11 Veröffentlichungsnummer:

0 381 186 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90101898.6

(51) Int. Cl.5: D01G 7/12

(22) Anmeldetag: 31.01.90

(30) Priorität: 03.02.89 DE 3903238

(43) Veröffentlichungstag der Anmeldung: 08,08.90 Patentblatt 90/32

Benannte Vertragsstaaten:
CH DE FR GB IT LI

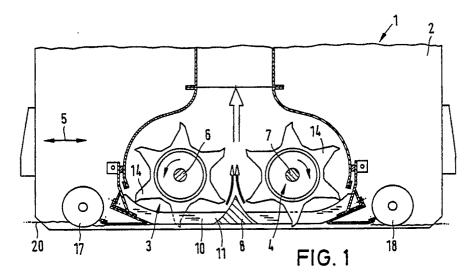
71) Anmelder: HERGETH HOLLINGSWORTH GMBH Halterner Strasse 70 D-4408 Dülmen(DE)

© Erfinder: Pinto, Akiva, Dipl.-Ing. Wasserwerkweg 14 D-4000 Düsseldorf-Wittlaer(DE) Erfinder: Lucassen, Günter

Tiberiusstrasse 21 D-4358 Haltern(DE)

Erfinder: Schmidt, Reinhard, Ing. grad.

Droste-Hülshoff-Strasse 2 D-4432 Gescher(DE)


Vertreter: Dallmeyer, Georg et al
Dipl.-Chem. Alek von Kreisler, Dipl.-Ing.
Selting, Dr. Werner Dr.-Ing. Schönwald, Dr.
Fues, Dipl.-Ing. Dallmeyer Dipl.-Ing.
Hilleringmann Deichmannhaus am
Hauptbahnhof
D-5000 Köln 1(DE)

(54) Öffnungsvorrichtung.

(3,4) versetzt sind, und mit einem Rost (10), dessen Roststäbe (11) zwischen den Frässcheiben (21) zwischen den Frässcheiben (31) zwischen den Frässcheiben

(14) verlaufen, ist vorgesehen, daß parallel zu den Walzenachsen (6,7) der Öffnerwalzen (3,4) ein im Querschnitt im wesentlichen satteldachförmiges Prallblech (8) zwischen zwei Öffnerwalzen (3,4) angeordnet ist, das mit der Spitze in den unteren Zwischenraum zwischen den Öffnerwalzen (3,4) hineinragt.

Öffnungsvorrichtung

10

15

Die Erfindung betrifft eine Öffnungsvorrichtung zum Öffnen von gepreßten Faserballen, z.B. Baumwoll- und Zellstoffballen und dergleichen, mit mehreren Öffnerwalzen, auf denen mehrere Frässcheiben nebeneinander derart angeordnet sind, daß sie gegenüber den Frässcheiben der benachbarten Öffnerwalze versetzt sind, und mit einem Rost, dessen Roststäbe zwischen den Frässcheiben verlaufen

Aus der DE-OS 33 34 069 ist eine Öffnungsvorrichtung bekannt, bei der die Roststäbe quer zur Bewegungsrichtung der Öffnungsvorrichtung in ihrem Verlauf einen Versatz aufweisen, wobei mindestens eine Öffnerwalze vor und hinter dem Versatz angeordnet ist.

Ferner ist eine Öffnungsvorrichtung mit zwei Öffnerwalzen bekannt, die vor und hinter den Öffnerwalzen ieweils eine Andruckrolle aufweist, wobei zwischen den Walzen eine weitere Andruckrolle angeordnet ist. Die den jeweiligen Öffnerwalzen zugeordneten Roststäbe enden dabei in der Mitte des Fräskopfes vor der mittleren Andruckrolle. Bei dieser Öffnungsvorrichtung verlassen die aus dem Faserballen herausgelösten Faserflocken die Frässcheiben der Öffnerwalzen tangential auf einer Bahn mit einer erheblichen Horizontalkomponente. Die Folge hiervon ist, daß die Faserflocken von der Luftströmung in der oberhalb der Öffnerwalzen angeordneten Absaughaube nicht so gut erfaßt werden, zumal sie auf ihrer tangentialen Bahn erst gegen Seitenbleche der Absaughaube prallen.

