11) Numéro de publication:

0 387 139 A1

(12)

DEMANDE DE BREVET EUROPEEN

21 Numéro de dépôt: 90400604.6

(51) Int. Cl.5: F24H 1/20

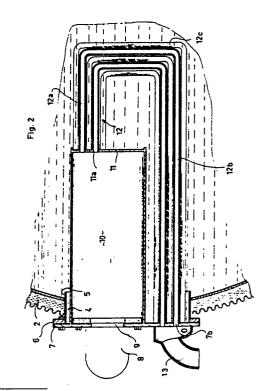
22 Date de dépôt: 06.03.90

Priorité: 07.03.89 FR 8903346

Date de publication de la demande: 12.09.90 Bulletin 90/37

Etats contractants désignés:
BE CH DE DK ES FR GB IT LI NL SE

71 Demandeur: S.A. JULIEN LACAZE B.P. No 2, Leyme F-46120 Lacapelle Marival(FR)


1/2 Inventeur: Frery, Philippe 55 Chemin de Bataillé F-46100 Figeac(FR) Inventeur: Lacaze, Pierre B.P. 2 F-46120 Leyme(FR)

Mandataire: Barre, Philippe
Cabinet Barre-Gatti-Laforgue 95 rue des
Amidonniers
F-31069 Toulouse Cédex(FR)

(54) Ballon de chauffage d'un liquide, notamment d'eau, et ensemble monobloc de combustion et d'échange de chaleur destiné à équiper un tel ballon.

57 L'invention concerne un ballon de chauffage d'un liquide, notamment d'eau, et un ensemble monobloc de combustion et d'échange de chaleur destiné à équiper un tel ballon et comprenant une plaque de façade (7) dotée de moyens de fixation amovible sur la paroi du ballon, une chambre de combustion (10) solidarisée à cette plaque de façade en regard d'une ouverture (9) ménagée dans cette dernière, une pluralité de tubes (12), chacun en forme générale de U, possédant une branche courte (12a) fixée sur la paroi d'extrémité (11) de la chambre de combustion (10), et une branche longue (12b) fixée sur la plaque de façade (7), un brûleur (8) porté par la plaque de façade (7) en regard de i'ouverture (9) de cette dernière, et un collecteur (13) porté par cette plaque en regard des extrémités des branches longues (12b) des tubes (12). Selon l'invention, cet ensemble monobloc est introduit dans le mballon au travers d'un orifice (4) de forme ovoïde, et eles tubes (12) sont agencés selon un faisceau en forme générale de U de façon que les branches longues (12b) soient groupées latéralement sur un côté de la chambre de combustion (10), et les branches courtes (12a) soient groupées à l'arrière et

dans l'alignement de cette chambre (10).

BALLON DE CHAUFFAGE D'UN LIQUIDE, NOTAMMENT D'EAU, ET ENSEMBLE MONOBLOC DE COMBUS-TION ET D'ECHANGE DE CHALEUR DESTINE A EQUIPER UN TEL BALLON

20

L'invention concerne un ballon de chauffage d'un liquide, notamment d'eau. Elle s'étend à un ensemble monobloc de combustion et d'échange de chaleur destiné à équiper un tel ballon.

1

Parmi les diverses techniques utilisées pour la production d'eau chaude sanitaire ou d'eau chaude, d'eau surchauffée et/ou de vapeur dans le domaine industriel, une technique courante consiste à utiliser un corps de chauffe comprenant un échangeur de chaleur dans lequel circulent les gaz de combustion issus d'un brûleur.

En règle générale, les installations réalisées selon cette technique comportent un ballon de stockage de liquide doté d'un orifice en regard duquel est monté un brûleur, un échangeur de chaleur immergé à l'intérieur du ballon et à l'intérieur duquel circulent les fumées de combustion issues du brûleur, et un collecteur d'échappement destiné à évacuer les fumées.

Un premier mode de réalisation, couramment utilisé à l'heure actuelle, consiste ainsi en un ballon cylindrique fermé à ses deux extrémités par des calottes au niveau de chacune desquelles est ménagée une chambre fermée. Le brûleur est monté vers une des extrémités du ballon en regard d'un long foyer ménagé dans une des chambres et s'étendant à l'intérieur du ballon de façon à déboucher dans la chambre opposée. L'échangeur de chaleur est quant à lui constitué d'un faisceau de tubes reliant les deux chambres et vers lesquels les fumées issues du foyer sont canalisées afin de circuler une seconde fois en échange thermique avec le liquide avant d'être évacuées vers un collecteur.

Bien que le rendement de telles installations soit appréciable, en raison du trajet aller-retour imposé aux fumées, ces dernières présentent deux inconvénients majeurs. D'une part, la multiplicité des tubes d'échange pose des problèmes de tenue mécanique car les liaisons par soudure de ces derniers au niveau des chambres d'extrémité sont relativement fragiles. De plus et surtout, la maintenance de telles installations s'avère très délicate voire impossible, compte-tenu des difficultés d'accès aux différents éléments.

Pour pallier ce dernier inconvénient, plusieurs solutions ont été envisagées visant à réaliser un ensemble monobloc de combustion et d'échange de chaleur destiné à être introduit de façon démontable à l'intérieur du ballon au travers d'un orifice ménagé dans la paroi de ce dernier. Ces ensembles monobloc sont constitués d'une plaque de façade apte à être fixée sur la paroi du ballon et portant sur sa face externe un brûleur et un collec-

teur de fumées et, sur sa face interne, un dispositif d'échange de chaleur destiné à être immergé à l'intérieur du ballon et communiquant respectivement avec le brûleur et le collecteur. De tels ensembles sont notamment décrits dans le brevet français n° 88.03528 au nom de la déposante, le brevet GB 2.052.697 et le brevet US 4.465.024.

