FIELD OF THE INVENTION
[0001] This invention relates to the regulation of air pressure in response to electrical
signals and in particular to a transducer for converting an electrical current to
a corresponding pressure in a system that uses compressed air. The invention also
relates to a nozzle that is useful with the current-to-pressure transducer and in
particular to a self-correcting nozzle structure.
BACKGROUND OF THE INVENTION
Description of the Prior Art
[0002] Compressed air is used in many systems for controlling machinery because compressed
air is immune to electrical interference and is safe in explosive environments. Compressed
air is generally used, for example, to control valves and other mechanical devices
in industrial systems. When using compressed air in a system, sensors are generally
provided that generate small electrical currents, in the range of 4 to 20 milliamperes,
for example. These currents are used to establish a corresponding pressure of the
compressed air and to provide a sufficient volume of pressurized air for accomplishing
the desired mechanical task. In some systems, the conversion from electrical current
to a corresponding pressure is accomplished by use of a current-to-pressure transducer
that is capable of regulating the pressure of a small volume of air, wherein the volume
of air is amplified by using standard pneumatic amplifiers. In the conventional current-to-pressure
transducer, a nozzle is supplied that directs compressed air to the atmosphere at
a rate determined by the proximity of a flapper valve to a nozzle orifice. The flapper
valve is generally mounted on a rotating suspension and is rotated by magnetic forces
that are generated by an electromagnet. The flapper is rotated toward the nozzle so
that the air that escapes to the atmosphere is reduced. Such prior art devices are
formed as delicate mechanical assemblies that require several adjustments during fabrication
and are relatively expensive to produce.
[0003] A nozzle is a converging or converging-diverging tube attached to the outlet of a
pipe, hose or pressure chamber. The purpose of the nozzle is to convert the pressure
existing in a fluid into velocity efficiently. A nozzle allows a pressure to be carried
in a pipe or hose adjacent to the nozzle.
[0004] Presently known nozzles used for controlling air flow generally terminate with an
outer diameter slightly larger than the inner diameter. Typically, the outer diameter
of a nozzle would be 0.035 inch (0,89 mm) and the inner diameter would be 0.026 inch
(0,66 mm), by way of example. The current-to-pressure transducers that use such type
nozzles usually incorporate a flapper, which is a pivotable paddle-shaped part, or
a diaphragm to vary the flow of air through the nozzle. In either case, it is necessary
that a good seal be provided at the end of the transducer from which there is the
high flow of air or fluid. In order to achieve the required good seal, the flapper
or diaphragm must be precisely aligned in a plane that is perpendicular to the axis
of the nozzle. If the alignment is not proper, the flapper or diaphragm will first
strike an edge of the nozzle end and will not advance further towards making an effective
complete seal. It is relatively difficult to provide the desired orthogonal alignment
of the flapper or diaphragm in a planar orientation relative to the nozzle axis.
[0005] The generic U.S. Patent 4,579,137 describes a transducer including a membrane 22
on which a magnetic button 22A is positioned. When the magnetic button is attracted
to a post 12B, the air gap between the button 22A and a magnetic part 14 in which
a port 24 is formed increases in size. The sum of the air gaps between the button
22A and the magnetic part 14, and between the button 22A and the post 12 remains constant.
The undesirable air gap between button 22A and the magnetic part 14 adversely affects
the efficiency of the magnetic circuit and consequently impairs the proper control
of the air pressure in the patented device.
[0006] U.S. Patent 4,053,952 describes the use of a magnetic fluid for occluding a tube
that is disposed within the body of a human. The patented device used no moving parts
in the mechanism, which serves as a valve or a pump selectively. The patent states
that when the magnetic field of the permanent magnets is present, the pressure of
the magnetic fluid forces the membrane against a pole piece thus occluding the flow
passage (column 5, lines 34-37). The patented device serves as an on-off valve or
pump, but does not act to vary the size of an air gap in response to an input current
that varies the strength of a magnetic field in selected regions of a magnetic fluid.
In the patent, a bucking magnetic field is required to counteract the magnetic field
from the permanent magnet (col.4, line 11-17) which surrounds the portion of the tube
that is to be affected by the pressure which the patent alleges occurs in the magnetic
fluid. The patent does not teach how to move a membrane by using a magnetic fluid,
and assumes (as shown in Fig. 2) that an essentially uniform magnetic field acting
on the entire volume of magnetic fluid creates a pressure within that fluid to cause
displacement of a membrane. The patented device requires compression or expansion
of the fluid, or the generation of regions of vacuum within the chamber containing
the magnetic fluid in order for his device to be operable. As illustrated in Figure
2 of the patent, if the membrane 38 were to move either the volume of magnetic fluid
28 would have to increase, or a region of vacuum would have to be created within the
chamber containing the fluid 28. The compressibility of fluids is such that the change
in volume is negligible and any region of vacuum would be opposed by the ambient or
atmospheric pressure to which the contents of the reservoir 14 are vented. The atmospheric
pressure that is transmitted through the membrane 38 to the magnetic fluid at all
times is greater than any pressure that can be generated by magnetic means. Therefore
the diaphragm 38 described in the patent does not move.
