[0001] This invention relates to aromatic carboxylic acid esters and to the use of such
esters as novel thermally and oxidatively stable synthetic fluids. More particularly,
the invention relates to their use in the field of thermal oxidatively stable synthetic
fluid lubrication.
[0002] Many types of synthetic fluids useful as lubricating oils are available, including
hydrogenated polyalpha-olefins, aliphatic esters of aliphatic dibasic acids, trimethylolpropane
aliphatic esters, pentaerythritol aliphatic esters, silicones, silicate esters, and
phosphate esters. For a detailed discussion, see R. C. Gunderson and A. W. Hart, editors,
"Synthetic Lubricants", (1962). These fluids were developed as improvements over refined
mineral oils, adding such benefits as improved thermal stability, improved oxidative
stability, superior volatility characteristics, better viscosity/temperature characteristics,
and improved frictional properties. The use of synthetic lubricants has expanded considerably
in recent years. New applications for synthetic fluids bring new demands for performance.
Changes in lubricated equipment design and operating temperatures impose further requirements
for upgraded fluid performance.
[0003] U.S. Patent 3,947,369 (Liebfried, March 30, 1976) discloses a synthetic oil useful
as a base stock for jet engine lubricating oils. In summary, the patent describes
a lubricating oil base stock, which meets both the 210°F (99°C) initial viscosity
requirement, and the 72 hour no-freeze requirement. The base stock is composed of
a blend of (1) a pentaerythritol ester product consisting essentially of pentaerythritol
material completely esterified by straight chain C
4-C
10 alkanoic acid material, and (2) trimellitate ester product consisting essentially
of trimellitic acid completely esterified by C
4-C
13 alkanol material. The weight ratio of trimellitate ester product to the pentaerythritol
ester product in the blend is generally in the range from about 1:10 to about 1:1.
[0004] U.S. Patent 3,974,081 (Rutkowski et al, August 10, 1976) relates to an improved lubricating
fluid and particularly concerns an additive for such a fluid that will improve its
seal swelling properties without at the same time imparting any detrimental effects
thereto. The invention is also directed to additive concentrate packages that are
intended for formulation into mineral oil base stocks to provide transmission fluids
of improved seal swelling characteristics thereby enhancing fluid retention. These
transmission fluids have utility as a lubricant for rotary engines. The additive is
an oil soluble, saturated, aliphatic or aromatic hydrocarbon ester having from 10
to 60 carbon atoms and from 2 to 4 ester linkages. For some applications it is desired
that an aliphatic alcohol having from 8 to 13 carbon atoms be present in up to equal
amount with said ester as a co-swellant. Preferred among the above class of esters
is dihexyl phthalate and among the above class of alcohols is tridecyl alcohol.
[0005] U.S. Patent 4,157,990 (Linder et al, June 12, 1979) refers to the development of
lubricant and detackifying compositions with a content of
A. mixed esters with hydroxyl and acid numbers of 0 to 6 of
(a) aliphatic, cycloaliphatic and/or aromatic dicarboxylic acids,
(b) aliphatic polyols,
(c) aliphatic monocarboxylic acids with 12 to 30 carbon atoms in the molecule, and
B. esters from long-chain aliphatic monofunctional alcohols with 32 to 72 carbon atoms
in the molecule and long-chain monocarboxylic acids with 18 to 72 carbon atoms in
the molecule, where the weight ratio by weight of mixed esters (A) to esters (B) is
9:1 to 1:3.
[0006] G.B. Patent 851,205 relates to alcohol esters of aromatic tetracarboxylic acids suitable
for use as lubricating oils.
[0007] EP-A3-0 157 583 also relates to oil-based lubricant compositions comprising esters
of aromatic polycarboxylic acids.
[0008] The present invention provides an aromatic carboxylic acid ester of the general formula

wherein Ar is an aromatic moiety, R is a neo hydrocarbyl group containing from 5
to 18 carbon atoms, with the proviso that R is not a cycloalkyl substituted neo hydrocarbyl
group, R
1 is a mono, di, tri or tetravalent neo hydrocarbyl group containing from 5 to 18 carbon
atoms, n is an integer from 2 to 4 and represents the total number of carboxylic acid
ester groups on the aromatic moiety, R
2 is a hydrocarbyl group derived from a diol containing from 2 to 18 carbon atoms;
x is an integer from 0 to 4, and a is an integer from 1 to 4, and when a is 1, R
1 is is monovalent; when a is 2, R
1 is divalent; when a is 3, R
1 is trivalent and derived from a triol of formula

wherein R
6 is a hydrocarbyl group containing from 1 to 14 carbon atoms; and when a is 4, R
1 is tetravalent and derived from a tetraol of formula

wherein R
a, R
b, R
c and R
d may be the same or different and are hydrocarbyl groups containing from zero up to
3 carbon atoms, and when the hydrocarbyl groups R
a, R
b, R
c and R
d contain no carbon atoms, R
1 is derived from pentaerythritol; with the proviso that when Ar is a single ring,
a is 1 and x is 0, n is an integer other than 4.
[0009] A primary aim of this invention is to provide a novel thermally and oxidatively stable
synthetic fluid composition comprising an aromatic carboxylic acid ester.
[0010] A feature of the invention is that the aromatic carboxylic acid esters which function
in the novel thermally and oxidatively stable synthetic fluid composition can be easily
and economically manufactured. An advantage of the present composition is that the
aromatic carboxylic acid esters provide lubricating properties which are desirable
for synthetic fluid compositions.
[0011] Various preferred features and embodiments of the present invention will now be described.
[0012] The thermal stability of a chemical compound is its resistance to change brought
about solely by thermal energy. The rate of thermal decomposition as a function of
temperature precisely defines this property.
[0013] In this jet and space age more and more emphasis is on thermal stability. Higher
operating temperatures, for increased engine efficiency, require more thermally stable
lubricants. For lubricants and hydraulic fluids it is apparent that other properties
such as viscosity, pour point, oxidative stability and vapor pressure are quite important,
but such properties are more amenable to improvement by additives and minor structural
modifications than is thermal stability.
[0014] Applicants have discovered that certain aromatic carboxylic acid esters possess a
high degree of thermal and oxidative stability. The aromatic carboxylic acid esters
which are used in the composition in accordance with the present invention are compounds
characterized by the structural formula:

