11) Publication number:

**0 388 164** A1

**EUROPEAN PATENT APPLICATION** 

21) Application number: 90302693.8

2 Date of filing: 14.03.90

(51) Int. Cl.<sup>5</sup>: C07D 493/08, C07D 405/12, C07D 413/12, C07D 417/12, A01N 43/90, A01N 43/40, A01N 43/56, A01N 43/653, A01N 43/76, A01N 43/78

Priority: 14.03.89 US 323574 28.02.90 US 484087

- 43 Date of publication of application: 19.09.90 Bulletin 90/38
- Designated Contracting States:
  GR

- Applicant: E.I. DU PONT DE NEMOURS AND COMPANY 1007 Market Street Wilmington Delaware 19898(US)
- inventor: Bozarth, Gene Allen
  15 Nathalie Drive
  Hockessin, Delaware 19707(US)
  Inventor: Christensen, Joel Robert
  36 Choate Street
  Newark, Delaware 19711(US)

Inventor: Powell, James Edward 168 Chandlee Road Rising Sun, Maryland 21911(US)

Inventor: Schlecht, Matthew Fred
18 West Ridge Court

Newark, Delaware 19711(US)

Representative: Hildyard, Edward Martin et al Frank B. Dehn & Co. European Patent Attorneys Imperial House 15-19 Kingsway London WC2B 6UZ(GB)

- Selective oxabicycloalkanes.
- This invention relates to compounds, agriculturally suitable compositions thereof, and a method for controlling the growth of undesired vegetation in paddy rice with an oxabicycloalkane herbicide of the formula JOCH<sub>2</sub>Q

wherein J is an oxabicycloalkane moiety; and

Q is an optionally substituted aromatic or heteroaromatic moiety.

EP 0 388

Xerox Copy Centre

#### **SELECTIVE OXABICYCLOALKANES**

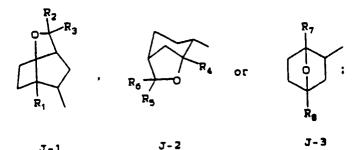
### Background of the Invention

This invention relates to compounds, agriculturally suitable compositions thereof, and a method for controlling the growth of undesired vegetation in paddy rice with an oxabicycloalkane herbicide.

U.S. 4,670,041 and U.S. 4,486,219 disclose oxabicycloalkanes and their use for controlling plant growth. U.S. 4,798,621 discloses [2.2.1]oxabicycloethers for the control of weeds in rice.

### Summary of the Invention

10


5

This invention comprises a method for controlling the growth of undesired vegetation in a paddy rice crop by applying to the locus of the paddy rice crop an effective amount of a compound of Formula I  $JOCH_2Q$  Formula I

wherein

J is

20



25

R<sub>1</sub> is CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub>;

 $R_2$  and  $R_3$  are independently H,  $CH_3$  or  $CH_2CH_3$  or

R<sub>2</sub> and R<sub>3</sub> may be taken together as -(CH<sub>2</sub>)n-where n is 4 or 5;

R4 is H, CH3 or CH2CH3;

 $R_{5}$  and  $R_{6}$  are independently  $CH_{3}$  or  $CH_{2}CH_{3};\;$ 

R<sub>7</sub> is CH₃ or CH₂CH₃;

 $R_8$  is  $CH_3$ ,  $CH_2CH_3$  or  $CH(CH_3)_2$ ;

Q is

40

45

$$S$$
  $P_{10}$   $P_{10}$ 

 $R_{10} \longrightarrow R_{9} \qquad R_{10} \longrightarrow R_{9} \qquad R_{10} \longrightarrow R_{9}$   $CH_{3} \longrightarrow CH_{3}$ 

 Q-3
 Q-4
 Q-5

 25
 30

 35
 35

15

30

25

$$R_9$$
 $R_{10}$ 
 $R_{1$ 

40

50

55

X is F, Cl, or CH<sub>3</sub>;

Y is H, F, or Cl;

R<sub>9</sub> is H, F, Cl, Br, CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub>; and

45 R<sub>10</sub> is H, F, Cl or CH<sub>3</sub>;

provided that

- 1. when J is J-1 or J-3 and Q is Q-2 then  $R_{\rm 9}$  and  $R_{\rm 10}$  are not both H.
- 2. when Q is Q-1 then J is J-1,  $R_1$  is  $CH_3$ , and  $R_2$  and  $R_3$  are both  $CH_2CH_3$ .
- 3. when X is F then Y is other than H.
- 4. when X is CI then Y is other than Cl.
- 5. when X is CH3 then Y is H.
- 6. when Y is H then X is Cl or CH3.
- 7. when Y is F then X is F or Cl.
- 8. when Y is CI then X is F or H.