Les brevets FR 88.03528 et GB 2.052.697 décrivent ainsi un ensemble dans lequel l'échangeur de chaleur est constitué d'un tube s'étendant dans le prolongement du brûleur et agencé de façon à effectuer plusieurs trajets aller-retour à l'intérieur du ballon avant de communiquer avec le collecteur de fumées. Selon le brevet FR 88.03528, ce tube est un tube unique se présentant sous la forme d'un serpentin à couples multiples. Selon le brevet GB 2.052.697, ce tube est constitué de plusieurs tronçons parallèles reliés à leurs extrémités à des chambres cloisonnées, agencées de façon à permettre le passage des fumées d'un tube à l'autre.

Comme indiqué ci-dessus, de telles installations permettent de résoudre les problèmes de maintenance, l'ensemble de combustion et d'échange de chaleur étant facilement démontable et accessible. Toutefois, elles présentent plusieurs inconvénients. En premier lieu, la multiplication du nombre de trajets aller-retour, sur plusieurs niveaux, conduit à surdimensionner artificiellement l'orifice pratiqué dans la cuve au fur et à mesure que les besoins thermiques requis augmentent, car la seule solution envisageable pour augmenter la puissance de l'ensemble consiste alors dans l'allongement du (ou des) tube(s) et dans l'augmentation de son (leur) diamètre. Or, ce surdimensionnement conduit à un affaiblissement mécanique de la paroi du ballon entraînant un maximum de contraintes le long de la génératrice du cylindre. De ce fait, l'installation est limitée en puissance en raison des contraintes maximales admissibles par la cuve. En outre, l'augmentation de la section de cet orifice conduit à une perte d'efficacité de l'installation, car cette surface constitue un excellent pont thermique. En second lieu, et compte-tenu de la longueur de l'échangeur, la vitesse de circulation des fumées de combustion induit une perte de charge importante qui ne peut être compensée que par la présence d'un surpresseur d'air, gros consommateur d'énergie. De plus, le niveau de pression généré provoque quant à lui un bruit important à l'échappement.

Le brevet US 4.465.024 décrit quant à lui un ensemble permettant de pallier d'une part les problèmes de maintenance, et d'autre part les problèmes relatifs à la longueur de l'échangeur des ins-

45

tallations ci-dessus décrites. L'échangeur décrit dans ce brevet comprend une chambre de combustion de gros diamètre solidarisée à la plaque de façade en regard d'une ouverture ménagée dans cette dernière, et une pluralité de tubes en forme de U répartis extérieurement sur la périphérie de la paroi cylindrique de cette chambre, et dont les extrémités sont respectivement fixées sur la paroi arrière de la chambre de combustion de façon à communiquer avec l'intérieur de cette dernière, et sur la plaque de façade ; le collecteur est quant à lui doté d'une chambre annulaire de récupération des fumées, communiquant avec l'extrémité des tubes fixée sur la plaque de façade. En sortie de la chambre de combustion, les fumées de combustion se répartissent donc dans les différents tubes ; la longueur du trajet parcouru par ces fumées se trouve donc considérablement diminuée par rapport aux installations précitées, sans toutefois occasionner une baisse de rendement sensible, et ce grâce à la multiplicité des tubes.

Toutefois, comme précédemment, toute augmentation des besoins thermiques nécessite d'augmenter artificiellement le diamètre de la chambre de combustion, et par conséquent celui de l'orifice de la cuve avec tous les problèmes inhérents à cette augmentation. En effet, le nombre de tubes répartis sur le pourtour de cette chambre de combustion ne peut être augmenté indéfiniment pour un diamètre de chambre donné, et ce notamment pour des problèmes de fabrication de l'ensemble. De plus, il est à noter que la conception de cet ensemble monobloc génère des difficultés de fabrication. En effet, les tubes doivent être obligatoirement solidarisés en premier lieu sur la paroi d'extrémité de la chambre de combustion (par soudage ou tout autre procédé connu). Or, il s'avère qu'une fois cette opération effectuée, la solidarisation de cette plaque elle-même sur la chambre de combustion constitue une opération très délicate difficilement réalisable que ce soit de l'intérieur de la chambre, en raison de la longueur de cette dernière, ou de l'extérieur en raison de la présence des tubes.

La présente invention vise à pallier les inconvénients des ballons de chauffage dotés d'un ensemble monobloc de combustion et d'échange de chaleur ci-dessus décrits, et a pour principal objectif de fournir un ballon de chauffage doté d'un ensemble monobloc démontable dont la limite de puissance, pour un ballon de dimensions identiques, est largement supérieure à celle des dispositifs connus.

Un autre objectif est de fournir un ballon de chauffage dont la capacité réelle de stockage est supérieure à celle des ballons connus.

Un autre objectif est de fournir un ballon de chauffage doté d'un ensemble monobloc de fabri-

cation aisée et peu onéreuse.