[0007] It is highly desirable to employ a simple current-to-pressure transducer that lends
itself to facile production at low cost without the need for individual mechanical
adjustments.
SUMMARY OF THE INVENTION
[0008] An object of this invention is to provide a current-to-pressure transducer that regulates
the air pressure within an air supply line so that the pressure differential between
this line and ambient air pressure varies substantially linearly with an applied electrical
current. Henceforth, the word "pressure" will be used to mean the pressure relative
to the environment.
[0009] Another object of this invention is to provide a transducer that is relatively efficient
and has uniform characteristics so that individual adjustments need not be made.
[0010] Another object is to provide a current-to-pressure transducer that can be mass produced
at low cost.
[0011] A further object is to provide a current-to-pressure transducer that is immune to
electrical interference and is safe in explosive environments.
[0012] Another object of this invention is to provide a nozzle and pole piece structure
that affords an effective complete seal at the nozzle end from which fluid or air
flows to the ambient environment.
[0013] Another object of this invention is to provide an integral nozzle and pole piece
structure which is easier to manufacture than prior known nozzles of this type.
[0014] In accordance with this invention, a current-to-pressure transducer incorporates
a magnetic fluid that is in contact with a flexible membrane or diaphragm. The diaphragm
responds to forces exerted on the magnetic fluid and moves towards a nozzle to narrow
the space through which the air flowing from the nozzle is passed to the ambient environment.
The diaphragm moves in accordance with an electrical input current. The current is
applied to a coil wound around a magnetic circuit that moves the flexible membrane
towards the nozzle by means of the magnetic fluid. Movement of the membrane towards
the nozzle decreases the flow of air from the nozzle and increases the pressure of
the air within the air supple line. In one embodiment pressure sensing means and electronic
feedback are used to achieve the desired linearity between the pressure within the
line supplying air to the nozzle and the electrical input current.
[0015] Another feature of this invention is a self-correcting nozzle and pole piece structure
that is useful with a current-to-pressure transducer is formed from an integral piece
of magnetic material. The nozzle and pole piece structure is formed so that the respective
ends of the nozzle and pole piece which face the sealing element, which in this case
is a flexible diaphragm, are coplanar. The nozzle structure provides a self-correcting
feature that compensates for any canting or misalignment of the diaphragm. Slots are
provided at the end of the integral piece facing the diaphragm to allow the escape
of excess air.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] The invention will be described in greater detail with reference to the drawing in
which:
Figure 1 is a side cross-sectional view of a current-to-pressure transducer, made
in accordance with this invention;
Figure 2 is a side cross-sectional view of an alternative implementation of the current-to-pressure
transducer of this invention;
Figure 3 is a cross-sectional view, partly broken away, of another implementation
of the invention/
Figure 4 is an enlarged isometric view, partly broken away, showing the relationship
of a pole piece 11 to the nozzle 10 and the nozzle air supply line 24, as used in
the transducer of this invention;
Figure 5 is a representative curve plotting pressure against current without electronic
feedback to aid in the explanation of the operation of the current-to-pressure transducer;
Figure 6 is a side view of a nozzle and pole piece, made in accordance with this invention;
Figure 7 is an end view at the slotted end of the nozzle and pole piece structure,
such as illustrated in Fig. 6;
Figure 8A is an enlarged cross-sectional view, partly broken away, taken across lines
A-A′ of Fig. 7;
Figure 8B is an enlarged cross-sectional view, partly broken away, taken across lines
B-B′ of Fig. 7;
Figure 9 is an exploded view of an assembly drawing illustrating the housing which
encloses the nozzle and pole piece structure; and
Figure 10 s an isometric view illustrating an assembled housing which encloses the
nozzle and pole piece structure of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
[0017] With reference to Fig. 1, the current-to-pressure transducer of this invention receives
compressed air from a pneumatic amplifier 32. The current-to-pressure transducer includes
an air supply line 24 having a nozzle 10 at one end and is coupled at the other end
to the pneumatic amplifier 32.
[0018] A baseplate 19 made of magnetically soft material is joined to a magnetic member
20 by a screw 37 or other suitable means. A magnetic member 21 is attached to the
member 20 by a screw 38 or other attachment means. A cylindrical magnetic member 22
is positioned in contact with and partly within an aperture of the magnetic member
21. As illustrated in Fig. 4, a pole piece 11 is provided at the upper end of the
tubular member 22.