wherein R, R
1, R
2, Ar, n, x and a are as defined previously for formula (I).
[0015] The aromatic carboxylic acid ester is prepared by reacting an alcohol with an aromatic
acid or anhydride, or their esters (as in transesterification). However, in order
to force the esterification reaction to completion, an excess of the alcohol is employed.
Normally, the total amount of alcohol is present in a 100% excess on an equivalent
basis. Preferably, the alcohol is present in a 50% excess. The unreacted alcohol may
be removed by distillation after the esterification reaction is complete and reused
in future esterification reactions.
[0016] Normally, the alcohol and aromatic acid or anhydride are added to a reaction vessel
at room temperature. Stirring is begun and an acid catalyst is added to promote the
reaction. Catalysts that can be used in the practice of this invention are methanesulfonic
acid, para-toluenesulfonic acid and tetraalkyl titanates. The catalyst of choice is
para-toluene sulfonic acid. Upon completion of the esterification, the catalyst is
neutralized with an appropriate base, such as aqueous sodium hydroxide or calcium
hydroxide.
[0017] As used in this specification and appended claims, the term "hydrocarbyl" denotes
a group having a carbon atom directly attached to the remainder of the molecule and
having predominantly hydrocarbon character within the context of this invention. Such
groups include the following:
(1) Hydrocarbon groups; that is, aliphatic (e.g., alkyl, aromatic, aliphatic- substituted
aromatic, aromatic-substituted aliphatic and alicyclic groups, and the like. Typical
hydrocarbon groups are known to those skilled in the art. These hydrocarbon groups
may be monovalent, as well as di-, tri- or tetravalent. That is, there may be one
or more points of attachment of the hydrocarbon groups to carboxy groups within the
same complex ester molecule. Examples include octyl, decyl, octadecyl, propylene,
butylene, butanetriyl, pentanetriyl, the tetra valent moiety derived from pentaerythritol,
etc.
(2) Hetero groups; that is, groups which, while predominantly hydrocarbon in character
within the context of this invention, contain atoms other than carbon in a chain or
ring otherwise composed of carbon atoms. Suitable heteroatoms will be apparent to
those skilled in the art and include, for example, nitrogen, oxygen and sulfur.
[0018] In general, no more than about three substituents or heteroatoms, and preferably
no more than one, will be present for every 10 carbon atoms in the hydrocarbyl group.
The Aromatic Moiety, Ar
[0019] The aromatic moiety, Ar, can be a single aromatic nucleus such as a benzene nucleus
or a polynuclear aromatic moiety. Such polynuclear moieties can be of the fused type;
that is, wherein at least two aromatic nuclei are fused at two points to another nucleus
such as found in naphthalene, anthracene, etc. Such aromatic moieties also can be
of the linked type wherein at least two nuclei are linked through bridging linkages
to each other. Such bridging linkages can be chosen from
carbon-to-carbon single bonds, ether linkages, keto linkages, alkylene linkages,
and mixtures of such divalent bridging linkages.
[0020] The aromatic moiety Ar in all cases is derived from aromatic carboxylic acids, aromatic
anhydrides and aromatic esters. Specific examples of compounds of formula (I) containing
single ring Ar moieties are the following wherein R
1 and a are as previously defined:

where n = 2,
x = 0

where n = 3,
x = 0

where n = 4,
x = 0
[0021] Specific examples of compounds of formula (I) containing fused ring aromatic moieties
Ar are:

where n = 2,
x = 0

where n = 3,
x = 0

where n = 4,
x = 0
[0022] Examples of compounds of formula (I) wherein Ar is a linked polynuclear aromatic
moiety include:

wherein Z is selected from

and -O-; where n = 4; a = 1; x = 0 and R
1 = R
[0023] Usually, all of these carboxylic acid bearing Ar moieties are otherwise unsubstituted
except for stable hydrocarbyl groups, hydrocarbylene groups and any bridging groups.
[0024] Suitable aromatic carboxylic acids which may be used to prepare the products of this
invention are represented by the formula Ar-(-COOH)
n where Ar is an aromatic moiety and n is an integer from 2 to 4. Aromatic carboxylic
acids falling within the parameters of the above structure include phthalic acid,
isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, pyromellitic
acid, trimesic acid, naphthalene 1,8-dicarboxylic acid, naphthalene 2,3-dicarboxylic
acid, naphthalene-1,4-dicarboxylic acid, naphthalene 2,6-dicarboxylic acid and naphthalene
2,3,6-tricarboxylic acid.
[0025] Anhydrides corresponding to any of the above aromatic carboxylic acids may also be
used to prepare the products of the present invention. Anhydrides are represented
by the formula

wherein Ar is as defined above and z is an integer from 1 to 3, preferably 1 to 2.
Suitable anhydrides are phthalic anhydride, 1,8-naphthalic anhydride, 2,3-naphthalic
anhydride, 2,3,7,8-naphthalic dianhydride, trimellitic anhydride, pyromellitic anhydride,
mellitic anhydride and benzophenonetetracarboxylic acid dianhydride.
[0026] Aromatic carboxylic acid esters which may be used to prepare the products of this
invention by transesterification are represented by the formula
Ar(̵COOR
7)
n
wherein Ar and n are defined above and R
7 is a hydrocarbyl group containing from 1 to 6 carbon atoms. Aromatic esters that
can be employed in this invention are dimethyl phthalate, trimethyl trimellitate,
diethyl phthalate and dimethyl naphthalene-2,6-dicarboxylate.
[0027] For such reasons as cost, availability, performance, etc., the Ar moiety is normally
a benzene nucleus, keto-bridged benzene nuclei or a naphthalene nucleus.
The Neo Hydrocarbyl Group R
[0028] The neo hydrocarbyl group R is an aliphatic group. The neo hydrocarbyl group R contains
from 5 to 18 carbon atoms with the proviso that R is a neo hydrocarbyl group other
than a cycloalkyl substituted neo hydrocarbyl group. The neo hydrocarbyl group R has
the structure:

wherein R
2, R
3 and R
4 are independently straight chain hydrocarbyl groups, branched chain hydrocarbyl groups
or mixtures thereof. Preferably, the neo hydrocarbyl group contains from 8 to 16 carbon
atoms, and most preferably the neo hydrocarbyl group is a neo octyl group. In all
cases, the hydrocarbyl group is usually derived from an alcohol.
[0029] Specific examples of hydrocarbyl groups of R
2, R
3 and R
4 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-betyl and t-butyl.
Non-limiting examples of neo alcohols that may be employed in the practice of this
invention are: 2,2-dimethyl-1-heptanol, 2,2-di-methyl-1-octanol, 2-methyl-2-ethyl-1-pentanol,
2-methyl-2-ethyl-1-hexanol, 2-methyl-2-ethyl-1-heptanol, 2-methyl-2-ethyl-1-octanol,
2,2-diethyl-1-butanol, 2,2-diethyl-1-pentanol, 2,2-diethyl-1-hexanol, 2,2-diethyl-1-heptanol,
2,2-diethyl-1-octanol, 2,2,3-trimethyl-1-pentanol, 2,2,3-trimethyl-1-hexanol, 2,2,3-trimethyl-1-heptanol,
2,2,3-trimethyl-1-heptanol, 2,2,3-trimethyl-1-octanol, 2,3-dimethyl-2-ethyl-1-butanol,
2,2,4-trimethyl-1-pentanol, 2,2,4-trimethyl-1-hexanol, 2,2,4-trimethyl-1-heptanol,
2,2,4-trimethyl-1-octanol, 2,2,3,3,-tetramethyl-1-butanol and 2,2,4-trimethyl-1-pentanol.
The Neo Hydrocarbyl Group R1
[0030] The hydrocarbyl group R
1 is a mono, di, tri or tetra valent neo hydrocarbyl group containing from 5 to 18
carbon atoms, preferably from 5 to 16 carbon atoms and most preferably from 5 to 12
carbon atoms.
[0031] The neo hydrocarbyl group R
1 is derived from an alcohol containing from 1 to 4 hydroxyl groups and may be represented
as R
1-(-OH)
a wherein a is from 1 to 4.
[0032] When a is 1, R
1 is derived from a neo alcohol as described.
[0033] An example of a preferred branched chain monohydric alcohol suitable for use in the
present invention is commercial tridecyl alcohol, a mixture of isomers in the C
13 range prepared by the Oxo process and which is available from Exxon Corporation.
[0034] When a is 2, R
1 is derived from a diol. Suitable examples of R
1(-OH)
2 are 2,2-dimethyl-1,3-propanediol; 2,2,4,4-tetramethyl-1,5-pentanediol; 2,2,5,5-tetramethyl-1,6-hexanediol;
2,2,6,6-tetramethyl-1,7-heptanediol; 2,2,7,7-tetramethyl-1,8-octanediol.
[0035] When a is 3, R
1 is derived from a triol. The triol R
1-(-OH)
3 is represented by the formula