Preferred for reasons of more efficient weed control and/or better crop tolerance are:

1. The method wherein

R<sub>1</sub> is CH<sub>3</sub>;

 $R_2$  and  $R_3$  are  $CH_2CH_3$  or  $R_2$  and  $R_3$  are taken together as -( $CH_2$ )n- where n is 4 or 5;

```
R4 is CH3:
    R<sub>5</sub> and R<sub>6</sub> are CH<sub>3</sub>;
    R7 is CH3 or CH2CH3; and
    R<sub>8</sub> is CH<sub>2</sub>CH<sub>3</sub> or CH(CH<sub>3</sub>)<sub>2</sub>.
           2. The method of Preferred 1 wherein J is J-1.
5
           3. The method of Preferred 2 wherein Q is Q-1.
           4. The method of Preferred 2 wherein Q is Q-2.
           5. The method of Preferred 2 wherein Q is Q-3 or Q-4.
           6. The method of Preferred 2 wherein Q is Q-5 through Q-14.
           7. The method of Preferred 1 wherein J is J-2.
10
           8. The method of Preferred 7 wherein Q is Q-2.
           9. The method of Preferred 7 wherein Q is Q-3 or Q-4.
           10. The method of Preferred 7 wherein Q is Q-5 through Q-14.
           11. The method of Preferred 1 wherein J is J-3.
           12. The method of Preferred 12 wherein Q is Q-2.
15
           13. The method of Preferred 12 wherein Q is Q-3.
           14. The method of Preferred 12 wherein Q is Q-4.
           15. The method of Preferred 12 wherein Q is Q-5 or Q-6.
           16. The method of Preferred 12 wherein Q is Q-7 through Q-14.
           17. The method of Preferred 1 wherein the crop is transplanted japonica rice.
20
           18. The method of Preferred 1 wherein the crop is transplanted indica rice.
           19. The method of Preferred 1 wherein among the weeds controlled is barnyardgrass.
         Specifically preferred for reasons of most efficient weed control and/or better crop tolerance is the
    method wherein the compound of Formula I is selected from the group consisting of:
    6-endo-[(2,6-difluor ophenyl) methoxy]-3, 3-diethyl-1-methyl-2-oxabicyclo[2.2.2] octane;\\
25
    6-endo-[(2-chlorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo-[2.2.2]octane;
    6-endo-[(2-chloro-6-fluoro phenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2.]octane;
    3,3-diethyl-1-methyl-6-endo-[(2-methylphenyl)methoxy]-2-oxabicyclo[2.2.2]octane;
    exo-1-methyl-4-(1-methylethyl)-2-[(4 -thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane;
    exo-1,4-diethyl-2-[(4 -thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane;
    exo-1-methyl-4-(1-methylethyl)-2-[(2'-(6'-fluoropyridyl))methoxy]-7-oxabicyclo[2.2.1]heptane; and
     exo-1,4-diethyl-2-[(2 -(6 -fluoropyridyl))methoxy]-7-oxabicyclo[2.2.1]heptane.
         This invention also comprises compounds of Formula I and agriculturally suitable compositions
     containing them wherein
35 Q is Q-2 through Q-14,
    provided that when J is J-1 or J-3 and Q is Q-2 then R<sub>9</sub> and R<sub>10</sub> are not both H.
         Preferred for reasons of more efficient weed control and/or better crop tolerance are:
            1. Compound of the Formula I wherein
     R<sub>1</sub> is CH<sub>3</sub>;
   R<sub>2</sub> and R<sub>3</sub> are CH<sub>2</sub>CH<sub>3</sub> or R<sub>2</sub> and R<sub>3</sub> are taken together as -(CH<sub>2</sub>)n- where n is 4 or 5;
     R4 is CH3;
     R<sub>5</sub> and R<sub>6</sub> are CH<sub>3</sub>;
     R7 is CH3 or CH2CH3; and
     R_8 is CH_2CH_3 or CH(CH_3)_2.
            2. The compounds of Preferred 1 wherein J is J-3.
45
            3. The compounds of Preferred 1 wherein J is J-2.
            4. The compounds of Preferred 1 wherein J is J-1.
         Specifically preferred compounds of the invention for reasons of most efficient weed control and/or
     better crop tolerance are compounds of Formula I selected from the group consisting of:
    exo-1-methyl-4-(1-methylethyl)-2-[(4'-thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane;
```

55

exo-1-methyl-4-(1-methylethyl)-2-[(2´-(6´-fluoropyridyl))methoxy]-7-oxabicyclo[2.2.1]heptane; and

exo-1,4-diethyl-2-[(4'-thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane;

exo-1,4-diethyl-2-[(2'-(6'-fluoropyridyl))methoxy]-7-oxabicyclo[2.2.1]heptane.