A cet effet, l'invention concerne un ballon de chauffage d'un liquide, notamment d'eau, compre-

- une cuve de stockage fermée comportant une paroi dotée d'un orifice,
- un ensemble monobloc de combustion et d'échange de chaleur apte à être introduit à l'intérieur de la cuve, au travers de l'orifice de cette dernière, de façon à s'étendre partiellement à l'intérieur de ladite cuve, ledit ensemble comportant :
- une plaque de façade dotée d'une ouverture et d'orifices dits d'échappement de fumée, et comportant des moyens de fixation amovible sur la paroi de la cuve,
- . une chambre de combustion solidarisée à la plaque de façade de façon que l'ouverture de ladite plaque débouche dans cette chambre, et dotée d'une paroi d'extrémité opposée à ladite ouverture,
- un échangeur multitubulaire constitué d'une pluralité de tubes, chacun, en forme générale de U, possédant une branche, dite courte, solidarisée vers son extrémité sur la paroi d'extrémité de la chambre de combustion de façon à communiquer avec l'intérieur de ladite chambre, et une branche, dite longue, de longueur supérieure, solidarisée vers son extrémité sur la plaque de façade de façon à déboucher dans les orifices d'échappement de cette dernière,
- . un brûleur porté par la plaque de façade de façon à communiquer avec la chambre de combustion au travers de l'ouverture de ladite plaque,
- . et un collecteur d'échappement porté par la plaque de façade, en regard des orifices d'échappement de ladite plaque.

Selon l'invention, ce ballon se caractérise en ce que :

- l'orifice de la paroi de la cuve de stockage présente une section ovoïde dont le grand axe est sensiblement horizontal,
- les orifices d'échappement de la plaque de façade sont groupés de façon à s'inscrire à l'intérieur d'une section sensiblement centrée sur un axe confondu avec le grand axe de l'orifice de la paroi de la cuve,
- l'ouverture et l'ensemble d'orifices d'échappement de la plaque de façade sont ménagés sur cette dernière de façon à être situés respectivement de part et d'autre du petit axe de symétrie de l'orifice de la paroi de la cuve,
- les tubes sont agencés selon un faisceau s'inscrivant à l'intérieur d'une section en forme générale de U de dimensions transversales sensiblement inférieures à celles de l'orifice de la paroi de la cuve et de façon que les branches longues soient groupées latéralement sur un côté de la chambre de combustion pour venir déboucher dans les orifi-

55

ces d'échappement de la plaque de façade, et que les branches courtes soient groupées à l'arrière de la chambre de combustion dans l'alignement de celle-ci.

On constatera, en premier lieu, qu'un tel ballon allie tous les avantages de celui décrit dans le brevet US 4.465.024. En effet, tous les éléments de l'ensemble de combustion et d'échange de chaleur sont solidarisés sur une plaque de façade, permettant un montage et un démontage rapides de cette ensemble, notamment un vue de sa maintenance. De plus, les dilatations dues aux gradients de température sont absorbées non pas par des soudures, mais par la courbure des tubes. En outre, chaque tube n'engendre qu'une faible perte de charge permettant l'emploi de turbines moins importantes et moins énergivores, tandis que le niveau sonore à l'échappement se trouve moins élevé. Cette faible perte de charge autorise notamment l'utilisation de gaz combustible basse pression, notamment pression domestique de 20 mbars. Enfin, la vitesse de circulation des fumées permet de diminuer la température pariétale de l'ensemble chambre de combustion/échangeur, d'où une diminution des risques d'entartrage sur les points chauds car la température d'ébullition de l'eau sous pression n'est pas atteinte le long de la chambre de combustion.

De plus, le ballon selon l'invention permet d'allier à ces avantages des avantages spécifiques résultant de sa conception propre. En effet, la forme ovoïde de l'orifice de la cuve permet d'améliorer notablement la résistance mécanique de la paroi de cette cuve, au niveau de sa génératrice, étant donné que le petit axe de cet orifice se trouve sensiblement vertical. De plus, l'agencement de la chambre de combustion et des tubes échangeurs de chaleur confère à l'échangeur de chaleur une capacité, c'est-à-dire un rapport puissance installée/volume occupé, largement supérieur à celui des installations connues.

De ce fait, la limite de puissance se trouve reportée à un niveau largement supérieur par rapport aux ballons connus, sans que la diminution du volume occupé par l'échangeur de chaleur n'engendre de diminution de rendement, en raison de l'augmentation de la capacité de l'ensemble.

Il est à noter en outre qu'une telle conception, en permettant de diminuer la section de l'orifice de la paroi de la cuve, conduit à une diminution des ponts thermiques.

Enfin, la section ovoïde de l'orifice permet de ménager ce dernier à un niveau de la cuve inférieur à celui des ballons connus sans affecter la résistance de cette dernière. Par conséquent, le volume situé au-dessus de l'ensemble monobloc se trouve augmenté de même que la capacité réelle de stockage de la cuve.

Selon un mode de réalisation préférentiel, les branches longues et les branches courtes des tubes sont respectivement arrangées au pas hexagonal compact. (Par pas hexagonal, on entend définir, selon une définition classique, une disposition dans laquelle les tubes sont répartis selon des cercles concentriques équidistants, un tube étant disposé au centre, six tubes sur le cercle de premier niveau, puis six tubes supplémentaires sur chaque cercle de niveau supérieur).

Cet agencement permet d'obtenir une compacité, c'est-à-dire un rapport nombre de tubes par surface du cercle inscrivant le faisceau, optimale, et par conséquent une capacité optimale de l'échangeur de chaleur de l'ordre de 1,5 fois celle des échangeurs connus.