[0019] The baseplate 19 is formed with two chambers 14 and 16 that are connected by a capillary
tube 15. In keeping with this invention, a magnetic fluid 30 which may be a colloidal
suspension of magnetic particles in a nonmagnetic carrier, such as Ferrofluid (a trademark
of Ferrofluidics Corporation, Nashua, New Hampshire) is provided to chambers 14 and
16 and the capillary tube 15. The magnetic fluid 30 may also be any composite, noncolloidal
material that is not capable of supporting shear forces and that exhibits a magnetic
susceptibility. A plug 18 is provided to enable filling the capillary tube 15 and
chambers 14 and 16 with magnetic fluid 30.
[0020] A coil 23 is wound around a portion of the magnetic member 22. Baseplate 19, magnetic
members 20, 21, 22, the gap between pole piece 11 and the magnetic fluid 30 in chamber
14 and the magnetic fluid 30 in chamber 14 form a magnetic circuit. When current is
applied to the coil 23, the magnitude of the magnetic flux at the pole piece 11 is
varied in accordance with the magnitude of the current signal.
[0021] In accordance with this invention, flexible membranes or diaphragms 13 and 17 are
located respectively at the lower open ends of the chambers 14 and 16 to seal the
ends of the chambers and to contain the magnetic fluid 30 within the chambers. The
flexible membranes 13 and 17 are retained by a nonmagnetic retainer element or ring
25 which abuts the diaphragms. The element 25 is fastened at its exposed surface to
the baseplate 19 by screws or other suitable means.
[0022] In operation, the pneumatic amplifier 32 provides compressed air through the air
supply line 24 to the nozzle 10. The air passes through the space between the diaphragm
13 and the surface of the nozzle 10. Escape holes 12 or other suitable means are provided
in the upper portion of the magnetic member 22, as shown in Fig. 4 to prevent undesirable
pressure build up between the pole piece 11 and diaphragm 13. An air pressure sensor
26 senses the pressure of the compressed air that is passing through the air supply
line 24 and generates a signal representative of the pressure value. The signal is
provided to an electronic feedback circuit 27, which also receives the input current
through lead 34. The input current and the signal representative of the pressure value
are compared in the circuit 27 and a current representative of this comparison is
provided to the coil 23. The electronic feedback circuit 27 adjusted the actual current
to the coil 23 so that the pressure in the air line 24 is substantially linear with
the input current. The input current during operation maintains the coil in an excited
state and as a result the pole piece 11 distributes magnetic flux in the area adjacent
to the diaphragm 13. The magnitude of the magnetic flux emanating from the pole piece
11 varies with variations in the current supplied to the coil 23. The magnetic fluid
30 in chamber 14 is attracted towards the pole piece 11 and the diaphragm 13 is deformed
to an extent directly related to the magnitude of the current which is applied to
the coil 23. The diaphragm 13 deforms and moves partially towards the pole piece 11
so that the space between the diaphragm 13 and the nozzle 10 decreases. As a result,
the pressure of air within the air line 24 supplying air to the nozzle 10 is increased.
During the deformation of the diaphragm 13 resulting from the magnetic fluid 30 being
moved towards the pole piece 11, the volume of magnetic fluid that is displaced in
chamber 14 associated with the displacement of diaphragm 13 is provided from chamber
16 to chamber 14. The diaphragm 17 moves inwardly to the chamber 16 in an equal and
opposite direction to diaphragm 13.
[0023] With reference to Fig. 2, the air supply line 24 including the nozzle 10 is located
under the chamber 16. The coil 23 and the associated magnetic members 20, 21, 22,
baseplate 19 and pole piece 11 remain in association with the chamber 14 for coaction
with the diaphragm 13. An increase in current to the coil 23 causes the diaphragm
13 to deform toward the pole piece 11 and the volume of magnetic fluid that is displaced
from chamber 16 to chamber 14 causes the diaphragm 17 to move away from the nozzle
10. Consequently, the pressure of the air in line 24 is decreased. In this embodiment
of Fig. 2, the air line 24 is made of nonmagnetic material such as aluminum, or alternatively
is magnetically isolated from the magnetic circuit which includes the coil 23 and
the magnetic member 31, inter alia.
[0024] A feature of this invention is the insensitivity to gravitational or acceleration
forces. Because the magnetic fluid 30 is relatively incompressible, the diaphragms
13 and 17 move equally in opposite directions. In those embodiments in which the diaphragms
are coplanar, the transducer is insensitive to forces that are applied perpendicularly
to the plane of the diaphragms. The transducer is relatively insensitive to forces
that are applied perpendicularly to the plane of the drawing and a line through the
centers of the chambers, irrespective of whether the diaphragms are coplanar. Also
the viscous damping that is associated with transport of the fluid 30 through the
capillary 15 causes the transducer to be insensitive to shock in any direction. The
damping is enhanced as the viscosity of the magnetic fluid 30 is increased and the
conductance of the capillary 15 is decreased. Damping also can be used to limit the
high frequency response of the transducer.