wherein R
6 is a hydrocarbyl group containing from 1 to 14 carbon atoms, preferably 1 to 10 carbon
atoms, and most preferably 1 to 6 carbon atoms. Suitable examples of this structure
are trimethylolethane, trimethylolpropane, trimethylolbutane, trimethylolpentane,
etc.
[0036] When a is 4, R
1 is derived from a tetraol represented by the structure:

wherein R
a, R
b, R
c and Rd may be the same or different and are hydrocarbyl groups containing from zero
up to 3 carbon atoms. When the hydrocarbyl groups R
a, R
b, R
c and R
d contain no carbon atoms, R
1 is derived from pentaerythritol.
[0037] A preferred embodiment of this invention comprises an aromatic carboxylic acid ester
of the general formula

wherein n, R
2 and x are as defined above in formula (I), R is a neo hydrocarbyl group containing
from 5 to 10 carbon atoms, R
1 is a di, tri or tetravalent neo hydrocarbyl group as defined in formula (I) containing
from 5 to 16 carbon atoms, and a is an integer from 2 to 4.
[0038] An alternative embodiment of this invention comprises an aromatic carboxylic acid
ester of the formula

wherein R
5 is a hydrocarbyl group containing from 2 to to 18 carbon atoms, preferably from 5
to 18 and most preferably from 5 to 16, with the proviso that R
5 is a primary hydrocarbyl group other than a neo hydrocarbyl group and n is 2.
[0039] Another embodiment of this invention comprises an aromatic carboxylic acid ester
of the general formula

wherein Ar, n, R
2 and x are as defined in formula (I), R
5 is a linear hydrocarbyl group containing from 2 to to 18 carbon atoms, R
1 is a di, tri or tetravalent neo hydrocarbyl group as defined in formula (I) and a
is an integer from 2 to 4, with the proviso etc from claim 12.
[0040] A further embodiment of this invention comprises an aromatic carboxylic acid ester
of the general formula