Selon une variante de réalisation, les branches courtes et les branches longues des tubes peuvent également être arrangées au pas triangulaire qui constitue un dérivé du pas hexagonal compact. La compacité obtenue à partir de cet agencement est inférieure à celle obtenue avec le pas hexagonal compact, mais un tel agencement présente un avantage au niveau de la fabrication car il fournit une disposition dans laquelle les branches des tubes sont alignées verticalement selon des rangées parallèles. Ainsi, un tel agencement permet de réaliser un faisceau dans lequel les tubes disposés selon une même rangée verticale sont de même longueur, et par conséquent d'abaisser le coût de fabrication.

Selon une autre caractéristique de l'invention, la chambre de combustion présente une forme cylindrique et est obturée par une paroi d'extrémité constituée d'une plaque circulaire solidarisée par soudage et dotée d'orifices d'échappement dans lesquels débouchent les branches courtes des tubes.

Cette caractéristique présente un avantage primordial au niveau de la fabrication de l'ensemble monobloc. En effet, lors de cette fabrication, les branches courtes des tubes sont en premier lieu solidarisées, par exemple dudgeonnées puis soudées, sur la plaque circulaire. L'opération suivante consiste ensuite à souder cette plaque circulaire sur une face d'extrémité ouverte de la chambre de combustion. Enfin, en dernier lieu, l'autre extrémité de cette chambre est soudée sur la plaque de façade et les extrémités des branches longues solidarisées également sur cette plaque, par dudgeonnage et soudage. On s'aperçoit donc que lors du montage des différents éléments, les surfaces à souder sont toujours facilement accessibles. De plus, une double sécurité est assurée lors des liaisons tubes/plaque circulaire et tubes/plaque de façade, étant donné que ces tubes sont en premier lieu dudgeonnés puis soudés.

L'invention s'étend également en tant que

55

moyen essentiel pour la réalisation de ce ballon de chauffage à l'ensemble monobloc de combustion et d'échange de chaleur équipant ledit ballon.

D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description détaillée qui suit en référence aux dessins annexés qui en représentent un mode de réalisation préférentiel et une variante de réalisation. Sur ces dessins qui font partie intégrante de la présente description :

- la figure 1 est une vue en perspective d'un ballon de chauffage conforme à l'invention, l'ensemble monobloc de combustion et d'échange de chaleur étant en position partiellement sortie,
- la figure 2 en est une coupe horizontale partielle, à échelle agrandie, l'ensemble monobloc étant dans sa position de fonctionnement,
- la figure 3 est une vue en perspective, à échelle agrandie, d'un ensemble monobloc conforme à l'invention,
- la figure 4 est une coupe longitudinale par un plan horizontal AA de cet ensemble,
- la figure 5 en est une coupe transversale par un plan vertical BB,
- la figure 6 est une vue en perspective d'un deuxième mode de réalisation de ballon conforme à l'invention

Le ballon de chauffage et son ensemble de combustion et d'échange de chaleur représentés aux figures 1 à 5 est destiné particulièrement à la production d'eau chaude, sanitaire, ou d'eau chaude, d'eau surchauffée et/ou de vapeur.

Tel que représenté aux figures 1 et 2, ce ballon de chauffage comprend une cuve 1 thermiquement isolée composée d'une paroi cylindrique 2 d'axe vertical, fermée par deux calottes d'extrémité 3 hémisphériques.

En partie inférieure de la paroi cylindrique 2 est ménagé un orifice 4 de forme ovoïde sur le pourtour interne duquel est soudée une virole 5 à bride 6, faisant saillie à l'extérieur de cette paroi.

Cet orifice 4 permet l'introduction à l'intérieur de la cuve 1 d'un ensemble de combustion et d'échange de chaleur dont tous les éléments sont solidarisés à une plaque de façade 7 destinée à venir se fixer sur la bride 6 de la virole 5.

Cette plaque de façade 7 présente une forme ovoïde conjuguée de celle de la bride 6 et est dotée, sur sa périphérie, d'alésages 7a permettant de la fixer de façon classique sur cette bride 6. Ainsi fixée, elle présente alors des axes de symétrie vertical et horizontal confondus avec ceux de l'orifice ovoïde 4 de la cuve 1.

Latéralement par rapport à son axe de symétrie vertical, et centré sur son axe de symétrie horizontal, cette plaque 7 est percée d'une ouverture circulaire 9, en regard de laquelle est boulonné, côté extérieur, un brûleur monobloc 8. Ce brûleur 8 peut être de tout type connu en soi et raccordé de

façon classique à des canalisations d'alimentation en combustible et en air comburant (non représentés).

Latéralement par rapport à son axe de symétrie vertical et du côté opposé à son ouverture 9, cette plaque de façade 7 est également percée d'orifices d'échappement 7b groupés et arrangés au pas triangulaire. L'ensemble de ces orifices d'échappement 7b s'inscrit à l'intérieur d'une section de forme semi-circulaire dont le centre est situé sur le grand axe horizontal de la plaque 7, sensiblement à égale distance du petit axe vertical, que le centre de l'ouverture 9.

Du côté interne de cette plaque de façade 7 est soudée une chambre de combustion 10 de forme cylindrique disposée de sorte que l'ouverture 9 de ladite plaque débouche dans ladite chambre.

L'extrémité opposée de cette chambre de combustion 10 est obturée au moyen d'une paroi d'extrémité circulaire 11 solidarisée par soudage. Cette paroi d'extrémité 11 est elle-même percée d'une pluralité d'orifices d'échappement 11a arrangés au pas triangulaire selon une disposition symétrique par rapport aux orifices d'échappement 7b de la plaque de façade 7.