Ein weiteres Problem dieser bekannten Öffnungsvorrichtung besteht darin, daß die mittlere Andruckwalze sich schnell mit Fasern zusetzt und diese aufwickelt.

Der Erfindung liegt die Aufgabe zugrunde, eine Öffnungsvorrichtung zu schaffen, bei der die Fasern von den Frässcheiben in einer im wesentlichen vertikalen Richtung hochgeschleudert werden.

Zur Lösung dieser Aufgabe ist erfindungsgemäß vorgesehen, daß parallel zu den Walzenachsen der Öffnerwalzen ein im Querschnitt im wesentlichen satteldachförmiges Prallblech zwischen zwei Öffnerwalzen angeordnet ist, das mit der Spitze in den unteren Zwischenraum zwischen den Öffnerwalzen hineinragt.

Das zwischen den Öffnerwalzen angeordnete Praliblech lenkt die sich von den Zähnen der Frässcheiben lösenden Faserflocken in vorteilhafter Weise in eine im wesentlichen vertikal nach oben gerichtete Richtung um. Ein Aufprallen der hochgeschleuderten Faserflocken gegen die Seitenwände der über den Öffnerwalzen angeordneten Absaugeinrichtung wird dadurch verhindert, wodurch die über die Frässcheiben auf die Faserflocken über-

tragene kinetische Energie in vorteilhafter Weise erhalten bleibt. Dadurch kann wiederum mit einer geringeren Strömungsgeschwindigkeit und damit mit einem geringeren Luftverbrauch bzw. Energieverbrauch gearbeitet werden.

Bereits ein geringes Überstehen der Spitze des Prallbleches über den Rost genügt hierbei, um die gewünschte Umlenkung des Faserstromes zu erreichen.

Die Erfindung ist besonders vorteilhaft bei breiten Fräsköpfen (z.B. 3 m), da bei solchen Fräsköpfen eine Erhöhung der Saugstromleistung nachteilig für die Materialströmung wäre.

Die Wände des Prallbleches können konzentrisch zur Drehachse der Öffnerwalzen gekrümmt sein. Derartig gekrümmte Wände können die tangential auf das Prallblech auftreffenden Faserflokken mit einem gerinstmöglichen Verlust an kinetischer Energie umlenken, da die Bewegungsrichtung der Faserflocken nur eine geringe Normalkomponente in Richtung der Wände aufweist.

Andererseits kann es auch je nach Gestaltung der Frässcheiben sinnvoll sein, die Spitze des Prallbleches über den Rost hinaus bis maximal zur Horizontalebene durch die Walzenachsen hochzuziehen.

Die Roststäbe des Rostes können zwischen zwei Öffnerwalzen an dem Prallblech derart befestigt sein, daß sich die zueinander versetzten Roststäbe gegenüberliegender Öffnerwalzen überlappen. Dadurch können sie die Fasern auf der Oberfläche des Ballens durchgehend niederhalten.

Die sich überlappenden Roststäbe reichen dabei bis in den Eingriffsbereich der zu der benachbarten Öffnerwalze gehörenden Frässcheiben.

Bei einer vorteilhaften Weiterbildung ist vorgesehen, daß in Fräsrichtung vor einer Öffnerwalze ein höhenverstellbares Leitblech parallel zu den Walzenachsen der Öffnerwalzen angeordnet ist. Mit Hilfe des höhenverstellbaren Leitbleches kann z.B. bei zwei Öffnerwalzen die Abtragsmenge der in Fräsrichtung ersten Öffnerwalze in vorteilhafter Weise im Verhältnis zur Abtragsmenge der zweiten Öffnerwalze eingestellt werden. Das Leitblech preßt nämlich die Fasern auf der Ballenoberfläche je nach Höheneinstellung mehr oder weniger herunter, so daß damit die Abtragsmenge der in Fräsrichtung ersten Öffnerwalze voreinstellbar ist. Vor Erreichen der in Fräsrichtung zweiten Öffnerwalze hat sich auf Grund des elastischen Rückstellvermögens der Fasern die Ballenoberfläche wieder so weit aufgerichtet, daß auch die zweite Öffnerwalze eine bestimmte Abtragsmenge abfräsen kann.