[0025] As illustrated in Fig. 3 in another implementation of the invention, a further increase
in sensitivity is achieved by affixing an element 28 made of a solid, magnetically
soft material, such as iron, to the center of the diaphragm 13. The element 28 is
disposed within the magnetic fluid in chamber 24 and has a higher saturation magnetization
than the magnetic fluid. The element 28 also can provide stiffness to the central
portion of the diaphragm. To preserve shock insensitivity, an element 29 is located
in the chamber 16 and is affixed to the diaphragm 17. The element 29 may be substantially
identical to the element 28,or may be of a nonmagnetic material with suitable size
and shape to achieve the desired insensitivity.
[0026] Fig. 5 is a curve representing the changes in pressure (psi) as a function of current
(milliamps). In an actual implementation of the invention, a 450 Gauss, 400 cp Ferrofluid
was used. The element 28 is a steel slug of 3/8-inch (9,52 mm) diameter and 3/16-inch
(4,76 mm) long cemented to the diaphragm 13 with RTV silicone sealant. The air supply
pressure is 18 psi (1,22 atm). It should be understood that these parameters, materials
and dimensions are exemplary and the invention is not limited thereby.
[0027] In an alternative approach the transducer comprises a single chamber and a single
flexible diaphragm. In such case an air space is provided above the level of the magnetic
fluid to allow displacement of the diaphragm.
[0028] In another approach, nozzle 10 is made of magnetic material and functions also as
pole piece 11. In this approach, the outer coaxial member 11 and holes 12 shown in
Figure 4 are eliminated.
[0029] The novel current-to-pressure transducer disclosed herein employs a magnetic fluid
to coact with flexible diaphragms disposed in close juxtaposition to a nozzle of an
air line. The transducer lends itself to mass production and low cost, is efficient
in operation, and does not require individual adjustments.
[0030] Another feature of this invention is a nozzle and pole piece structure that is formed
from a rod 40 made of a magnetic material, such as Carpenter High Permeability "49"
Alloy, for example. The rod 40 has a diameter of about 3/16 inch (4,76 mm) in this
particular embodiment. As illustrated in Fig. 6, the magnetic rod 40 is formed with
functional pole pieces 41 at a slotted end of the rod 40. Slots 43 allow the escape
of excess air and are relatively easy to machine, with saw blades or slot cutters,
as compared to the formation of individual bleed holes 12 and the associated deep
circumferential groove between elements 10 and 11 to which the holes connect, shown
in Fig. 2. The pole pieces 41 provide magnetic flux for coaction with electric current
flowing through the electrical coil (not shown) of the electromagnetic circuit. Application
of electric current to the coil causes the magnetic fluid 30 to move which, in turn,
causes the deformation of the flexible diaphragm as explained heretofore thereby controlling
air flow through the nozzle .
[0031] The rod 40 has a threaded part 42 for engagement with a threaded cap 44 of a housing
assembly, shown in Fig. 9. The rod 40 also has a hexagonal part 47 formed at the end
adjacent to the threaded part 42 to allow the rod to be turned so that the height
of the nozzle relative to the diaphragm can be adjusted for proper operation, and
locked with nut 68.
[0032] Figure 7 shows an end view of the nozzle and pole piece structure 40 viewed from
the slotted end. The rod 40 is formed with one or more of the longitudinal slots 43,
which extend inwardly to at least the outer diameter of a relatively shallow groove
46 formed within the end of the rod 40. The slots 43 serve the same purpose as the
holes 12 depicted in Fig. 2 to allow the escape of excess air, but are easier to machine
and fabricate than the transverse holes. Groove 46 may be eliminated if the slots
43 extend inward to the proximity of the constricted passage 49.
[0033] As depicted in Figs. 8A and 8B, an open channel is formed within the interior of
the nozzle tube 48 to allow the passage and escape of air. The nozzle tube 48 may
be tapered at the end portion that faces the diaphragm so that a constricted passage
49 is formed at the end of the nozzle channel 48. The constricted portion 49 of the
channel 48 (Figs. 8A and 8B) reduces the volume of air that escapes from the nozzle
at a given pressure. The amount of air flow from the channel portion 49 is regulated
by the position of the diaphragm 13, which is controlled by the action of the magnetic
fluid in response to the electric current supply to the coil of the electromagnetic
circuit.
[0034] The exploded view of Fig. 9 shows the main housing 50 for the integral nozzle and
pole piece structure which is made of soft iron. Diaphragms 52 and 54 are spaced by
a soft iron spacer 56 formed with magnetic fluid chambers 58 and 60. O-ring seals
62 and 64 are provided with the chambers. A threaded aluminum retainer 66 is located
adjacent to the diaphragm 54 for connection to the spacer 56. A lock nut 67 is located
against the retainer 66 and four cap screws 70 tie the spacer 56 and retainer 66 with
the diaphragms 52 and 54 to the main housing 50. A second nozzle (not shown) may be
threaded into retainer 66 to coact with diaphragm 54.