Many of the compounds of Formula I are known in the art. They can be prepared according to processes described in U.S. 4,670,041 and U.S. 4,486,219.

As an exemplification, compounds of Formula I wherein Q is Q-1 and J is J-1 can be prepared as described in Scheme 1.

### Scheme 1

10

15

5

20

25

(b) 
$$X$$

$$CH_2Br (J-1)-OH$$

$$NaH$$

$$dimethyl formamide$$

$$X$$

$$CH_2 - O - (J-1)$$

30

The precursor substituted toluenes can be brominated at the benzylic position as shown in Scheme 1a, and side products can be removed by purification methods (such as crystallization or chromatography) well known in the art. The substituted benzylic bromide can be coupled to the J-1 alcohol by a Williamson Ether Synthesis, effected by sodium hydride as in Scheme 1b.

Compounds of Formula I wherein Q is Q-2, Q-3 or Q-4 are prepared by a related process shown in Scheme 2 in the case of Q-2 with  $R_9 = H$  and  $R_{10} = F$  in the 6-position.

## Scheme 2

40

An alternate synthesis of compounds of this type is shown in Scheme 3. This procedure involves metallation of a nicotinate ester and chlorination,

### Scheme 3

10

5

(a) CO<sub>2</sub>t-Bu

1) n-butyllithium

20

25

(b) 
$$CO_2 t - bu$$
 1)  $H_2 SO_4 / H_2 O$   $C1$  2)  $B_2 H_6$   $N$   $C1$  3)  $PBr_3$ 

N-chlorosuccinimide

30

35

(c) 
$$CH_2Br$$
  $CH_2-O-(J-2)$ 

NaH

dimethylformamide

40

followed by acid hydrolysis, borane reduction and bromination of the resulting alcohol to furnish the substituted nicotinyl bromide, which may be coupled with a J-2 alcohol by the Williamson Ether Synthesis.

Another variant can be employed in the case of compounds of Formula I wherein Q = Q-14. This uses a Hantzsch-type synthesis as shown in Scheme 4.

50

## Scheme 4

(a) 
$$C1CH_2$$
  $H_2N$   $H$   $C1CH_2$   $N$ 

The methodology described in Schemes 1-4 is also applicable to other various Q groups as outlined in Scheme 5.

dimethylacetamide

. 

## Scheme 5

20

5

35

50

Appropriate heterocyclic starting materials such as 3, 4 and 5 are known in the art. Analagous functional group manipulation as taught in Schemes 1-4 and applied to intermediates 3, 4 and 5 are also known in the art.

All stereoisomers (diastereomers and enantiomers); endo and exo forms; and mixtures thereof are included within the scope of the present invention.

The various individual isomeric forms and various combinations of the derivatives usually have some difference in herbicidal or plant growth control properties.

The following examples serve to illustrate the preparation of compounds of the invention.

#### Example 1

#### 4-(Chloromethyl)thiazole hydrochloride

A vessel containing 44.25 mL of formamide (1.11 mol) was cooled to 0°C and stirred vigorously during the portionwise addition (over 1 1/2 hour) of 25.000 g of phosphorus pentasulfide (0.056 mol). When the addition was complete, 250 mL of ether was added and the suspension was stirred at room temperature overnight. The suspension was filtered, and the solids were triturated four times with 100 mL of ether. The combined ether portions were concentrated to yield 18.89 g of crude thioformamide as an orange liquid (35% yield).

This portion of crude thioformamide (0.385 mol) was dissolved in 315 mL of acetone and this was added to a solution of 31.95 g of 1,3-dichloroacetone (0.252 mol) in 126 mL of acetone. This mixture was stirred at room temperature for five days, and was then filtered to give 19.96 g of 4-(chloromethyl) thiazole hydrochloride as an off-white solid (50% yield). A small sample was neutralized for spectral characterization. Proton NMR Spectrum (CDCl<sub>3</sub>, 90 MHz, ppm): 4.81 (s, 2H); 7.44 (s, 1H); 8.86 (s, 1H).