Tel que représenté à la figure 5, cet arrangement au pas triangulaire des orifices d'échappement 7b de la plaque de façade 7 (et par symétrie de ceux de la plaque d'extrémité 11) détermine plusieurs rangées parallèles et verticales d'orifices superposés.

L'échangeur de chaleur est quant à lui constitué de tubes 12, chacun, en forme générale de U, possédant une branche courte 12a dudgeonnée vers son extrémité à l'intérieur d'un orifice d'échappement 11a de la plaque circulaire 11, et une branche longue 12b dudgeonnée vers son extrémité à l'intérieur d'un orifice d'échappement 7b de la plaque de façade. Afin d'assurer une étanchéité parfaite, les extrémités de ces branches sont en outre soudées, après dudgeonnage, respectivement du côté interne de la chambre de combustion 10, et du côté externe de la plaque de façade 7.

De même que les orifices d'échappement 7b, 11a de la plaque circulaire 11 et de la plaque de façade 7, les branches courtes 12a et les branches longues 12b de ces tubes 12 sont, chacune, groupées et arrangées au pas triangulaire. Le faisceau de tubes 12 ainsi formé s'inscrit ainsi à l'intérieur d'une section en forme générale de U, les branches longues 12b étant groupées latéralement sur un côté de la chambre de combustion 10 et alignées dans le prolongement des orifices d'échappement 7b de la plaque de façade 7, et les branches courtes 12a étant groupées à l'arrière de ladite chambre de combustion et alignées dans le prolongement des orifices d'échappement 11a de la plaque circulaire 11.

En outre, ce faisceau en forme générale de U présente une section transversale de dimensions inférieures à celles de l'orifice 4 de la paroi 2 de la cuve 1, de façon à permettre l'introduction et le retrait de l'ensemble monobloc.

Enfin, chaque tube 12 comporte en continuité avec les branches 12a, 12b, un retour 12c formant l'âme du U. De même que les branches, ces retours 12c sont groupés et arrangés au pas triangulaire.

Il est à noter que l'agencement de ces tubes 12, et par conséquent celui des orifices d'échappement 7b, 11a des plaques de façade 7 et circulaire 11, ainsi que la possibilité de jouer sur la distance séparant l'ouverture 9 et les orifices d'échappement 7b de la plaque de façade 7, permettent de modifier à volonté la surface d'échange en fonction de la puissance requise. En effet, on peut ainsi modifier la longueur des retours 12c des tubes 12, ainsi que le nombre de ces tubes 12 ou la forme de la section enveloppe des branches de ces tubes.

En dernier lieu, la plaque de façade 7 porte un collecteur d'échappement 13 doté d'une sortie horizontale visant à protéger les tubes 12 d'un éventuel colmatage provenant de l'extérieur, et sur lequel est raccordé tout conduit d'évacuation connu en soi (non représenté) tel qu'une cheminée du commerce de diamètre important.

Ce collecteur d'échappement 13 est disposé sur la plaque de façade 7 en regard des orifices d'échappement 7b de cette dernière de façon à collecter les fumées d'évacuation ayant circulé dans les tubes 12.

La Figure 6 représente une variante de réalisation dans laquelle l'ensemble monobloc de combustion et d'échange de chaleur équipe un ballon de chauffage doté d'une paroi périphérique cylindrique 14 d'axe horizontal, fermée par deux calottes d'extrémité 15. Cette ensemble monobloc, identique à celui précédemment décrit, est alors introduit au travers d'un orifice ménagé en partie inférieure d'une des calottes 15, les autres dispositions étant strictement identiques.

Revendications

- 1/ Ballon de chauffage d'un liquide, notamment d'eau, comprenant :
- une cuve de stockage (1) fermée comportant une paroi (2) dotée d'un orifice (4),
- un ensemble monobloc de combustion et d'échange de chaleur apte à être introduit à l'intérieur de la cuve (1), au travers de l'orifice (4) de cette dernière de façon à s'étendre partiellement à l'intérieur de ladite cuve, ledit ensemble comportant :

- . une plaque de façade (7) dotée d'une ouverture (9) et d'orifices (7b) dits d'échappement de fumée, et comportant des moyens de fixation amovible sur la paroi de la cuve (1),
- une chambre de combustion (10) solidarisée à la plaque de façade (7) de façon que l'ouverture (9) de ladite plaque débouche dans cette chambre, et dotée d'une paroi d'extrémité (11) opposée à ladite ouverture.
 - un échangeur multitubulaire constitué d'une pluralité de tubes (12), chacun, en forme générale de U, possédant une branche (12a), dite courte, solidarisée vers son extrémité sur la paroi d'extrémité (11) de la chambre de combustion de façon à communiquer avec l'intérieur de ladite chambre, et une branche (12b), dite longue, de longueur supérieure, solidarisée vers son extrémité sur la plaque de façade (7) de façon à déboucher dans les orifices d'échappement (7b) de cette dernière,
- un brûleur (8) porté par la plaque de façade (7) de façon à communiquer avec la chambre de combustion (10) au travers de l'ouverture (9) de ladite plaque,
 - . et un collecteur d'échappement (13) porté par la plaque de façade (7), en regard des orifices d'échappement (7b) de ladite plaque,

ledit ballon étant caractérisé en ce que :