Die Roststäbe sind vorzugsweise bis unmittelbar an in Vortriebsrichtung vor den Frässcheiben

10

15

30

angeordnete Andruckwalzen verlängert. Auf diese Weise wird die Ballenoberfläche durchgehend von der vorderen Andruckrolle im Bereich des Fräskopfes und bis zur hinteren Andruckrolle durchgehend niedergehalten.

Im folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.

Es zeigen:

Fig. 1 einen Ausschnitt aus einem Fräskopfgehäuse einer Öffnungsvorrichtung,

Fig. 2 einen vergrößerten Ausschnitt aus Fig. 1.

Fig. 3 eine Ausführungsform des Rostes in Draufsicht,

Fig. 4 die Gestaltung des Rostes zwischen Andruckwalze und Öffnerwalze,

Fig. 5 ein weiteres Ausführungsbeispiel für die Gestaltung der Stabenden des Rostes, und

Fig. 6 eine weitere Ausführungsform des Rostes bei einer öf fnungsvorrichtung mit einer öffnerwalze.

Die Öffnungsvorrichtung 1 zum Öffnen von gepreßten Faserballen und dergleichen weist ein Gehäuse 2 auf, in dem zwei Öffnerwalzen 3 und 4 in Bewegungsrichtung gemäß dem Pfeil 5 hintereinanderfolgend angeordnet sind. Die Öffnerwalzen 3 und 4 werden von Achsen 6 und 7 getragen, die mit Antriebsvorrichtungen verbunden sind. Die Öffnerwalzen weisen Frässcheiben 14 auf, die in Achsrichtung in einem vorbestimmten Abstand zueinander angeordnet sind. Die Öffnerwalzen 3,4 arbeiten mit einem Rost 10 zusammen, der aus einer Reihe von in einem vorbestimmten Abstand zueinander liegenden Roststäben 11 zusammengesetzt ist. Die Roststäbe 11 sind an einer Halterung 12 in der Höhe verstellbar befestigt.

Die Roststäbe 11 sind wie die Frässcheiben der benachbarten Öffnerwalzen 3,4 versetzt zueinander angeordnet.

In der Mitte zwischen den beiden Öffnerwalzen 3,4 verläuft parallel zu den Walzenachsen 6,7 über die gesamte Länge des Fräskopfes ein Prallblech 8, dessen im wesentlichen dreieckförmige Querschnittskontur in den Figuren 1 und 2 dargestellt ist. Das Prallblech 8 besteht im wesentlichen aus zwei satteldachförmigen Wänden, die im Querschnitt kreisförmig gekrümmt sind. Die jeweilige Kreiskrümmung ist konzentrisch mit den Walzenachsen 6,7 und verläuft parallel zu den Eingriffslinien 15,16 der benachbarten Frässcheiben 14 auf den Walzenachsen 6 und 7. Das Leitblech 8 kann, wie in Fig. 2 dargestellt, auf den Roststäben 11 des Rostes 10 befestigt sein oder, wie in Fig. 1 ersichtlich, derart mit den Roststäben 11 verbunden sein, daß diese mit den Wandflächen verschweißt sind. Es ist auch möglich, das Prallblech 8 jeweils zwischen zwei benachbarten Roststäben 11 anzuordnen und an den Roststäben zu befestigen.