20

5

#### Example 2

### exo-1-Methyl-4-(1-methylethyl)-2-[(4-thiazolyl)methoxyl-7-oxabicyclo[2.2.1]heptane

A stirred suspension of 7.067 g of 80% dispersion of sodium hydride in mineral oil (177 mmol) in 80 mL of dry tetrahydrofuran was charged with 6.01 g of exo-1-methyl-4-(1-methylethyl)-7-oxabicyclo[2.2.1]-heptan-2-ol (35.3 mmol). This mixture was diluted to 150 mL with additional tetrahydrofuran, and was then charged with 75 mL of dimethylacetamide followed by 5.858 g of 4-(chloromethyl)thiazole hydrochloride (37.1 mmol) and 5.268 g of sodium iodide (35.4 mmol). The reaction vessel was wrapped in aluminum foil to protect from light, and was then heated to reflux for 8 hrs, and then stirred at room temperature for 2 1/2 days. The reaction mixture was poured into a mixture of 500 mL of saturated aqueous ammonium chloride and 200 mL of water, and this was extracted four times with 60 mL of ether. The combined ether portions were extracted with 150 mL of brine, dried (MgSO<sub>4</sub>) and concentrated to give 12.669 g of a dark brown liquid. This was purified on 250 g of silica using as eluent first 5% acetone in petroleum ether, followed by 10% and 20%, to give a major fraction of 2.962 g of exo-1-methyl-4-(1-methylethyl)-2-[(4-thiazolyl)-methoxyl-7-oxabicyclo[2.2.1]heptane as a yellow liquid (31% yield).

Proton NMR (CDCl<sub>3</sub>, 90 MHz, ppm): 0.98 (d, 6H, J = 7 Hz); 1.49 (s, 3H); 1.3-1.7 (m, 4H); 1.8-2.2 (m, 3H); 3.68 (dd, 1H, J = 2.8, 6.5 Hz); 4.57 (d, 1H, J = 12 Hz); 4.78 (d, 1H, J = 12 Hz); 7.31 (fine m, 1H); 8.75 (d, 1H, J = 1.5 Hz).

Carbon NMR (CDCl<sub>3</sub>, 100 MHz, ppm): 16.4, 17.9, 18.1, 31.6, 32.5, 33.7, 42.2, 66.6, 83.7, 85.2, 88.4, 114.9, 152.5, 155.3.

45

50

#### Example 3

#### exo-1,4-diethyl-2-[(4-thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane

A stirred suspension of 361 mg of an 80% suspension of sodium hydride in mineral oil (12.0 mmol) in 4 mL of dry tetrahydrofuran was charged with a solution of 505 mg of exo-1,4-diethyl-7-oxabicyclo[2.2.1]-heptan-2-ol (2.97 mmol) in a total of 6 mL of tetrahydrofuran. This mixture was charged with 5 mL of dimethylacetamide, followed by 851 mg of 4-(chloromethyl)thiazole hydrochloride (5.38 mmol) and 445 mg of sodium iodide (2.99 mmol). The resulting mixture was heated to reflux under nitrogen for six hrs. The reaction mixture was poured into 100 mL of saturated aqueous ammonium chloride, and this was extracted

three times with 20 mL of ether. The combined ether layers were extracted with 50 mL of brine, dried (MgSO<sub>4</sub>) and concentrated to give 969 mg of an orange oil. This was purified by chromatography on 30 g of silica, using as eluent 5% acetone in petroleum ether, followed by 10% and 15%, to yield 158 mg of exo-1,4-diethyl-2-[(4-thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane as a pale yellow oil (21% yield).

 $\overline{Proton}$  NMR (CDCl<sub>3</sub>, 90 MHz, ppm): 0.93 (t, 3H, J = 7.5 Hz); 0.98 (t, 3H, J = 7.5 Hz); 1.3-2.3 (m, 10H); 3.75 (dd, 1H, J = 2.5, 7 Hz); 4.52 (d, 1H, J = 12 Hz); 4.73 (d, 1H, J = 12 Hz); 7.29 (fine m, 1H); 8.77 (d, 1H, J = 2.5 Hz).

Using the procedures described above, the compounds of Tables I-IV may be prepared.

TABLE I

|                |                                 | JOCH₂Q                          |       |      |
|----------------|---------------------------------|---------------------------------|-------|------|
|                |                                 | J is J-1                        |       |      |
|                |                                 | Q is Q-1                        |       |      |
| R <sub>1</sub> | R <sub>2</sub>                  | R₃                              | Х     | Υ    |
| CH₃            | CH₂CH₃                          | CH₂CH₃                          | Н     | 2-CI |
| CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | 2-F   | 6-Cl |
| CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | 2-F   | 6-F  |
| CH₃            | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub> | 2-CH₃ | н    |