wherein Ar, n, R
1, a and x are as defined in formula (I), and R
8 is independently R or R
5, and at least one R and at least one R
5 group are present in the ester, wherein R is a neo hydrocarbyl group containing from
5 to to 18 carbon atoms, with the proviso that R is not a cycloalkyl substituted neo
hydrocarbyl group, and R
5 is a linear primary hydrocarbyl group containing from 2 to to 18 carbon atoms, with
the proviso that n is not 2, and with the further proviso that when Ar is a single
ring, a is 1 and x is 0, n is an integer other than 4.
The Hydrocarbyl Group R2
[0041] The hydrocarbyl group R
2 is derived from a dihydric alcohol containing between 2 and 18 carbon atoms. Preferably
R
2 contains between 2 and 12 carbon atoms, and most preferably between 2 and 8 carbon
atoms. Suitable dihydric alcohols include ethylene glycol; 1,3-propylene glycol; 1,4-butane
diol; neopentyl glycol; 1,5 pentane diol; 1,6-hexane diol and mixtures thereof.
[0042] The preparation of specific compounds of the present invention are further illustrated
in the non-limiting examples that follow.
[0043] It is pointed out that in the following examples, and elsewhere in the present specification
and claims, all percentages are intended to express percent by weight and all parts
are intended to express parts by weight unless otherwise specified.
Comparative Example 1
[0044] A one-liter flask, equipped with a Dean-Stark trap, condenser, thermowell, stirrer
and nitrogen inlet tube, is charged with 166 parts (1 mole) of terephthalic acid,
144 parts of Alfol 8-10 alcohol (1 mole), 144 parts of 2,2,4-trimethyl-1-pentanol
(1.1 mole), 10 parts of p-toluenesulfonic acid monohydrate and 200 parts xylene. The
contents are heated to reflux under a slow nitrogen purge, and water is removed by
azeotropic distillation over an 8-hour period. The temperature is gradually increased
to 175°C over two hours by slow removal of toluene and azeotrope, and held at that
temperature for two hours while additional volatiles are removed. The reaction mixture
is cooled to 150°C, and a vacuum (10 Torr)(1.3kPa) is applied to remove volatiles
at that temperature. The stripped mixture is then cooled to 90°C, stirred for 30 minutes
with 15 parts of calcium hydroxide to neutralize the acid catalyst, then filtered
through a thin pad of diatomaceous earth to give the ester product.
Example 1
[0045] To a 2-liter flask equipped with a Dean-Stark trap, condenser, thermowell, stirrer
and subsurface nitrogen sparging tube, is charged 384 parts (2 moles) of trimellitic
anhydride, 104 parts (1 mole) of neopentyl glycol and 400 parts of toluene. The mixture
was heated to gentle reflux with stirring and a slow nitrogen sparge, and held there
for 30 minutes. Then, 526 parts (4.1 moles) of 2,2,4-trimethylpentanol and 8 parts
of p-toluenesulfonic acid monohydrate are added, and the mixture held at reflux for
16 hours, while water is removed by azeotropic distillation. The reaction mixture
was stripped at 120°C/15 Torr (1.9kPa), then treated with 7 parts of calcium hydroxide
for 30 minutes. Filtration through a thin pad of diatomaceous earth in a Buchner funnel
gave 834 parts of a light yellow, viscous ester product.
Example 2
[0046] To a flask fitted per Comparative Example 1 are added 47.1 parts (0.146 moles) benzophenone
tetracarboxylic acid anhydride, 95 parts (0.73 moles) 2,2,4-trimethyl-1-pentanol,
100 parts xylene and 2 parts (0.01 moles) para-toluene sulfonic acid. The contents
are heated to reflux and maintained for 11 hours. At 80°C, 1.5 parts (0.02 moles)
calcium hydroxide are added to neutralize the catalyst. The contents are stripped
to 180°C and 10 mm mercury to obtain a product with a phenolphthalein neutralization
number of 0.7.
Example 3
[0047] To a flask fitted per Comparative Example 1 is added 498 parts (3 moles) of isophthalic
acid and 700 parts xylene. The solution is heated to 65°C under a slow nitrogen purge,
and 384 parts (3 moles) of 2-methyl-2-ethyl-1-pentanol are added. At 70°C, 120 parts
(1 mole) of trimethylolethane and 10 parts of p-toluenesulfonic acid monohydrate are
added, and the temperature is increased to reflux. Water is removed by azeotropic
distillation over a 12-hour period, and the reaction mixture is then stripped at 140°C/10
Torr (1.3kPa) to remove volatiles. The reaction mixture is cooled to 90°C, treated
with 15 parts of calcium hydroxide for 30 minutes with rapid stirring, then filtered
slowly through a thin pad of diatomaceous earth in a Buchner funnel to give the ester
product.
Example 4
[0048] To a flask fitted per Comparative Example 1 are added 284 parts (2 moles) of trimellitic
anhydride and 500 parts of xylene. The mixture is heated to 60°C, and 68 parts (0.5
mole) of pentaerythritol and 286 parts (2.2 moles) of 2,2,4-trimethylpentanol are
added. The reaction mixture is further heated to 85°C with good stirring, and 15 grams
of p-toluenesulfonic acid monohydrate are added. The reaction mixture is taken to
reflux and water is removed by azeotropic distillation over a 2-hour period. An additional
260 parts (2 moles) of 2,2,4-trimethylpentanol are added, and the mixture dehydrated
at reflux over a 12-hour period. The temperature is gradually raised to 175°C and
held there for 3 hours, while volatiles are removed using a slow nitrogen purge. The
mixture is stripped at 150°C/10 Torr (1.3kPa), cooled to 85°C, stirred with 15 parts
of calcium hydroxide for one hour, then filtered slowly through a pad of diatomaceous
earth to give the ester product.
[0049] As previously indicated, the compounds of this invention are useful as thermally
and oxidatively stable synthetic fluids. They can be employed alone or in a variety
of lubricants based on diverse oils of lubricating viscosity, including natural and
synthetic lubricating and grease oils and mixtures thereof.
[0050] Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon
oils such as polymerized and interpolymerized olefins [e.g., hydrogenated polybutylenes,
hydrogenated polypropylenes, hydrogenated propylene-isobutylene copolymers, chlorinated
hydrogenated polybutylenes, hydrogenated poly(1-hexenes), hydrogenated poly(1-octenes),
hydrogenated poly(1-decenes)]; alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes,
dinonylbenzenes, di(2-ethylhexyl) benzenes]; polyphenyls (e.g., biphenyls, terphenyls,
alkylated polyphenyls); and alkylated diphenyl ethers and alkylated diphenyl sulfides
and the derivatives, analogs and homologs thereof.
[0051] Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal
hydroxyl groups have been modified by esterification, etherification, etc., constitute
another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene
polymers prepared by polymerization of ethylene oxide or propylene oxide, the alkyl
and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol
ether having an average molecular weight of 1000, diphenyl ether of polyethylene glycol
having a molecular weight of 500-1000, diethyl ether of polypropylene glycol having
a molecular weight of 1000-1500); and mono- and polycarboxylic esters thereof, for
example, the acetic acid esters, mixed C
3-C
8 fatty acid esters and C
13 Oxo acid diester of tetraethylene glycol.
[0052] Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic
acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and hydrogenated alkenyl
succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid,
adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids) with a variety
of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol,
ethylene glycol, diethylene glycol monoether, propylene glycol). Specific examples
of these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate,
dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl
phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and
the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene
glycol and two moles of 2-ethylhexanoic acid.
[0053] Esters useful as synthetic oils also include those made from C
5 to C
12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylolpropane,
pentaerythritol, dipentaerythritol and tripentaerythritol.
[0054] Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane
oils and silicate oils comprise another useful class of synthetic lubricants; they
include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate,
tetra-(4-methyl-2-ethylhexyl) silicate, tetra-(p-tert-butylphenyl) silicate, hexa-(4-methyl-2-pentoxy)disiloxane,
poly(methyl)siloxanes and poly(methylphenyl) siloxanes. Other synthetic lubricating
oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate,
trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
[0055] Unrefined, refined and rerefined oils can be used in the lubricants of the present
invention. Unrefined oils are those obtained directly from a natural or synthetic
source without further purification treatment. For example, a shale oil obtained directly
from retorting operations, a petroleum oil obtained directly from distillation or
ester oil obtained directly from an esterification process and used without further
treatment would be an unrefined oil. Refined oils are similar to the unrefined oils
except they have been further treated in one or more purification steps to improve
one or more properties. Many such purification techniques, such as distillation, solvent
extraction, acid or base extraction, filtration and percolation are known to those
skilled in the art. Rerefined oils are obtained by processes similar to those used
to obtain refined oils applied to refined oils which have been already used in service.
Such rerefined oils are also known as reclaimed or reprocessed oils and often are
additionally processed by techniques for removal of spent additives and oil breakdown
products.
[0056] Normally the amount employed of the thermally oxidatively stable lubricants of the
present invention will be 10% to 100%, preferably 20% to 90% of the total weight of
the lubricating composition.