Die Spitze des Prallbleches 8 kann bis zur Horizontalebene durch beide Walzenachsen 6,7 hochgezogen sein, wobei andererseits bereits ein Überstehen um 1 cm oberhalb des Rostes 10 ausreichen kann, um die tangential von den Frässcheiben 14 abgeschleuderten Faserflocken in eine im wesentlichen vertikal nach oben gerichtete Richtung umzulenken.

Wie aus Fig. 3 ersichtlich, sind die Roststäbe 11 vorzugsweise über die Mittellinie zwischen beiden Walzenachsen 6,7 hinaus bis in den Eingriffsbereich der Frässcheiben 14 der gegenüberliegenden Walzenachse hinaus verlängert, um die Ballenoberfläche 20 möglichst weit niederzuhalten. Je nach Abstand der beiden Walzenachsen wird dies, wie aus Fig. 2 ersichtlich, bereits dann erreicht, wenn die Roststäbe 11 an dem Leitblech 8 befestigt sind, sofern die Eingriffskreise 15,16 der Frässcheiben 14 genügend nah aneinander sind. Wesentlich ist dabei, daß die Roststäbe sich in dem Zwischenbereich zwischen den beiden Frässcheibengruppen überlappen, so daß eine ständige Niederhaltefunktion gewährleistet ist.

Die vorzugsweise sternförmigen Frässcheiben 14 werden vorzugsweise synchron gegenläufig gedreht, wobei die Phasenlage der Zähne auch synchronisiert sein kann. Dabei kann auch bei den sich versetzt gegenüberliegenden Frässcheiben 14 vorgesehen sein, daß die Eingriffslinien 15,16 sich überlappen.

Die überlappende Gestaltung der zur Mitte orientierten Enden der Roststäbe 11 ist dabei unabhängig davon, ob, wie in dem unteren Teil der Fig. 3 dargestellt, Einzelfrässcheiben 14 oder, wie im oberen Teil der Fig. 3 dargestellt, Frässcheibenpaare zur Anwendung kommen.

Vorteilhaft ist die kufenförmige Gestaltung der Enden der Roststäbe 11 wie aus Fig. 4 ersichtlich, um zuverlässig ein Verhaken mit den Fasern zu verhindern. Fig. 5 zeigt ein weiteres Ausführungsbeispiel für die Gestaltung der Enden der Roststäbe 11, bei dem die Unterkante der Roststäbe 11 bis unmittelbar vor die Andruckwalze 19 geradlinig verläuft.

Wie aus Fig. 1 ersichtlich, ist in Bewegungsrichtung vor und hinter den Öffnerwalzen 3,4 jeweils eine Andruckwalze 17,18 angeordnet. Fig. 4 zeigt Roststäbe 11, die vorzugsweise bis unmittelbar an den Eingriffsbereich 19 der Andruckwalze 17 (bzw. 18 auf der gegenüberliegenden Seite) herangeführt sind, um eine durchgehende, lückenlose Klemmung der Ballenoberfläche 20 im gesamten Fräskopfbereich aufrechtzuerhalten. Die Roststäbe 11 sind in diesem Bereich höhenverstellbar an der Halterung 12 befestigt, an der auch eine Luftstaubdichtung 21 vorgesehen sein kann. Die Halterung 12 kann ferner mit einem abgewinkelten,

50

20

40

über die gesamte Länge des Fräskopfes verlaufenden Leitblech 22 versehen sein, das an der Haltevorrichtung 12 höhenverstellbar befestigt ist. Das Leitblech 22 drückt mit seinem abgewinkelten Abschnitt 23 über die gesamte Breite das Ballens parallel zu den Walzenachsen auf die Ballenoberfläche und verdichtet diese je nach Einstellung kurzzeitig. Dabei wird über dieses Leitblech 22 die Abtragsmenge für die Frässcheiben 14 der in Bewegungsrichtung 5 ersten Öffnerwalze 3 eingestellt. Da die Ballenoberfläche sich auf Grund ihrer Elastizität relativ schnell wiederaufrichtet, können die Frässcheiben 14 der in Bewegungsrichtung 5 nachfolgenden Walze 4 ebenfalls eine von der ersten Abtragsmenge abhängige Schicht des Ballens abtragen.