TABLE II

| JOCH₂Q                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J is J-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q is Q-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                 | R₃ is ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n the 3 position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| R <sub>1</sub>                                                                  | R <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rэ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| CH₃<br>CH₃                                                                      | CH₃<br>CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH₃<br>CH₂CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                 | CH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CI<br>Br<br>CH₃<br>CH₂CH₃<br>Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>H<br>H<br>H<br>4-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| CH₃<br>CH₃                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cyclo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cyclo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cyclo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH₂CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH₃                                                                             | cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub>           | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>6-F<br>6-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| CH₃                                                                             | cyclo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                 | CH <sub>3</sub> | R <sub>9</sub> is in  R <sub>1</sub> R <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> Cyclo CH <sub>4</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> CH <sub>4</sub> CH <sub>3</sub> | J is J-1  Q is Q-2  R <sub>9</sub> is in the 3 position  R 1  R 2  R 3  CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> Cyclopentyl  CH <sub>3</sub> Cyclopentyl  CH <sub>3</sub> Cyclopentyl  CH <sub>3</sub> Cyclohexyl  CH <sub>3</sub> Cyclohexyl  CH <sub>3</sub> Cyclohexyl  CH <sub>3</sub> Cyclohexyl  CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> | J is J-1         Q is Q-2         R <sub>9</sub> is in the 3 position         R <sub>1</sub> R <sub>2</sub> R <sub>3</sub> R <sub>9</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> F         CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> F         CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CI         CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> Cyclopentyl       F         CH <sub>3</sub> Cyclopentyl       CH <sub>3</sub> CH <sub>3</sub> Cyclopentyl       CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> Cyclopentyl       CH <sub>3</sub> |  |  |  |

СН3

cyclohexyl

6-F

Н

## TABLE IIa

|    |                |                                 | JOCH₂Q                                                             |                |          |
|----|----------------|---------------------------------|--------------------------------------------------------------------|----------------|----------|
| 5  |                |                                 | J is J-1                                                           |                |          |
| Ī  |                |                                 | Q is Q-3                                                           |                |          |
|    |                | R <sub>9</sub> is in            | n the 2 position                                                   | on             |          |
| 10 | R <sub>1</sub> | R <sub>2</sub>                  | Rз                                                                 | R <sub>9</sub> | R 10     |
| 10 | CH₃            | CH₃                             | CH₃                                                                | F              | Н        |
|    | CH₃            | CH₃                             | CH₂CH₃                                                             | F              | Н        |
|    | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                                                             | F              | Н        |
|    | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                                                             | CI             | H        |
| 15 | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                                                             | Br             | H<br>H   |
|    | CH₃            | CH₂CH₃                          | CH₂CH₃<br>CH₂CH₃                                                   | CH₃<br>CH₂CH₃  | Н        |
|    | CH₃<br>CH₃     | CH₂CH₃<br>CH₂CH₃                | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> | Br             | п<br>4-F |
|    | CH₃            | cyclo                           | pentyl                                                             | F              | Н        |
| 20 | CH₃            | cyclo                           | pentyl                                                             | CI             | Н        |
|    | CH₃            | cyclo                           | pentyl                                                             | Br             | Н        |
|    | CH₃            | cyclo                           | pentyl                                                             | CH₃            | Н        |
| 25 | CH₃            | cyclo                           | pentyl                                                             | CH₂CH₃         | Н        |
|    | CH₃            | cycle                           | ohexyl                                                             | F              | Н        |
|    | CH₃            | cycle                           | ohexyl                                                             | CI             | Н        |
| 30 | CH₃            | cycl                            | ohexyl                                                             | Br             | Н        |
|    | CH₃            | cycl                            | ohexyl                                                             | CH₃            | Н        |
|    | CH₂CH₃         | CH₃                             | CH₃                                                                | F              | Н        |
|    | CH₃            | CH₃                             | CH₃                                                                | F              | 4-F      |
| 35 | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>                                    | F              | 4-Cl     |
|    | CH₃            | cyclo                           | pentyl                                                             | F              | 4-F      |
|    | CH₃            | cycl                            | ohexyl                                                             | F              | 4-Cl     |
| 40 | CH₃            | CH₃                             | CH₃                                                                | Н              | Н        |
| 40 | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                                                             | Н              | H        |
|    | CH₃            | cycle                           | opentyl                                                            | Н              | Н        |
|    | CH₃            | cycl                            | ohexyl                                                             | Н              | Н        |