[0035] At the other end of the housing 50, the threaded element 44, which is made as a soft
iron cap with internal threads for engaging the nozzle, is joined with a lock nut
68 by means of four Allen socket cap screws 72 to the main housing 50.
[0036] Fig. 10 depicts the assembled unit which has a notch 74 in the housing 50 to allow
connection of electrical circuitry to the electrical coil of the electromagnetic circuit
and to permit escape of excess air.
[0037] By virtue of the integral structure of a nozzle and pole piece which are machined
from a single magnetic rod, the end of the nozzle tube 46 and the end of the pole
piece 41 are substantially coplanar. When the electromagnetic force is applied to
the top surface of the diaphragm 13 by the magnetic fluid 30, the lower surface of
the diaphragm conforms to the shape of the pole piece 41. Since the alignment of the
ends of the pole piece 41 and nozzle tube 46 are in substantial planar alignment,
the diaphragm will provide a complete seal at the face of the nozzle. With the nozzle
and pole piece structure design as disclosed herein, any canting of the diaphragm
13 is self-corrected because the force on the diaphragm acts between a point of first
contact of the diaphragm 13 with the end of the larger diameter pole piece 41 and
the coplanar end of the nozzle tube. The integral nozzle and pole piece structure
also is easier to fabricate with the slots 44 formed at the end of the rod structure
to allow the desired air escape instead of with transverse holes as used in prior
nozzle assemblies. Such transverse holes either require a difficult process to machine
a deep groove between the nozzle 10 and pole piece 11, or require fabricating the
nozzle 10 and pole piece 11 separately, in which case it would be difficult to assemble
these parts to achieve the desired coplanarity.
1. A current-to-pressure transducer comprising:
- a baseplate (19) or housing made of magnetic material;
- at least one chamber (14) formed in said baseplate (19), said chamber having an
open end being sealed by a flexible membrane or diaphragm (13);
- air supply means (24) having an exhaust nozzle (10) disposed closely adjacent to
said flexible diaphragm (13);
- electromagnetic means including a coil (23) wound around a magnetic core member
(22, 31) which is provided at one end with a magnetic pole piece (11) disposed closely
adjacent to said flexible diaphragm (13), the other end of said magnetic core member
(22, 31) being joined to said baseplate (19) in a magnetically conductive manner;
and
- a source of input current (27, 34) connected to said coil (23) to provide a magnetic
field in the gap between said pole piece (11) and said diaphragm (13) for displacing
said flexible diaphragm (13) relative to said nozzle (10) thereby varying the air
pressure in said air supply means (24) in accordance with said input current;
characterised by a volume of magnetic fluid (30) contained within said chamber (14), with said magnetic
field acting within at least a portion of the volume of said magnetic fluid (30),
wherein the displacement of said flexible diaphragm (13) is accomplished with the
volume of said magnetic fluid (30) conserved and maintained constant, whereby the
volume of magnetic fluid (30) that is displaced in said chamber (14) associated with
the displacement of said flexible diaphragm (13) is compensated by accumulator means
(16, 17) arranged in said baseplate (19).
2. A current-to-pressure transducer as in claim 1, wherein said core member comprises
a magnetic tubular element (22) and said coil (23) is wound about said element.
3. A current-to-pressured transducer as in claim 2, wherein said air supply means comprises
a tube (24) disposed coaxially within said magnetic tubular element (22).
4. A current-to-pressure transducer as in one of the preceding claims, including a magnetic
piece (28) positioned within said chamber (14) adjacent to said diaphragm (13).
5. A current-to-pressure transducer as in one of the preceding claims, wherein an air
space is provided within said chamber (14) to allow displacement of said diaphragm.
6. A current-to-pressure transducer as in one of the preceeding claims, including a pressure
sensing means (26) and an electronic feedback circuit (27) for limiting the current
to said coil (23) so that the pressure is substantially linearly related to the input
current.
7. A current-to-pressure transducer as in one of the preceeding claims, including means
(25) for maintaining said membrane or diaphragm (13) in position at said open end
of said chamber (14).
8. A current-to-pressure transducer according to claim 1, comprising a second chamber
(16) and a means (15) connecting said first and second chambers (14, 16), said second
chamber (16) having an open end being sealed by a second flexible membrane or diaphragm
(17) for containing said magnetic fluid (30) within said chambers (14, 16) and said
connection means (15), with said electromagnetic means (23, 22, 31) when energized
coacting with said magnetic fluid (30) to deform a selected one of said diaphragms
(13, 17).
9. A current-to-pressure transducer as in claim 8, wherein said electromagnetic means
(23, 31) is positioned for coacting with said magnetic fluid (30) in one (14) of said
chambers (14, 16) to deform a selected one (13) of said diaphragms (13, 17), and said
air supply means (24) is positioned for coacting with the other one (17) of said diaphragms
(13, 17).