- l'orifice (4) de la paroi de la cuve de stockage (1) présente une section ovoïde dont le grand axe est sensiblement horizontal,
- les orifices d'échappement (7b) de la plaque de façade (7) sont groupés de façon à s'inscrire à l'intérieur d'une section sensiblement centrée sur un axe confondu avec le grand axe de l'orifice (4) de la paroi de la cuve (1),
- l'ouverture (9) et l'ensemble d'orifices d'échappement (7b) de la plaque de façade (7) sont ménagés sur cette dernière de façon à être situés respectivement de part et d'autre du petit axe de symétrie de l'orifice (4) de la paroi de la cuve (1),
- les tubes (12) sont agencés selon un faisceau s'inscrivant à l'intérieur d'une section en forme générale de U de dimensions transversales sensiblement inférieures à celles de l'orifice (4) de la paroi de la cuve (1) et de façon que les branches longues (12b) soient groupées latéralement sur un côté de la chambre de combustion (10) pour venir déboucher dans les orifices d'échappement (7b) de la plaque de façade (7), et que les branches courtes (12a) soient groupées à l'arrière de la chambre de combustion (10) dans l'alignement de celle-ci.
- 2/ Ballon de chauffage selon la revendication 1, caractérisé en ce que les branches longues (12b) et les branches courtes (12a) des tubes (12) sont respectivement arrangées au pas hexagonal compact.
- 3/ Ballon de chauffage selon la revendication 1, caractérisé en ce que les branches longues

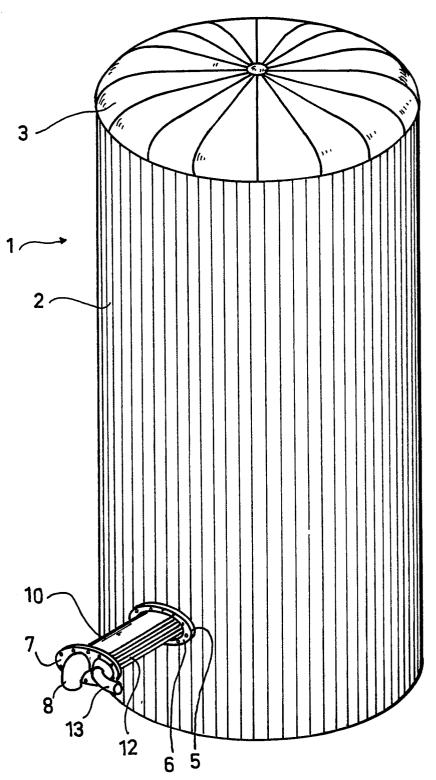
6

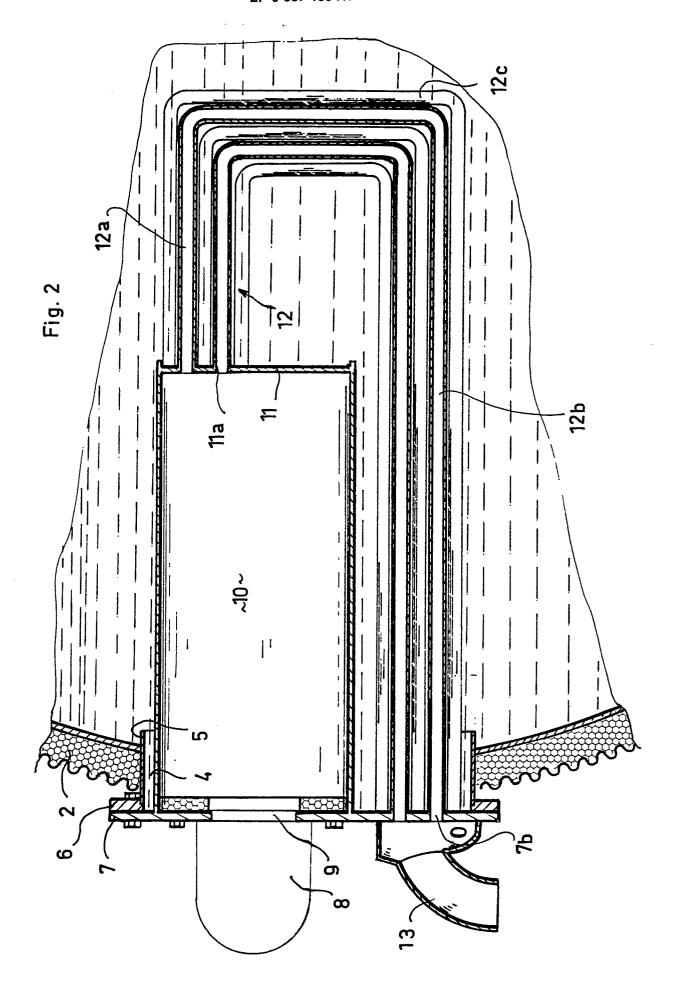
(12b) et les branches courtes (12a) des tubes (12) sont respectivement arrangées au pas triangulaire.