# TABLE IIb

|    |                                 |                      | JOCH₂Q                          | -              |      |
|----|---------------------------------|----------------------|---------------------------------|----------------|------|
| 5  | •                               |                      | J is J-1                        |                |      |
|    |                                 |                      | Q is Q-4                        |                | •    |
|    |                                 | R <sub>9</sub> is ir | the 3 position                  | on             |      |
| 10 | R <sub>1</sub>                  | R <sub>2</sub>       | R <sub>3</sub>                  | R <sub>9</sub> | R 10 |
|    | CH₃                             | CH₃                  | CH₃                             | F              | Н    |
|    | CH₃                             | CH₃                  | CH <sub>2</sub> CH <sub>3</sub> | F              | Н    |
|    | CH₃                             | CH₂CH₃               | CH <sub>2</sub> CH <sub>3</sub> | F              | Н    |
|    | CH₃                             | CH₂CH₃               | CH <sub>2</sub> CH <sub>3</sub> | CI             | Н    |
| 15 | CH₃                             | CH₂CH₃               | CH <sub>2</sub> CH <sub>3</sub> | Br             | Н    |
|    | CH₃                             | CH₂CH₃               | CH <sub>2</sub> CH <sub>3</sub> | CH₃            | Н    |
|    | CH₃                             | CH₂CH₃               | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃         | Н    |
|    | CH₃                             | CH₂CH₃               | CH₂CH₃                          | Br             | 5-F  |
| 20 | CH₃                             | cyclo                | pentyl                          | F              | Н    |
|    | CH₃                             | cyclo                | pentyl                          | CI             | Н    |
|    | СН₃                             | cyclo                | pentyl                          | Br             | Н    |
|    | CH₃                             | cyclo                | pentyl                          | СН₃            | Н    |
| 25 | CH₃                             | cyclo                | pentyl                          | CH₂CH₃         | Н    |
|    | CH₃                             | cycle                | ohexyl                          | F              | Н    |
|    | CH₃                             | cycle                | ohexyl                          | CI             | Н    |
| 30 | CH₃                             | cycle                | ohexyl                          | Br             | Н    |
|    | CH₃                             | cycle                | ohexyl                          | CH₃            | н    |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₃                  | CH₃                             | F              | Н    |
|    | CH₃                             | CH₃                  | CH₃                             | Н              | Н    |
| 35 | CH₃                             | CH₂CH₃               | CH₂CH₃                          | Н              | Н    |
|    | CH₃                             | cyclo                | pentyl                          | н              | н    |
|    | CH₃                             | cycle                | ohexyl                          | н              | Н    |

TABLE IIc

|    |                                 | •                               | JOCH₂Q                          |        |      |
|----|---------------------------------|---------------------------------|---------------------------------|--------|------|
| 5  |                                 |                                 | J is J-1                        |        |      |
|    |                                 | 1                               | Q is Q-5                        |        |      |
|    |                                 | R <sub>9</sub> is ir            | the 4 position                  | on     |      |
|    | R <sub>1</sub>                  | R <sub>2</sub>                  | Rз                              | Rэ     | R 10 |
| 10 | CH₃                             | CH₃                             | CH₃                             | F      | Н    |
|    | CH₃                             | CH₃                             | CH₂CH₃                          | F      | Н    |
|    | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | F      | Н    |
|    | CH₃                             | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub> | CI     | Н    |
| 15 | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | Br     | Н    |
|    | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | CH₃    | Н    |
|    | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | CH₂CH₃ | Н    |
|    | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | Br     | 5-F  |
| 20 | CH₃                             | cyclo                           | pentyl                          | F      | Н    |
| 20 | CH₃                             | cyclo                           | pentyl                          | CI     | Н    |
|    | CH₃                             | cyclo                           | pentyl                          | Br     | Н    |
|    | CH₃                             | cyclo                           | pentyl                          | CH₃    | Н    |
| 25 | CH₃                             | cyclo                           | pentyl                          | CH₂CH₃ | Н    |
|    | CH₃                             | cycle                           | ohexyl                          | F      | Н    |
|    | CH₃                             | cycle                           | ohexyl                          | CI     | Н    |
| 30 | CH₃                             | cycle                           | ohexyl                          | Br     | Н    |
|    | CH₃                             | cycle                           | ohexyl                          | CH₃    | Н    |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₃                             | CH₃                             | F      | Н    |
| -  | CH₃                             | CH₃                             | CH₃                             | Н      | Н    |
| 35 | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | Н      | Н    |
|    | CH₃                             | cyclo                           | pentyl                          | Н      | н    |
|    | CH₃                             | cycle                           | ohexyl                          | Н      | Н    |