10. A current-to-pressure transducer as in claim 8 or 9, wherein the diaphragms (13, 17)
are coplaner.
11. An integral nozzle and pole piece structure for use with a current-to-pressure transducer
according to any of the preceding claims, said structure comprising:
- a longitudinal rod (40) made of magnetic material;
- a nozzle tube (48) formed in a central portion of said rod (40) for allowing the
passage of air received from an air supply;
- one end of said rod (40) forming a magnetic pole piece (41), said pole piece end
being substantially coplanar with an end of said nozzle tube (48);
- longitudinal slots (43) formed at said one end of said rod (40) for allowing the
escape of air.
12. A structure as in claim 11, including a groove (46) encompassing said nozzle tube
(48), said slots (43) being connected to said groove (46).
13. A structure as in claim 11 or 12, including a threaded element (42) seated on a portion
of said rod (40) adjacent to the other end of said rod (40), a housing cap (47) for
engaging said threaded element (42), and means formed integral with said rod (40)
for rotating said rod (40) and said threaded element (42) for adjusting the position
of said nozzle tube (48).
14. A structure as in one of the claims 11 to 13, wherein said nozzle tube (48) is tapered
at one end to form a constricted portion (49) for changing the pressure of said air
flow.
15. A structure as in one of the claims 11 to 14, including a housing (50) for containing
said longitudinal rod (40) comprising said nozzle (49) and pole piece (41).
16. A structure as in claim 15, including an opening (74) formed in said housing (50)
for allowing access of electrical circuit connection and for permitting escape of
excess air.
1. Strom/Druck-Wandler mit
- einer Grundplatte (19) bzw. einem Gehäuse aus magnetischem Material,
- mindestens einer in der Grundplatte (19) ausgebildeten Kammer (14) mit offenem Ende,
das von einer flexiblen Membran (13) verschlossen ist;
- einer Luftzufuhreinrichtung (24) mit einer Austrittsdüse (10), die sehr nahe an
der flexiblen Membran (13) angeordnet ist;
- einer elektromagnetischen Einrichtung mit einer Spule (23), die auf ein magnetisches
Kernelement (22, 31) aufgewickelt ist, das an einem Ende mit einem magnetischen Polstück
(11) versehen ist, das sehr nahe an der flexiblen Membran (13) angeordnet ist, wobei
das andere Ende des magnetischen Kernelements (22, 31) magnetisch leitend mit der
Grundplatte (19) zusammengefügt ist; und
- einer Quelle eines Eingangsstroms (27, 34), die mit der Spule (23) verbunden ist,
um in dem Spalt zwischen dem Polstück (11) und der Membran (13) ein Magnetfeld zu
erzeugen, um die flexible Membran (13) relativ zur Düse (10) zu versetzen und damit
den Luftdruck in der Luftzufuhreinrichtung (24) entsprechend dem Eingangsstrom zu
verändern;
gekennzeichnet durch ein in der Kammer (14) enthaltenes Volumen eines magnetischen Fluids (30),
wobei das Magnetfeld in mindestens einem Teil des Volumens des magnetischen Fluids
(30) wirkt, der Versatz der flexiblen Membran (13) bei erhaltenem und konstantgehaltenem
Volumen des magnetischen Fluids (30) erfolgt und das Volumen des magnetischen Fluids
(30), das in der Kammer (14) beim Versatz der flexiblen Membran (13) verdrängt wird,
von einer in der Grundplatte (19) angeordneten Sammlereinrichtung (16, 17) kompensiert
wird.
2. Strom/Druck-Wandler nach Anspruch 1, bei dem das Kernelement ein magnetisches Rohrelement
(22)umfaßt und die Spule (23) auf dieses Element gewickelt ist.
3. Strom/Druck-Wandler nach Anspruch 2, bei dem die Luftzufuhreinrichtung ein Rohr (24)
aufweist, das koaxial mit dem magnetischen Rohrelement (22) liegt.
4. Strom/Druck-Wandler nach einem der vorgehenden Ansprüche mit einem Magnetstück (28),
das in der Kammer (14) an der Membran (13) angeordnet ist.
5. Strom/Druck-Wandler nach einem der vorgehenden Ansprüche, bei dem in der Kammer (14)
ein Luftraum vorgesehen ist, der eine Auslenkung der Membran erlaubt.
6. Strom/Druck-Wandler nach einem der vorgehenden Ansprüche mit einer Druckfühleinrichtung
(26) und einer elektronischen Rückkoppelschaltung (27) zum Begrenzen des der Spule
(23) zugeführten Stroms derart, daß der Druck im wesentlichen linear mit dem Eingangsstrom
zusammenhängt.
7. Strom/Druck-Wandler nach einem der vorgehenden Ansprüche mit Mitteln (25), um die
Membran (13) am offenen Ende der Kammer (14) in der Solllage zu halten.