Fig. 6 zeigt ein Ausführungsbeispiel einer Öffnungsvorrichtung mit nur einer Öffnerwalze 3. Die Roststäbe 11 sind wie bei den Ausführungsbeispielen der Fig. 4 und 5 bis unmittelbar an den Eingriffsbereich 19 der Andruckwalzen 17,18 herangeführt.

Ansprüche

1. Öffnungsvorrichtung zum Öffnen von gepreßten Faserballen, z.B. Baumwoll- und Zellwollballen und dergleichen, mit mehreren Öffnerwalzen, auf denen mehrere Frässcheiben nebeneinander derart angeordnet sind, daß sie gegenüber den Frässcheiben der benachbarten Öffnerwalze versetzt sind, und mit einem Rost, dessen Roststäbe zwischen den Frässcheiben verlaufen,

dadurch gekennzeichnet,

- daß parallel zu den Walzenachsen (6,7) der Öffnerwalzen (3,4) ein im Querschnitt im wesentlichen satteldachförmiges Prallblech (8) zwischen zwei Öffnerwalzen (3,4) angeordnet ist, das mit der Spitze in den unteren Zwischenraum zwischen den Öffnerwalzen (3,4) hineinragt.
- 2. Öffnungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Wände des Prallblechs (8) konzentrisch zur Drehachse (6 bzw. 7) der Öffnerwalzen (3 bzw. 4) gekrümmt sind.
- 3. Öffnungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Spitze des Prallblechs (8) über den Rost (10) hinaus maximal bis zur Horizontalebene durch die Walzenachsen (6,7) reicht.
- 4. Öffnungsvorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Roststäbe (11) zwischen zwei Öffnerwalzen (3,4) an dem Prallblech (8) derart befestigt sind, daß sich die zueinander versetzten, den jeweiligen Öffnerwalzen (3,4) zugeordneten Roststäbe (11) einander überlappen.
- 5. Öffnungsvorrichtung nach einem der Ansprüche 1 bis 4. dadurch gekennzeichnet, daß in Fräs-

- richtung vor einer Öffnerwalze (3,4) ein höhenverstellbares Leitblech (22) parallel zu den Walzenachsen (6,7) der Öffnerwalzen (3,4) angeordnet ist.
- 6. Öffnungsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Leitblech (22) an dem Rost (10) oder einer Rosthalterung (12) befestigt ist.
- 7. Öffnungsvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das Leitblech (22) in Vortriebsrichtung unter einem Winkel zwischen 5° und 20° angestellt ist derart, daß das Leitblech (22) die Ballenoberfläche (20) bei Bewegung der Öffnerwalze (3,4) in Vortriebsrichtung (5) zunehmend auf eine niedrigere Horizontalebene niederdrückt.
- 8. Öffnungsvorrichtung nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß die Roststäbe (11) bis unmittelbar an in Vortriebsrichtung vor den Öffnerwalzen (3,4) angeordnete Andruckwalzen (17,18) verlängert sind.
- 9. Öffnungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Unterkante der Roststäbe (11) bis unmittelbar vor die Andruckwalzen (17,18) geradlinig verläuft.
- 10. Öffnungsvorrichtung zum Öffnen von gepreßten Faserballen, z.B. Baumwoll- und Zellwollballen und dergleichen, mit mehreren Öffnerwalzen, auf denen mehrere Frässcheiben nebeneinander derart angeordnet sind, daß sie gegenüber den Frässcheiben der benachbarten Öffnerwalze versetzt sind, und mit einem Rost, dessen Roststäbe zwischen den Frässcheiben verlaufen,