[0057] The term "minor amount" as used in the specification and appended claims is intended
to mean that when a composition contains a "minor amount" of a specific material that
amount is less than 50 percent by weight of the composition.
[0058] The term "major amount" as used in the specification and appended claims is intended
to mean that when a composition contains a "major amount" of a specific material that
amount is more than 50 percent by weight of the composition.
[0059] The invention also contemplates the use of additives in combination with the compositions
of this invention sufficient to inhibit oxidation, corrosion, rust and improve extreme
pressure antiwear properties. Such additives include, for example, detergents and
dispersants of the ash-producing or ashless type, corrosion- and oxidation-inhibiting
agents, pour point depressing agents, extreme pressure agents, antiwear agents, color
stabilizers and anti-foam agents.
[0060] The ash-producing detergents are exemplified by oil-soluble neutral and basic salts
of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic
phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage
such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene
having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride,
phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur,
white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly
used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium,
strontium and barium.
[0061] The term "basic salt" is used to designate metal salts wherein the metal is present
in stoichiometrically larger amounts than the organic acid radical. The commonly employed
methods for preparing the basic salts involve heating a mineral oil solution of an
acid with an excess of a metal neutralizing agent such as the metal oxide, hydroxide,
carbonate, bicarbonate, or sulfide at a temperature about 50°C. The use of a "promoter"
in the neutralization step to aid the incorporation of a large excess of metal likewise
is known. Examples of compound useful as the promoter include phenolic substances
such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenol, and condensation
products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol,
octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl
alcohol; and amines such as aniline, phenylenediamine, phenothiazine, phenyl-naphthylamine,
and dodecylamine. A particularly effective method for preparing the basic salts comprises
mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and
at least one alcohol promoter, and carbonating the mixture at an elevated temperature
such as 60-200°C.
[0062] Ashless detergents and dispersants are so called despite the fact that, depending
on its constitution, the dispersant may upon combustion yield a non-volatile material
such as boric oxide or phosphorus pentoxide; however, it does not ordinarily contain
metal and therefore does not yield a metal-containing ash on combustion. Many types
are known in the art, and any of them are suitable for use in the lubricant compositions
of this invention. The following are illustrative:
(1) Reaction products of carboxylic acids (or derivatives thereof) containing at least
34 and preferably at least 54 atoms with nitrogen containing compounds such as amine,
organic hydroxy compounds such as phenols and alcohols, and/or basic inorganic materials.
Examples of these "carboxylic dispersants" are described in British Patent 1,306,529
and in many U.S. patents including the following:
| 3,163,603 |
3,351,552 |
3,541,012 |
| 3,184,474 |
3,381,022 |
3,543,678 |
| 3,215,707 |
3,399,141 |
3,542,680 |
| 3,219,666 |
3,415,750 |
3,567,637 |
| 3,271,310 |
3,433,744 |
3,574,101 |
| 3,272,746 |
3,444,170 |
3,576,743 |
| 3,281,357 |
3,448,048 |
3,630,904 |
| 3,306,908 |
3,448,049 |
3,632,510 |
| 3,311,558 |
3,451,933 |
3,632,511 |
| 3,316,177 |
3,454,607 |
3,697,428 |
| 3,340,281 |
3,467,668 |
3,725,441 |
| 3,341,542 |
3,501,405 |
4,234,435 |
| 3,346,493 |
3,522,179 |
Re 26,433 |
(2) Reaction products of relatively high molecular weight aliphatic or alicyclic halides
with amines, preferably polyalkylene polyamines. These may be characterized as "amine
dispersants" and examples thereof are described for example, in the following U.S.
patents: 3,275,554; 3,454,555; 3,438,757 and 3,565,804.
(3) Reaction products of alkyl phenols in which the alkyl group contains at least
about 30 carbon atoms with aldehydes (especially formaldehyde) and amines (especially
polyalkylene polyamines), which may be characterized as "Mannich dispersants". The
materials described in the following U.S. patents are illustrative:
| 2,459,112 |
3,442,808 |
3,591,598 |
| 2,962,442 |
3,448,047 |
3,600,372 |
| 2,984,550 |
3,545,497 |
3,634,515 |
| 3,036,003 |
3,459,661 |
3,649,229 |
| 3,166,516 |
3,461,172 |
3,697,574 |
| 3,236,770 |
3,493,520 |
3,725,277 |
| 3,355,270 |
3,539,633 |
3,725,480 |
| 3,368,972 |
3,558,743 |
3,726,882 |
| 3,413,347 |
3,586,629 |
3,980,569 |
(4) Products obtained by post-treating the carboxylic, amine or Mannich dispersants
with such reagents as urea, thiourea, carbon disulfide, aldehydes, ketones, carboxylic
acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds,
phosphorus compounds or the like. Exemplary materials of this kind are described in
the following U.S. patents:
| 3,036,003 |
3,282,955 |
3,493,520 |
3,639,242 |
| 3,087,936 |
3,312,619 |
3,502,677 |
3,649,229 |
| 3,200,107 |
3,366,569 |
3,513,093 |
3,649,659 |
| 3,216,936 |
3,367,943 |
3,533,945 |
3,658,836 |
| 3,254,025 |
3,373,111 |
3,539,633 |
3,697,574 |
| 3,256,185 |
3,403,102 |
3,573,010 |
3,702,757 |
| 3,278,550 |
3,442,808 |
3,579,450 |
3,703,536 |
| 3,280,234 |
3,455,831 |
3,591,598 |
3,704,308 |
| 3,281,428 |
3,455,832 |
3,600,372 |
3,708,422 |
(5) Interpolymers of oil-solubilizing monomers such as decyl methacrylate, vinyl decyl
ether and high molecular weight olefins with monomers containing polar substituents,
e.g., aminoalkyl acrylates or acrylamides and poly-(oxyethylene)-substituted acrylates.
These may be characterized as "polymeric dispersants" and examples thereof are disclosed
in the following U.S. patents: 3,329,658; 3,366,730; 3,449,250; 3,687,849; 3,519,565
and 3,702,300.
[0063] Extreme pressure agents and corrosion- and oxidation-inhibiting agents which may
be included in this invention are exemplified by chlorinated aliphatic hydrocarbons
such as chlorinated wax; aromatic amines such as dioctyl diphenylamine, hindered phenols
such as methylenebis-2,6-t-butyl phenol, organic sulfides and polysulfides such as
benzyl disulfide, bis(chlorobenzyl) disulfide, dibutyl tetrasulfide, sulfurized methyl
ester of oleic acid, sulfurized alkylphenol, sulfurized dipentene, and sulfurized
terpene; phosphosulfurized hydrocarbons such as the reaction product of a phosphorus
sulfide with turpentine or methyl oleate, phosphorus esters including principally
dihydrocarbon and trihydrocarbon phosphites such as dibutyl phosphite, diheptyl phosphite,
dicyclohexyl phosphite, pentylphenyl phosphite, dipentylphenyl phosphite, tridecyl
phosphite, distearyl phosphite, dimethyl naphthyl phosphite, oleyl 4-pentylphenyl
phosphite, polypropylene (molecular weight 500)-substituted phenyl phosphite, diisobutyl-substituted
phenyl phosphite; metal thiocarbamates, such as zinc dioctyldithiocarbamate, and barium
heptylphenyl dithiocarbamate; Group II metal phosphorodithioates such as zinc dicyclohexylphosphorodithioate,
zinc dioctylphosphorodithioate, barium di(heptylphenyl)-phosphorodithioate, cadmium
dinonylphosphorodithioate, and the zinc salt of a phosphorodithioic acid produced
by the reaction of phosphorus pentasulfide with an equimolar mixture of isopropyl
alcohol and n-hexyl alcohol.
[0064] Many of the above-mentioned extreme pressure agents and corrosion- oxidation inhibitors
also serve as antiwear agents. Zinc dialkyiphosphorodithioates are a well known example.
[0065] Pour point depressants are a particularly useful type of additive often included
in the lubricating oils described herein. The use of such pour point depressants in
oil-based compositions to improve low temperature properties is well known in the
art. See, for example, page 8 of "Lubricant Additives" by C.V. Smalheer and R, Kennedy
Smith (Lezius-Hiles Co. publishers, Cleveland, Ohio, 1967).
[0066] Examples of useful pour point depressants are polymethacrylates, polyacrylates; polyacrylamides;
condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate
polymers; and terpolymers of dialkylfumarates, vinylesters of fatty acids and alkylvinylethers.
Pour point depressants useful for the purposes of this invention, techniques for their
preparation and their uses are described in U.S. Patents 2,387,501; 2,015,748; 2,655,479;
1,815,022; 2,191,498; 2,666,746; 2,721,877; 2,721,878; and 3,250,715.
[0067] Anti-foam agents are used to reduce or prevent the formation of stable foam. Typical
anti-foam agents include silicones or organic polymers. Additional anti-foam compositions
are described in "Foam Control Agents", by Henry T. Kerner (Noyes Data Corporation,
1976), pages 125-162.
[0068] The thermal stability of a composition of this invention, as measured by thermal
gravimetric analysis on the product of Example 3, employing a DuPont Instruments 951
Thermogravimetric analyzer, is shown in the following Table I. The higher the onset
temperature, the greater the thermal stability possessed by the composition. Commercially
available synthetic fluids that have utility as thermally stable fluids include Emery
3004, a poly alpha-olefin available from Emery Industries, Inc. and Emery 2982, a
polyol neo ester available from Emery Industries, Inc. These commercially available
fluids are shown as baselines in Table I.
Table I
| Thermal Gravimetric Analysis |
| Sample |
Onset Temperature °C |
| Emery 3004 (baseline) |
238 |
| Emery 2982 (baseline) |
250 |
| Example 2 |
312 |
1. An aromatic carboxylic acid ester of the general formula