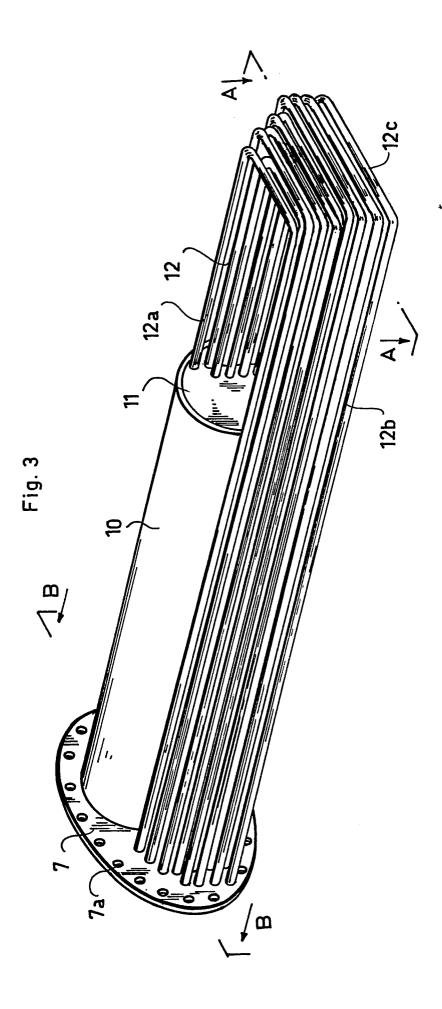
- 4/ Ballon de chauffage selon l'une des revendications 1, 2 ou 3, caractérisé en ce que les branches longues (12b) et les branches courtes (12a) des tubes (12) sont respectivement disposées de façon à s'inscrire chacune à l'intérieur d'une section de forme générale semi-circulaire.
- 5/ Ballon de chauffage selon l'une des revendications précédentes, dans lequel la chambre de combustion (10) présente une forme cylindrique, caractérisé en ce que la paroi d'extrémité (11) de ladite chambre est une plaque circulaire solidarisée par soudage et dotée d'orifices d'échappement (11a) dans lesquels débouchent les branches courtes (12a) des tubes (12).
- 6/ Ballon de chauffage selon l'une des revendications précédentes, comportant une virole (5) à bride (6) de section conjuguée de l'orifice (4) de la paroi de la cuve (1) et solidarisée à l'intérieur dudit orifice en vue de la fixation de la plaque de façade (7), ledit ballon étant caractérisé en ce que ladite plaque de façade (7) présente une forme ovoïde conjuguée de l'orifice (4) et de dimensions sensiblement supérieures à celles dudit orifice.
- 7/ Ballon de chauffage dit vertical selon l'une des revendications précédentes, comportant une paroi périphérique cylindrique (2) d'axe vertical, fermée par deux calottes (3), supérieure et inférieure, et un orifice (4) ménagé en partie inférieure de ladite paroi périphérique.
- 8/ Ballon de chauffage dit horizontal selon l'une des revendications 1 à 6, comportant une paroi périphérique cylindrique (14) d'axe horizontal, fermée par deux calottes d'extrémités (15), et un orifice (4) ménagé en partie inférieure d'une desdites calottes d'extrémité.
- 9/ Ensemble monobloc de combustion et d'échange de chaleur apte à être monté de façon amovible sur un ballon de chauffage conforme à l'une des revendications 1 à 8, comportant un orifice (4) de forme ovoïde ménagé dans sa paroi, ledit ensemble comprenant :
- une plaque de façade (7) dotée d'une ouverture (9) et d'orifices (7b) dits d'échappement de fumée, et comportant des moyens de fixation amovible sur la paroi de la cuve (1),
- une chambre de combustion (10) solidarisée à la plaque de façade (7) de façon que l'ouverture (9) de ladite plaque débouche dans cette chambre, et dotée d'une paroi d'extrémité (11) opposée à ladite ouverture,
- un échangeur multitubulaire constitué d'une pluralité de tubes (12), chacun, en forme générale de U, possédant une branche (12a), dite courte, solidarisée vers son extrémité sur la paroi d'extrémité (11) de la chambre de combustion de façon à communiquer avec l'intérieur de ladite chambre, et une

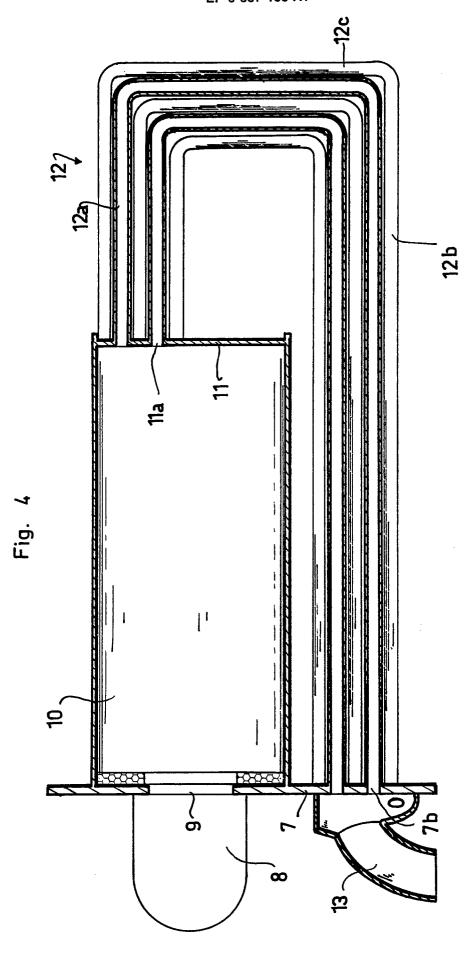
- branche (12b), dite longue, de longueur supérieure, solidarisée vers son extrémité sur la plaque de façade (7) de façon à déboucher dans les orifices d'échappement (7b) de cette dernière,
- un brûleur (8) porté par la plaque de façade (7) de façon à communiquer avec la chambre de combustion (10) au travers de l'ouverture (9) de ladite plaque,
- et un collecteur d'échappement (13) porté par la plaque de façade (7), en regard des orifices d'échappement (7b) de ladite plaque,

