced intervals because of
the paint removed by the disposable baffles.
16. A method in accordance with any of Claims 13 to 15 in which the step of replacing
the disposable baffles comprises releasably connecting each of a plurality of channel-shaped
baffles made of a paper-based material at their upper ends to a support.
17. A method in accordance with any of Claims 13 to 16 including the step of flowing
paint down the disposable baffles and collecting the same for reuse.