wherein Ar is an aromatic moiety, R is a neo hydrocarbyl group containing from 5
to 18 carbon atoms, with the proviso that R is not a cycloalkyl substituted neo hydrocarbyl
group, R
1 is a mono, di, tri or tetravalent neo hydrocarbyl group, containing from 5 to 18
carbon atoms, n is an integer from 2 to 4 and represents the total number of carboxylic
acid ester groups on the aromatic moiety, R
2 is a hydrocarbyl group derived from a diol containing from 2 to 18 carbon atoms,
x is an integer from 0 to 4, and a is an integer from 1 to 4, and when a is 1, R
1 is monovalent; when a is 2, R
1 is divalent; when a is 3, R
1 is trivalent and derived from a triol of formula

wherein R
6 is a hydrocarbyl group containing from 1 to 14 carbon atoms; and when a is 4, R
1 is tetravalent and derived from a tetraol of formula

wherein R
a, R
b, R
c and R
d may be the same or different and are hydrocarbyl groups containing from zero up to
3 carbon atoms, and when the hydrocarbyl groups R
a, R
b, R
c and R
d contain no carbon atoms. R
1 is derived from pentaerythritol; with the proviso that when Ar is a single ring,
a is 1 and x is 0, n is an integer other than 4.
2. A compound according to claim 1 wherein the aromatic moiety is a benzene or naphthalene
moiety.
3. A compound according to either of claims 1 and 2 wherein n is 2 or 3.
4. A compound according to any preceding claim wherein x is 0.
5. A compound according to any preceding claim wherein a is 2, 3 or 4.
6. An aromatic carboxylic acid ester in accordance with claim 1 of the general formula

wherein n, R
2 and x are as defined in claim 1, R is a neo hydrocarbyl group containing from 5 to
10 carbon atoms, R
1 is a neo-hydrocarbyl group containing from 5 to 16 carbon atoms, and a is an integer
from 2 to 4.
7. A compound according to claim 6 wherein a is 2, 3 or 4 and R1 is a group containing from 5 to 12 carbon atoms.
8. An aromatic carboxylic acid ester having the formula

wherein R is a neo hydrocarbyl group containing from 5 to 18 carbon atoms and Z is
selected from

and -0-.
9. An aromatic carboxylic acid ester having the formula

wherein R is a neo hydrocarbyl group containing from 5 to 18 carbon atoms and Z is
selected from

and -0-.
10. An aromatic carboxylic acid ester of the formula

wherein R
5 is a hydrocarbyl group containing from 2 to 18 carbon atoms, with the proviso that
R
5 is a primary hydrocarbyl group other than a neo hydrocarbyl group, and n is 2.
11. A compound according to claim 10 wherein R5 is a hydrocarbyl group containing from 5 to 18 carbon atoms.
12. An aromatic carboxylic acid ester of the general formula

wherein Ar, n, R
2 and x are as defined in claim 1, R
5 is a linear hydrocarbyl group containing from to 18 carbon atoms, R
1 is a di, tri, or tetravalent neo hydrocarbyl group as defined in claim 1, and a is
an integer from to 4, with the proviso that when Ar is C
6H
4, n is 2, a is 2, x is 0 or 1 and R
1 is C
5H
10, R
5 is other than an alkyl group containing from 1 to 10 carbon atoms and where AR is
C
6H
4, n is 3, a is 2, x is 0, R
1 is neopentyl and contains from 2 to 10 carbon atoms, R
5 is other than an alkyl group containing from 14 to 35 carbon atoms.
13. An aromatic carboxylic acid ester of the general formula

wherein Ar, n, R
1, a and x are as defined in claim 1, and R
8 is independently R or R
5, and at least one R and at least one R
5 group are present in the ester, wherein R is a neo hydrocarbyl group containing from
5 to 18 carbon atoms, with the proviso that R is not a cycloalkyl substituted neo
hydrocarbyl group, R
5 is a linear primary hydrocarbyl group containing from to 18 carbon atoms, with the
proviso that n is not 2, and with the further proviso that when Ar is a single ring,
a is I and x is 0, n is an integer other than 4.
14. A concentrate which comprises a minor proportion of a lubricating oil and a major
proportion of an aromatic carboxylic acid ester according to any one of the preceding
claims.
15. A concentrate which comprises a minor proportion of a lubricating oil and a major
proportion of an aromatic carboxylic acid ester of the general formula

wherein Ar, n, R
2 and x are as defined in claim 1, R
5 is a linear hydrocarbyl group containing from to 18 carbon atoms, R
1 is a neo hydrocarbyl group as defined in claim 1. and a is an integer from to 4,
with the proviso that when AR is C
6H
4, n is 3. a is 2, x is 0, R
1 is neopentyl and contains from 2 10 carbon atoms, R
5 is other than an alkyl group containing from 14 to 35 carbon atoms.
16. A lubricant composition which comprises a major proportion of a lubricating oil and
a minor proportion of an aromatic carboxylic acid ester according to any one of claims
1 to 13.
17. A lubricant composition which comprises a major proportion of a lubricating oil and
a minor proportion of an aromatic carboxylic acid ester of the general formula

wherein Ar, n, R
2 and x are as defined in claim 1, R
5 is a linear hydrocarbyl group containing from 2 to 18 carbon atoms, R
1 is a neo hydrocarbyl group as defined in claim 1 and a is an integer from to 4, which
the proviso that when AR is C
6H
4, n is 3, a is 2, x is 0. R
1 is neopentyl and contains from 2 to 10 carbon atoms, R
5 is other than an alkyl group containing from 14 to 35 carbon atoms.
18. A thermal oxidatively stable synthetic fluid composition comprising an aromatic carboxylic
acid ester according to any one of claims 1 to 13.
1. Ein aromatischer Carbonsäureester der allgemeinen Formel (I)

in der Ar ein aromatischer Rest, der Rest R ein Neohydrocarbylrest mit 5 bis 18 Kohlenstoffatomen
ist, mit der Maßgabe, daß R kein Cycloalkyl-substitaierter Neohydrocarbylrest ist,
der Rest R
1 ein ein-, zwei-, drei- oder vierwertiger Neohydrocarbylrest mit 5 bis 18 Kohlenstoffatomen
ist, n eine ganze Zahl von 2 bis 4 ist und die Gesamtzahl der Carbonsäureestergruppen
am aromatischen Rest darstellt, der Rest R
2 ein Hydrocarbylrest ist, der sich von einem Diol mit 2 bis 18 Kohlenstoffatomen ableitet,
x eine ganze Zahl von 0 bis 4 ist und a eine ganze Zahl von 1 bis 4 ist, und wenn
a den Wert 1 hat, der Rest R
1 einwertig ist, wenn a den Wert 2 hat, der Rest R
1 zweiwertig ist, wenn a den Wert 3 hat, der Rest R
1 dreiwertig ist und sich von einem Triol der allgemeinen Formel