## TABLE IId

| 1  |                                 |                                                                                                                                                                             |                                                                                                                                                                             |                                 |                         |
|----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|
|    |                                 | •                                                                                                                                                                           | JOCH₂Q                                                                                                                                                                      |                                 |                         |
| 5  |                                 |                                                                                                                                                                             | J is J-1                                                                                                                                                                    |                                 |                         |
|    |                                 |                                                                                                                                                                             | Q is Q-6                                                                                                                                                                    |                                 |                         |
|    | _                               | R₃ is ir                                                                                                                                                                    | the 3 position                                                                                                                                                              | on                              |                         |
| 10 | R <sub>1</sub>                  | R <sub>2</sub>                                                                                                                                                              | Rз                                                                                                                                                                          | Rэ                              | R 10                    |
|    | CH₃<br>CH₃<br>CH₃               | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                        | CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>                                                                                       | F<br>F                          | H<br>H<br>H             |
| 15 | CH₃<br>CH₃<br>CH₃<br>CH₃<br>CH₃ | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> | CI<br>Br<br>CH₃<br>CH₂CH₃<br>Br | H<br>H<br>H<br>H<br>5-F |
| 20 | CH₃<br>CH₃                      | cyclo                                                                                                                                                                       | pentyl<br>pentyl                                                                                                                                                            | F<br>Cl                         | H<br>H                  |
| 25 | CH₃<br>CH₃                      | cyclo                                                                                                                                                                       | ppentyl                                                                                                                                                                     | Br<br>CH₃                       | H<br>H                  |
|    | CH₃<br>CH₃                      |                                                                                                                                                                             | ppentyl<br>ohexyl                                                                                                                                                           | CH₂CH₃<br>F                     | H<br>H                  |
|    | CH₃                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                                      | CI                              | Н                       |
| 30 | CH₃                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                                      | Br                              | н                       |
|    | CH₃                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                                      | CH₃                             | н                       |
| 35 | CH₂CH₃<br>CH₃<br>CH₃            | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>                                                                                                       | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                        | F<br>H<br>H                     | Н<br>Н<br>Н             |
|    | CH₃                             | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                                      | Н                               | Н                       |
|    | CH₃                             | cycl                                                                                                                                                                        | ohexyl                                                                                                                                                                      | Н                               | Н                       |

# TABLE IIe

|    | · · · · ·                       |                                 |                                 |                |          |
|----|---------------------------------|---------------------------------|---------------------------------|----------------|----------|
|    |                                 |                                 | JOCH <sub>2</sub> Q             |                |          |
| 5  |                                 |                                 | J is J-1                        |                |          |
|    |                                 |                                 | Q is Q-7                        | · ·-           |          |
|    |                                 | R <sub>9</sub> is i             | n the 4 position                | on             |          |
| 10 | R <sub>1</sub>                  | R <sub>2</sub>                  | Rз                              | R <sub>9</sub> | R 10     |
| •  | CH₃                             | CH₃                             | CH₃                             | F              | Н        |
|    | CH₃                             | CH₃                             | CH₂CH₃                          | F              | Н        |
|    | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | F              | Н        |
|    | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CI             | Н        |
| 15 | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | Br             | H        |
|    | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | CH₃            | H        |
|    | CH₃<br>CH₃                      | CH₂CH₃<br>CH₂CH₃                | CH₂CH₃<br>CH₂CH₃                | CH₂CH₃<br>Br   | л<br>5-F |
|    |                                 |                                 |                                 |                |          |
| 20 | CH₃                             | cyclo                           | pentyl                          | F              | Н        |
| -  | CH₃                             | cyclo                           | pentyl                          | CI             | Н        |
|    | CH₃                             | cyclo                           | pentyl                          | Br             | н        |
|    | CH₃                             | cyclo                           | pentyl                          | CH₃            | Н        |
| 25 | CH₃                             | cyclo                           | pentyl                          | CH₂CH₃         | Н        |
|    | CH₃                             | cyclo                           | ohexyl                          | F              | н        |
|    | CH₃                             | cyclo                           | hexyl                           | CI             | Н        |
| 30 | CH₃                             | cyclo                           | ohexyl                          | Br             | н        |
|    | CH₃                             | cyclo                           | hexyl                           | CH₃            | н        |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₃                             | CH₃                             | F              | Н        |
|    | CH₃                             | CH₃                             | CH₃                             | Н              | Н        |
| 35 | CH₃                             | CH₂CH₃                          | CH₂CH₃                          | Н              | Н        |
|    | CH₃                             | cyclo                           | pentyl                          | н              | Н        |
|    | CH₃                             | cyclo                           | ohexyl                          | Н              | Н        |

TABLE IIf

| _  |                |                                 |                                 |                                 |
|----|----------------|---------------------------------|---------------------------------|---------------------------------|
|    |                | JOC                             | H₂Q                             |                                 |
| 5  |                | J is                            | J-1                             |                                 |
|    |                | Q is                            | Q-8                             |                                 |
|    |                | R <sub>9</sub> is in the        | e 5 position                    |                                 |
| 10 | R <sub>1</sub> | R <sub>2</sub>                  | Rз                              | R <sub>9</sub>                  |
| 70 | CH₃            | CH₃                             | CH₃                             | F                               |
|    | CH₃            | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | F                               |
|    | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | F                               |
|    | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CI                              |
| 15 | CH₃            | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub> | Br                              |
|    | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH₃                             |
|    | CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> |
|    | CH₃            | CH₂CH₃                          | CH₂CH₃                          | Br                              |
| 20 | CH₃            | cyclo                           | pentyl                          | F                               |
| 20 | CH₃            | cyclo                           | pentyl                          | CI                              |
|    | CH₃            | cyclo                           | pentyl                          | Br                              |
|    | CH₃            | cyclo                           | pentyl                          | CH₃                             |
| 25 | CH₃            | cyclo                           | pentyl                          | CH₂CH₃                          |
|    | CH₃            | cycle                           | ohexyl                          | F                               |
|    | CH₃            | cycle                           | ohexyl                          | CI                              |
| 30 | CH₃            | cycle                           | ohexyl                          | Br                              |
|    | CH₃            | cycle                           | ohexyl                          | CH₃                             |
|    | CH₂CH₃         | CH₃                             | CH₃                             | F                               |
|    | CH₃            | CH₃                             | CH₃                             | Н                               |
| 35 | CH₃            | CH₂CH₃                          | CH₂CH₃                          | Н                               |
| :  | CH₃            | cyclo                           | pentyl                          | Н                               |
|    | CH₃            | cycl                            | ohexyl                          | Н                               |