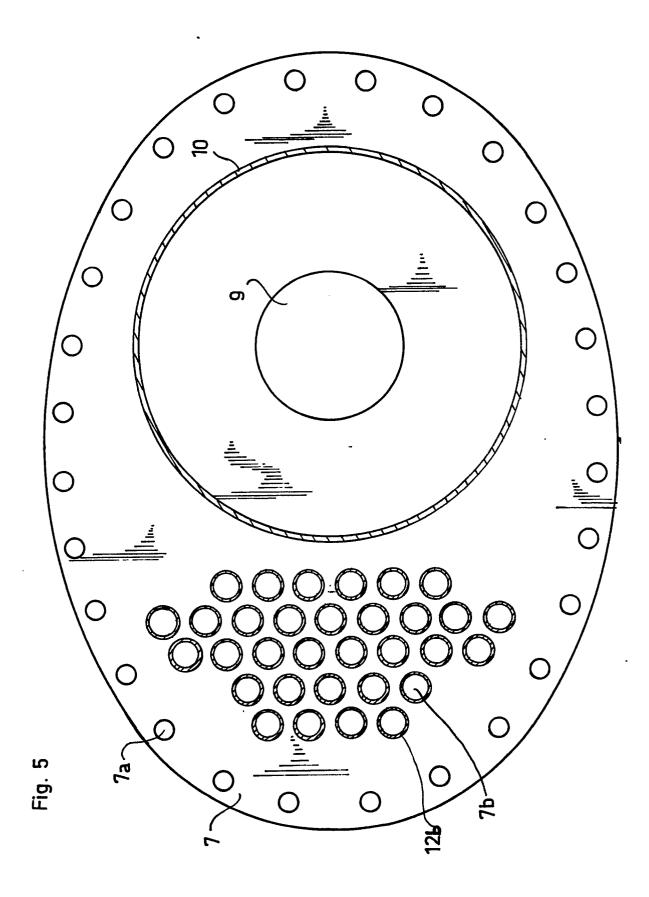
ledit ensemble étant caractérisé en ce que :

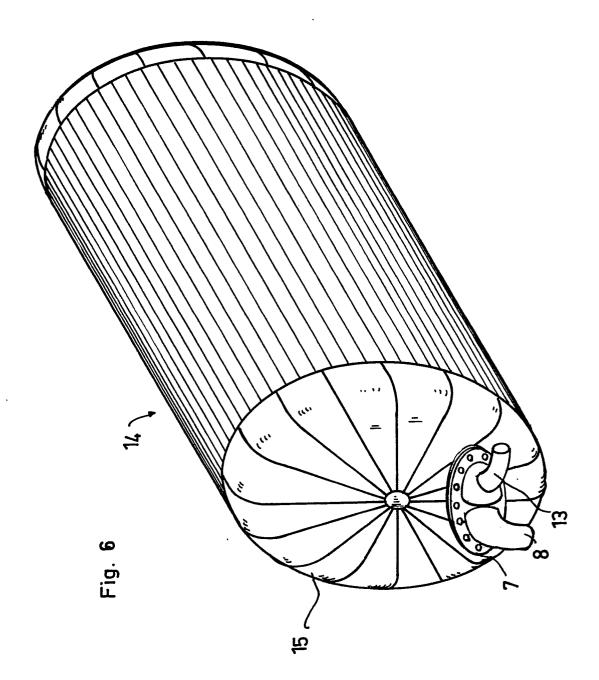

- les orifices d'échappement (7b) de la plaque de façade (7) sont groupés de façon à s'inscrire à l'intérieur d'une section sensiblement centrée sur un axe commun au grand axe de l'orifice (4) de la paroi de la cuve (1),
- l'ouverture (9) et l'ensemble d'orifices d'échappement (7b) de la plaque de façade (7) sont ménagés sur cette dernière de façon à être situés respectivement de part et d'autre du petit axe de symétrie de l'orifice (4) de la paroi de la cuve (1),
- les tubes (12) sont agencés selon un faisceau s'inscrivant à l'intérieur d'une section en forme générale de U de dimensions transversales sensiblement inférieures à celles de l'orifice (4) de la paroi de la cuve (1) et de façon que les branches longues (12b) soient groupées latéralement sur un côté de la chambre de combustion (10) pour venir déboucher dans les orifices d'échappement (7b) de la plaque de façade (7), et que les branches courtes (12a) soient groupées à l'arrière de la chambre de combustion (10) dans l'alignement de celle-ci.


35


40


50


Fig. 1



RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande

EP 90 40 0604

שע		ERES COMME PERTI	NEN15	
atégorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
D,Y	GB-A-2 052 697 (A. * page 1, lignes 87		1,5,7-9	F 24 H 1/20
Y	US-A-4 549 526 (M. * colonne 10, ligne 51; colonne 1 colonne 14, ligne 5	e 8 - colonne 12, 13, ligne 59 -	1,5,7-9	
A	FR-A- 513 916 (P. * le document en er		1,9	
A	DE-A-3 628 127 (A. * colonne 2, lignes	OBERWIMMER et al.) s 9-29 *	1	
				DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
				F 22 B F 24 H
Le pr	ésent rapport a été établi pour to	outes les revendications		
	Lieu de la recherche	Date d'achèvement de la recherche		Examinateur
BERLIN		16-05-1990	PIEP	PER C

- X : particulièrement pertinent à lui seul
 Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
 A : arrière-plan technologique
 O : divulgation non-écrite
 P : document intercalaire

- E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date

 D : cité dans la demande

 L : cité pour d'autres raisons

- & : membre de la même famille, document correspondant