ableitet, in der R
6 ein Hydrocarbylrest mit 1 bis 14 Kohlenstoffatomen ist, und wenn a den Wert 4 hat,
der Rest R
1 vierwertig ist und sich von einem Tetraol der allgemeinen Formel

ableitet, in der die Reste R
a, R
b, R
c und R
d gleich oder verschieden sind und Hydrocarbylreste mit 0 bis 3 Kohlenstoffatomen sind,
und wenn die Hydrocarbylreste R
a, R
b, R
c und R
d keine Kohlenstoffatome enthalten, R
1 sich von Pentaerythrit ableitet, mit der Maßgabe, wenn der Rest Ar ein einziger Ring
ist, a den Wert 1 und x den Wert 0 hat und n eine ganze Zahl verschieden von 4 ist.
2. Verbindung nach Anspruch 1, wobei der aromatische Rest ein Benzol- oder Naphthalinrest
ist.
3. Verbindung nach Anspruch 1 oder 2, wobei n den Wert 2 oder 3 hat.
4. Verbindung nach einem der Ansprüche 1 bis 3, wobei x den Wert 0 hat.
5. Verbindung nach einem der Ansprüche 1 bis 4, wobei a den Wert 2, 3 oder 4 hat.
6. Ein aromatischer Carbonsäureester nach Anspruch 1 der allgemeinen Formel (IV)

in der n, R
2 und x die in Anspruch 1 angegebene Bedeutung haben, der Rest R ein Neohydrocarbylrest
mit 5 bis 10 Kohlenstoffatomen ist, der Rest R
1 ein Neohydrocarbylrest mit 5 bis 16 Kohlenstoffatomen ist und a eine ganze Zahl von
2 bis 4 ist.
7. Verbindung nach Anspruch 6, wobei a den Wert 2, 3 oder 4 hat und der Rest R1 ein Rest mit 5 bis 12 Kohlenstoffatomen ist.
8. Ein aromatischer Carbonsäureester der allgemeinen Formel (II)

in der der Rest R ein Neohydrocarbylrest mit 5 bis 18 Kohlenstoffatomen ist und Z
ausgewählt ist aus:
9. Ein aromatischer Carbonsäureester der allgemeinen Formel (III)

in der der Rest R ein Neohydrocarbylrest mit 5 bis 18 Kohlenstoffatomen ist und Z
ausgewählt ist aus:

und -O-.
10. Ein aromatischer Carbonsäureester der allgemeinen Formel (V)

in der der Rest R
5 ein Hydrocarbylrest mit 2 bis 18 Kohlenstoffatomen ist, mit der Maßgabe, daß R
5 ein anderer primärer Hydrocarbylrest ist als ein Neohydrocarbylrest, und n den Wert
2 hat.
11. Eine Verbindung nach Anspruch 10, wobei R5 ein Hydrocarbylrest mit 5 bis 18 Kohlenstoffatomen ist.
12. Ein aromatischer Carbonsäureester der allgemeinen Formel (VI)

in der Ar, n, R
2 und x die in Anspruch 1 angegebene Bedeutung haben, der Rest R
5 ein linearer Hydrocarbylrest mit 2 bis 18 Kohlenstoffatomen ist, der Rest R
1 ein zwei-, drei- oder vierwertiger Neohydrocarbylrest gemäß Anspruch 1 ist, und a
einen Wert von 2 bis 4 hat, mit der Maßgabe, wenn Ar der Rest C
6H
4 ist, n den Wert 2, a den Wert 2, x den Wert 0 oder 1 hat und R
1 der Rest C
5H
10 ist, R
5 keine Alkylgruppe mit 1 bis 10 Kohlenstoffatomen ist, und wenn Ar der Rest C
6H
4 ist, n den Wert 3, a den Wert 2, x den Wert 0 hat, R
1 Neopentyl mit 2 bis 10 Kohlenstoffatomen ist, R
5 keine Alkylgruppe mit 14 bis 35 Kohlenstoffatomen ist.
13. Ein aromatischer Carbonsäureester der allgemeinen Formel (VII)

in der Ar, n, R
1, a und x die in Anspruch 1 angegebene Bedeutung haben und R
8 unabhängig den Rest R oder R
5 bedeutet, und mindestens ein Rest R und mindestens ein Rest R
5 im Ester vorliegen, wobei R ein Neohydrocarbylrest mit 5 bis 18 Kohlenstoffatomen
ist, mit der Maßgabe, daß R kein Cycloalkyl-substituierter Neohydrocarbylrest ist,
R
5 ein linearer primärer Hydrocarbylrest mit 2 bis 18 Kohlenstoffatomen ist, mit der
Maßgabe, daß n nicht den Wert 2 hat, und mit der weiteren Maßgabe, wenn Ar ein einziger
Ring ist, a den Wert 1 und x den Wert 0 hat und n eine ganze Zahl verschieden von
4 ist.
14. Ein Konzentrat, umfassend einen kleineren Anteil eines Schmieröls und einen größeren
Anteil eines aromatischen Carbonsäureesters nach einem der Ansprüche 1 bis 13.
15. Ein Konzentrat, umfassend einen kleineren Anteil eines Schmieröls und einen größeren
Anteil eines aromatischen Carbonsäureesters der allgemeinen Formel (VI)

in der Ar, n, R
2 und x die in Anspruch 1 angegebene Bedeutung haben, der Rest R
5 ein linearer Hydrocarbylrest mit 2 bis 18 Kohlenstoffatomen ist, der Rest R
1 ein Neohydrocarbylrest gemäß Anspruch 1 ist, und a eine ganze Zahl von 2 bis 4 ist,
mit der Maßgabe, wenn Ar der Rest C
6H
4 ist, n den Wert 3, a den Wert 2, x den Wert 0 hat, R
1 Neopentyl mit 2 bis 10 Kohlenstoffatomen ist, R
5 keine Alkylgruppe mit 14 bis 35 Kohlenstoffatomen ist.
16. Eine Schmiermittelzusammensetzung, umfassend einen größeren Anteil eines Schmieröls
und einen kleineren Anteil eines aromatischen Carbonsäureesters nach einem der Ansprüche
1 bis 13.
17. Eine Schmiermittelzusammensetzung, umfassend einen größeren Anteil eines Schmieröls
und einen kleineren Anteil eines aromatischen Carbonsäureesters der allgemeinen Formel
(VI)

in der Ar, n, R
2 und x die in Anspruch 1 angegebene Bedeutung haben, der Rest R
5 ein linearer Hydrocarbylrest mit 2 bis 18 Kohlenstoffatomen ist, der Rest R
1 ein Neohydrocarbylrest gemäß Anspruch 1 ist, und a eine ganze Zahl von 2 bis 4 ist,
mit der Maßgabe, wenn Ar der Rest C
6H
4 ist, n den Wert 3, a den Wert 2, x den Wert 0 hat, R
1 Neopentyl mit 2 bis 10 Kohlenstoffatomen ist, R
5 keine Alkylgruppe mit 14 bis 35 Kohlenstoffatomen ist.
18. Eine thermisch-oxidativ stabile synthetische fließfähige Zusammensetzung, umfassend
einen aromatischen Carbonsäureester nach einem der Ansprüche 1 bis 13.
1. Un ester d'acide aromatique carboxylique de la formule générale