8. Strom/Druck-Wandler nach Anspruch 1 mit einer zweiten Kammer (16) und einer Einrichtung
(15), die die erste und die zweite Kammer (14, 16) miteinander verbindet,wobei die
zweite Kammer (16) ein offenes Ende hat, das von einer zweiten flexiblen Membran (17)
verschlossen ist, um das magnetische Fluid (30) in den Kammern (14, 16) und der Verbindungseinrichtung
(15) zurückzuhalten, wobei die elektromagnetische Einrichtung (23, 22, 31), wenn erregt,
mit dem magnetischen Fluid (30) so zusammenwirkt, daß eine gewählte der Membranen
(13, 17) ausgelenkt wird.
9. Strom/Druck-Wandler nach Anspruch 8, bei der die elektromagnetische Einrichtung (23,
31) so angeordnet ist, daß sie mit dem magnetischen Fluid (30) in einer (14) der Kammer
(14, 16 ) zusammenwirkt, um eine gewählte (13) der Membranen (13, 17) zu verformen,
und bei der die Luftzufuhreinrichtung (24) so angeordnet ist, daß sie mit der anderen
(17) der Membranen (13, 17) zusammenwirkt.
10. Strom/Druck-Wandler nach Anspruch 8 oder 9, bei dem die Membranen (13, 17) koplanar
sind.
11. Einteilige Düse/Polstück-Anordnung zur Verwendung mit einem Strom/Druck-Wandler nach
einem der vorgehenden Ansprüche, welche Anordnung
- einen Längsstab (40) aus magnetischem Werkstoff und
- ein in einem mittigen Teil des Stabs (40) ausgebildetes Düsenrohr (48) aufweist,
um den Durchgang von von einer Luftquelle her erhaltener Luft zuzulassen;
- wobei ein Ende des Stabs (40) ein magnetisches Polstück (41) bildet, dessen Ende
im wesentlichen koplanar mit einem ende des Düsenrohrs (48) liegt, und
- an dem einen Ende des Stabs (40) Längsschlitze (43) ausgebildet sind, die ein Entweichen
von Luft erlauben.
12. Anordnung nach Anspruch 11 mit einer das Düsenrohr (48) umgreifenden Nut (46), wobei
die Schlitze (43) mit der Nut (46) verbunden sind.
13. Anordnung nach Anspruch 11 oder 12 mit einem Gewindeelement (42), das auf einen Teil
des Stabs (40) am anderen Ende desselben aufgesetzt ist, einer Gehäusekappe (47) zum
Aufschrauben auf das Gewindelement (42) und mit einer einteilig mit dem Stab (40)
ausgebildeten Einrichtung zum Drehen des Stabs (40) und des Gewindeelements (42) zwecks
Justage der Lage des Düsenrohrs (48).
14. Anordnung nach einem der Ansprüche 11 bis 13, bei der das Düsenrohr (48) an einem
Ende verjüngt ist, um einen eingeschnürten Teil (49) zum Ändern des Drucks der Luftströmung
zu bilden.
15. Anordnung nach einem der Ansprüche 11 bis 14 mit einem Gehäuse (50) zur Aufnahme des
Längsstabes (40) mit der Düse (49) und dem Polstück (41).
16. Anordnung nach Anspruch 15 mit einer Öffnung (74) im Gehäuse (50), die einen Zugang
für elektrische Schaltungsanschlüsse sowie ein Entweichen überschüssiger Luft erlaubt.
1. Transducteur courant/pression comprenant :
- une plaque de base (19) ou un boîtier fait d'un matériau magnétique;
- au moins une chambre (14) formée dans ladite plaque de base (19), cette chambre
ayant une extrémité ouverte fermée de façon hermétique par une membrane ou diaphragme
flexible (13);
- des moyens d'alimentation en air (24) ayant une buse de sortie (10) étroitement
adjacente à ce diaphragme flexible (13);
- des moyens électromagnétiques comportant un enroulement (23) enroulé autour d'un
élément de noyau magnétique (22,31) qui comporte à une extrémité une pièce polaire
magnétique (11) étroitement adjacente à ce diaphragme flexible (13), l'autre extrémité
de l'élément de noyau magnétique (22,31) étant raccordée à la plaque de base (19)
d'une manière magnétiquement conductrice; et
- une source de courant d'entrée (27,34) raccordée à l'enroulement (23) pour fournir
un champ magnétique dans l'intervalle entre la pièce polaire (11) et le diaphragme
(13) afin de déplacer ce diaphragme flexible (13) par rapport à la buse (10) en faisant
ainsi varier la pression de l'air dans les moyens d'alimentation en air (24) en fonction
de ce courant d'entrée;
caractérisé en ce qu'un volume de fluide magnétique (30) est contenu à l'intérieur
de la chambre (14), ledit champ magnétique agissant à l'intérieur d'au moins une portion
du volume de ce fluide magnétique (30), le déplacement du diaphragme flexible (13)
étant effectué en conservant et maintenant constant le volume du fluide magnétique
(30), d'où il résulte que le volume du fluide magnétique (30) qui est déplacé dans
la chambre (14) en association avec le déplacement du diaphragme flexible (13) est
compensé par des moyens d'accumulateur (16,17) disposés dans la plaque de base (19).