dadurch gekennzeichnet,

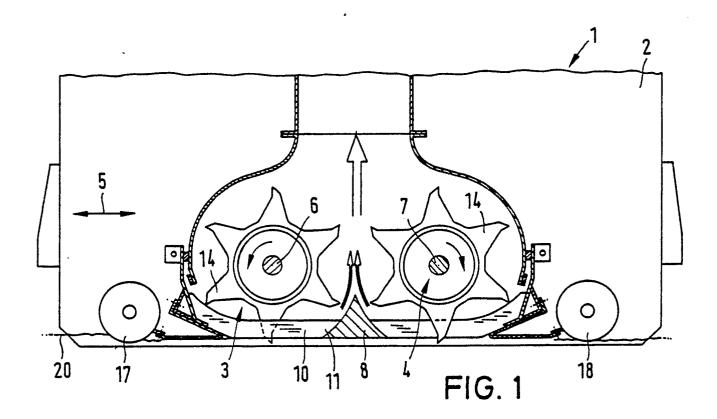
- daß die Roststäbe (11) zwischen zwei Öffnungswalzen (3,4) an einem parallel zu den Walzenachsen (6,7) der Öffnerwalzen (3,4) verlaufenden Blech (8) derart befestigt sind, daß sich die zueinander versetzten, unterschiedlichen Öffnerwalzen (3,4) zugeordneten Roststäbe (11) überlappen.
- 11. Öffnungsvorrichtung nach Anspruch 10. dadurch gekennzeichnet, daß die Roststäbe (11) bis unmittelbar an in Vortriebsrichtung vor den Öffnerwalzen (3,4) angeordnete Andruckwalzen (17,18) verlängert sind.
- 12. Öffnungsvorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Unterkante der Rostäbe (11) bis unmittelbar vor die Andruckwalzen (17,18) geradlinig verläuft.
- 13. Öffnungsvorrichtung zum Öffnen von gepreßten Faserballen, z.B. Baumwoll- und Zellwollballen und dergleichen, mit mehreren Öffnerwalzen, auf denen mehrere Frässcheiben nebeneinander derart angeordnet sind, daß sie gegenüber den Frässcheiben der benachbarten Öffnerwalze versetzt sind, und mit einem Rost, dessen Roststäbe zwischen den Frässcheiben verlaufen,

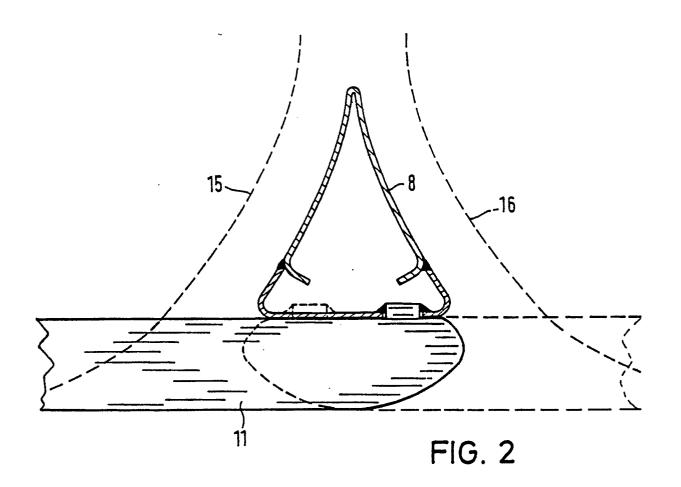
dadurch gekennzeichnet,

daß in Vortriebsrichtung vor einer Öffnerwalze (3,4)

55

ein höhenverstellbares Leitblech (22) parallel zu den Walzenachsen (6,7) der Öffnerwalzen (3,4) angeordnet ist.


14. Öffnungsvorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß das Leitblech (22) an dem Rost (11) oder einer Rosthalterung (12) befestigt ist.


15. Öffnungsvorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß das Leitblech (22) unter einem Winkel angestellt ist derart, daß sich das Leitblech (22) in Vortriebsrichtung (5) der Öffnerwalzen (3,4) öffnet und die Ballenoberfläche zunehmend niederdrückt.