dans laquelle Ar est une partie aromatique, R est un groupe néo-hydrocarbyle renfermant
de 5 à 18 atomes de carbone, sous la condition que R n'est pas un groupe néo-hydrocarbyle
à substitution cycloalkyle, R
1 est un groupe néo-hydrocarbyle mono-, di-, tri- ou tétravalent, renfermant de 5 à
18 atomes de carbone, n est un nombre entier de 2 à 4 et représente le nombre total
de groupes acide carboxylique estérifiés sur la partie aromatique, R
2 est un groupe hydrocarbyle dérivé d'un diol renfermant de 2 à 18 atomes de carbone,
x est un nombre entier de 0 à 4, et a est un nombre entier de 1 à 4, et lorsque a
est 1, R
1 est monovalent ; lorsque a est 2, R
1 est divalent ; lorsque a est 3, R
1 est trivalent et dérivé d'un triol de formule

dans laquelle R
6 est un groupe hydrocarbyle renfermant de 1 à 14 atomes de carbone ; et lorsque a
est 4, R
1 est tétravalent et dérivé d'un tétraol de la formule

dans laquelle R
a, R
b, R
c et R
d peuvent être identiques ou différents et sont des groupes hydrocarbyles renfermant
de 0 jusqu'à 3 atomes de carbone, et lorsque les groupes hydrocarbyle R
a, R
b, R
c et R
d ne renferment pas d'atomes de carbone, R
1 est dérivé du pentaérythritol, sous la condition que, lorsque Ar est un cycle unique,
a est 1 et x est 0, n est un nombre entier différent de 4.
2. Un composé selon la revendication 1, dans lequel la partie aromatique est une partie
benzénique ou naphtalénique.
3. Un composé selon l'une quelconque des revendications 1 et 2, dans lequel n est 2 ou
3.
4. Un composé selon l'une quelconque des revendications précédentes, dans lequel x est
0.
5. Un composé selon l'une quelconque des revendications précédentes, dans lequel a est
2, 3 ou 4.
6. Un ester d'acide aromatique carboxylique selon la revendication 1, de la formule générale

dans laquelle n, R
2 et x sont tels que définis dans la revendication 1, R est un groupe néo-hydrocarbyle
renfermant de 5 à 10 atomes de carbone, R
1 est un groupe néo-hydrocarbyle, renfermant de 5 à 16 atomes de carbone, et a est
un nombre entier de 2 à 4.
7. Un composé selon la revendication 8, dans lequel a est 2, 3 ou 4 et R1 est un groupe renfermant de 5 à 12 atomes de carbone.
8. Un ester d'acide aromatique carboxylique ayant la formule

dans laquelle R est un groupe néo-hydrocarbyle contenant de 5 à 18 atomes de carbone
et Z est choisi parmi

et - 0 - .
9. Un ester d'acide carboxylique aromatique ayant la formule

dans laquelle R est un groupe néo-hydrocarbyle renfermant de 5 à 18 atomes de carbone
et Z est choisi parmi

et -0-.
10. Un ester d'acide aromatique carboxylique de la formule

dans laquelle R
5 est un groupe hydrocarbyle renfermant de 2 à 18 atomes de carbone, sous la condition
que R
8 est un groupe hydrocarbyle primaire différent d'un groupe néo-hydrocarbyle, et n
est 2.
11. Un composé selon la revendication 10, dans lequel R5 est un groupe hydrocarbyle renfermant de 5 à 18 atomes de carbone.
12. Un ester d'acide aromatique carboxylique de la formule générale

dans laquelle Ar, n, R
2 et x sont tels que définis dans la revendication 1, R
5 est un groupe hydrocarbyle linéaire renfermant de 2 à 18 atomes de carbone, R
1 est un groupe néo-hydrocarbyle di-, tri- ou tétravalent tel que défini dans la revendication
1, et a est un nombre entier de 2 à 4, sous la condition que, lorsque A est C
6H
4, n est 2, a est 2, x est 0 ou 1 et R
1 est C
5H
10, R
5 est différent d'un groupe alkyle contenant de 1 à 10 atomes de carbone et lorsque
Ar est C
6H
4, n est 3, a est 2, x est 0, R
1 est du néopentyle et renferme de 2 à 10 atomes de carbone, R
5 est différent d'un groupe alkyle renfermant de 14 à 35 atomes de carbone.
13. Un ester d'acide aromatique carboxylique de la formule générale

dans laquelle Ar, n, R
1, a et x sont tels que définis dans la revendication 1, et R
8 représente indépendamment R ou R
5, et au moins un groupe R ainsi qu'au moins un groupe R
5 sont présents dans l'ester, dans lequel R est un groupe néo-hydrocarbyle renfermant
de 5 à 18 atomes de carbone, sous la condition que R n'est pas un groupe néo-hydrocarbyle
à substitution cycloalkyle, R
5 est un groupe hydrocarbyle linéaire primaire, renfermant de 2 à 18 atomes de carbone,
sous la condition que n n'est pas 2, et en outre sous la condition que, lorsque Ar
est un cycle unique, a est 1 et x est 0, n est un nombre entier différent de 4.
14. Un concentré qui comprend une proportion mineure d'une huile lubrifiante et une proportion
prépondérante d'un ester d'acide aromatique carboxylique selon l'une quelconque des
revendications précédentes.
15. Un concentré qui comporte une proportion mineure d'une huile lubrifiante et une proportion
prépondérante d'un ester d'acide aromatique carboxylique de la formule générale

dans laquelle Ar, n, R
2 et x sont tels que définis dans la revendication 1, R
5 est un groupe hydrocarbyle linéaire renfermant de 2 à 18 atomes de carbone, R
1 est un groupe néo-hydrocarbyle tel que défini dans la revendication 1 et a est un
nombre entier de 2 à 4, sous la condition que lorsque Ar est C
6H
4, n est 3, a est 2, x est 0, R
1 est du néopentyle et renferme de 2 à 10 atomes de carbone, R
5 est différent d'un groupe alkyle renfermant de 14 à 35 atomes de carbone.
16. Une composition lubrifiante qui comporte une proportion prépondérante d'une huile
lubrifiante et une proportion mineure d'un ester d'acide aromatique carboxylique selon
l'une quelconque des revendications 1 à 13.
17. Une composition lubrifiante qui comporte une proportion prépondérante d'une huile
lubrifiante et une proportion mineure d'un ester d'acide aromatique carboxylique de
la formule générale

dans laquelle Ar, n, R
2 et x sont tels que définis dans la revendication 1, R
5 est un groupe hydrocarbyle linéaire, renfermant de 2 à 18 atomes de carbone, R
1 est un groupe néo-hydrocarbyle tel que défini dans la revendication 1, et a est un
nombre entier de 2 à 4, sous la condition que lorsque Ar est C
6H
4, n est 3, a est 2, x est 0, R
1 est un néopentyle et renferme de 2 à 10 atomes de carbone, R
5 est différent d'un groupe alkyle renfermant de 14 à 35 atomes de carbone.
18. Une composition fluide synthétique stable à la chaleur et à l'oxydation, comportant
un ester d'acide aromatique carboxylique selon l'une quelconque des revendications
1 à 13.