2. Transducteur courant/pression selon la revendication 1, dans lequel l'élément de noyau
comprend un élément tubulaire magnétique (22) et dans lequel l'enroulement (23) est
enroulé autour de cet élément.
3. Transducteur courant/pression selon l'une des revendications 1 ou 2, dans lequel les
moyens d'alimentation en air comprennent un tube (24) disposé coaxialement à l'intérieur
de l'élément tubulaire magnétique (22).
4. Transducteur courant/pression selon l'une des revendications précédentes, comportant
une pièce magnétique (28) disposée à l'intérieur de la chambre (14) adjacente au diaphragme
(13).
5. Transducteur courant/pression selon l'une des revendications précédentes, dans lequel
un espace d'air est prévu à l'intérieur de la chambre (14) pour permettre le déplacement
du diaphragme.
6. Transducteur courant/pression selon l'une des revendications précédentes, comprenant
des moyens de détection de pression (26) et un circuit de rétroaction électronique
(27) pour limiter le courant amené à l'enroulement (23) de façon que la pression soit
une fonction pratiquement linéaire du courant d'entrée.
7. Transducteur courant/pression selon l'une des revendications précédentes, comportant
des moyens (25) pour maintenir la membrane ou diaphragme (13) en position au niveau
de l'extrémité ouverte de la chambre (14).
8. Transducteur courant/pression selon la revendication 1, comprenant une deuxième chambre
(16) et des moyens (15) raccordant la première chambre (14) et la deuxième chambre
(16), cette deuxième chambre (16) ayant une extrémité ouverte fermée de façon hermétique
par une deuxième membrane ou diaphragme flexible (17) pour contenir le fluide magnétique
(30) à l'intérieur des chambres (14,16) et des moyens de raccordement (15), les moyens
électromagnétiques (23,22,31) coopérant, lorsqu'ils sont excités, avec le fluide magnétique
(30) pour déformer l'un, sélectionné, de ces diaphragmes (13,17).
9. Transducteur courant/pression selon la revendication 8, dans lequel les moyens électromagnétiques
(23,31) sont disposés pour coopérer avec le fluide magnétique (30) dans l'une (14)
des chambres (14,16) pour déformer l'un (13), sélectionné, de ces diaphragmes (13,17),
et dans lequel les moyens d'alimentation en air (24) sont disposés pour coopérer avec
l'autre (17) de ces diaphragmes (13,17).
10. Transducteur courant/pression selon la revendication 8 ou la revendication 9, dans
lequel les diaphragmes (13,17) sont dans le même plan.
11. Structure monobloc de buse et de pièce polaire destinée à être utilisée avec un transducteur
courant/pression selon l'une des revendications précédentes, cette structure comprenant
:
- une tige longitudinale (40) en un matériau magnétique;
- un tube de buse (48) formé dans une portion centrale de cette tige (40) pour permettre
le passage de l'air reçu d'une source d'air; - une extrémité de la tige (40) formant
une pièce polaire magnétique (41), l'extrémité de cette pièce polaire étant pratiquement
dans le même plan qu'une extrémité du tube de buse (48);
- des fentes longitudinales (43) formées au niveau de cette extrémité de la tige (40)
pour permettre à l'air de s'échapper.
12. Structure selon la revendication 11, comportant une gorge (46) entourant le tube de
buse (48), les fentes (43) étant raccordées à cette gorge (46).
13. Structure selon la revendication 11 ou la revendication 12, comportant un élément
fileté (42) logé sur une portion de la tige (40) adjacente à la deuxième extrémité
de la tige (40), un capuchon de boîtier (47) pour coopérer avec cet élément fileté
(42), et des moyens formés d'un seul tenant avec la tige (40) pour faire tourner la
tige (40) et l'élément fileté (42) pour régler la position du tube de buse (48).
14. Structure selon l'une des revendications 11 à 13, dans laquelle le tube de buse (48)
est effilé à une extrémité pour former une portion étranglée (49) pour modifier la
pression du courant d'air.
15. Structure selon l'une des revendications 11 à 14, comportant un boîtier (50) pour
contenir la tige longitudinale (40) comprenant la buse (49) et la pièce polaire (41).
16. Structure selon la revendication 15, comportant une ouverture (74) formée dans le
boîtier (50) pour permettre l'accès du raccordement du circuit électrique et pour
permettre à l'air en excès de s'échapper.