16. Öffnungsvorrichtung zum Öffnen von gepreßten Faserballen, z.B. Baumwoll- und Zellwollballen und dergleichen mit einer mit Fräseinrichtungen versehenen Öffnerwalze, und mit einem Rost, dessen Roststäbe zwischen den Eingriffskreisen der Fräseinrichtungen verlaufen,

dadurch gekennzeichnet,

daß die Roststäbe (11) bis an in Vortriebsrichtung vor der Öffnerwalze (3) angeordnete Andruckwalzen (17, 18) verlängert sind, wobei die Unterkante der Roststäbe (11) bis unmittelbar vor die Andruckwalzen (17, 18) geradlinig verläuft.

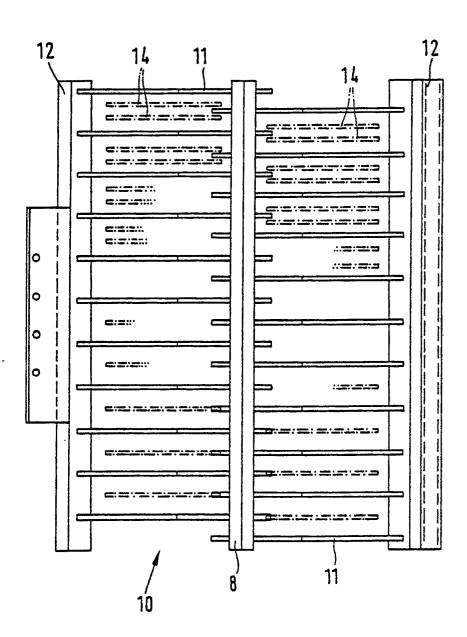


FIG. 3

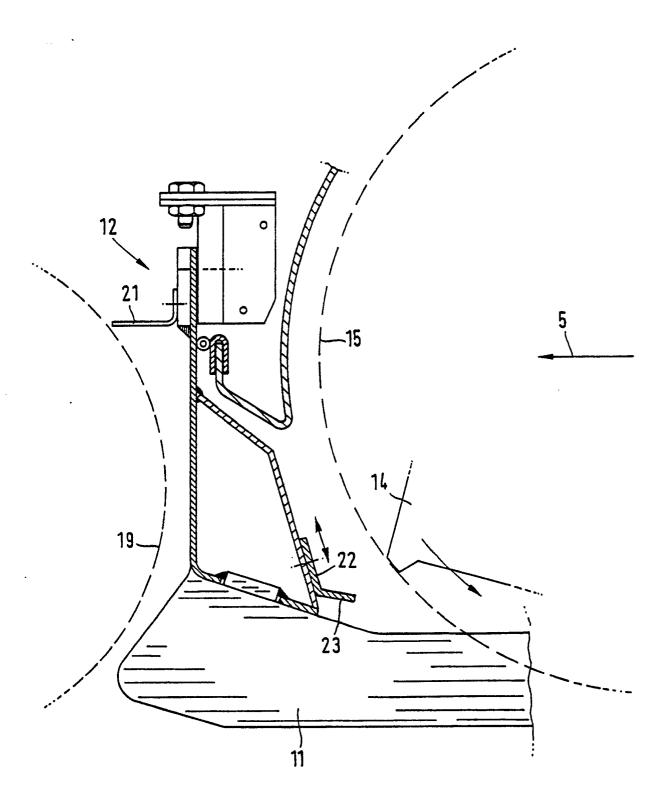
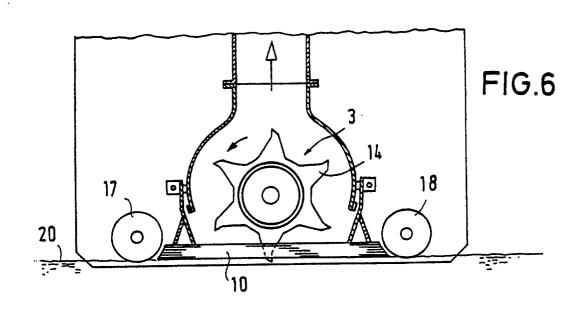



FIG. 4