# TABLE IIg

|    |                 |                                 | JOCH₂Q         |        |      |
|----|-----------------|---------------------------------|----------------|--------|------|
| 5  | •               |                                 | J is J-1       |        |      |
|    |                 |                                 | Q is Q-9       |        |      |
|    |                 | R <sub>9</sub> is ir            | the 4 position | on     |      |
| 40 | R <sub>1</sub>  | R <sub>2</sub>                  | Rз             | Rэ     | R 10 |
| 10 | CH₃             | CH₃                             | CH₃            | F      | Н    |
|    | CH₃             | CH₃                             | CH₂CH₃         | F      | Н    |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃         | F      | Н    |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃         | CI     | Н    |
| 15 | CH₃             | CH₂CH₃                          | CH₂CH₃         | Br     | Н    |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃         | CH₃    | Н    |
|    | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃         | CH₂CH₃ | Н    |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃         | Br     | 5-F  |
| 20 | CH₃             | cyclo                           | pentyl         | F      | Н    |
| 20 | CH₃             | cyclo                           | pentyl         | CI     | н    |
|    | CH₃             | cyclo                           | pentyl         | Br     | н    |
|    | CH₃             | cyclo                           | pentyl         | CH₃    | н    |
| 25 | CH₃             | cyclo                           | pentyl         | CH₂CH₃ | Н    |
|    | CH₃             | cycl                            | ohexyl         | F      | Н    |
|    | CH₃             | cycle                           | ohexyl         | CI     | Н    |
| 30 | CH₃             | cycle                           | ohexyl         | Br     | Н    |
|    | CH₃             | cycl                            | ohexyl         | CH₃    | н    |
|    | CH₂CH₃          | CH₃                             | CH₃            | F      | Н    |
|    | CH₃             | CH₃                             | CH₃            | Н      | Н    |
| 35 | CH <sub>3</sub> | CH₂CH₃                          | CH₂CH₃         | Н      | Н    |
|    | CH₃             | cyclo                           | pentyl         | Н      | н    |
|    | CH₃             | cycl                            | ohexyl         | Н      | Н    |

# TABLE IIh

| _  |                |                                 | ····                            |                                 |        |
|----|----------------|---------------------------------|---------------------------------|---------------------------------|--------|
|    |                |                                 | JOCH₂Q                          |                                 |        |
| 5  |                |                                 | J is J-1                        |                                 |        |
|    |                | (                               | Q is Q-10                       |                                 |        |
|    |                | R <sub>9</sub> is ir            | the 5 position                  | on                              |        |
| 10 | R <sub>1</sub> | R 2                             | Rз                              | Rэ                              | R 10   |
| ,, | CH₃            | CH₃                             | CH₃                             | F                               | Н      |
|    | CH₃            | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | F                               | Н      |
|    | CH₃            | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub> | F                               | Н      |
|    | CH₃            | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub> | CI<br>Br                        | H<br>H |
| 15 | CH₃            | CH₂CH₃                          | CH₂CH₃<br>CH₂CH₃                | CH₃                             | Н      |
| į  | CH₃<br>CH₃     | CH₂CH₃<br>CH₂CH₃                | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | . H    |
|    | CH₃<br>CH₃     | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Br                              | 2-F    |
|    |                |                                 |                                 |                                 |        |
| 20 | CH₃            | cyclo                           | pentyl                          | F                               | Н      |
|    | CH₃            | cyclo                           | pentyl                          | CI                              | Н      |
|    | CH₃            | cyclo                           | pentyl                          | Br                              | Н      |
|    | CH₃            | cyclo                           | pentyl                          | CH₃                             | Н      |
| 25 | CH₃            | cyclo                           | pentyl                          | CH₂CH₃                          | Н      |
|    | CH₃            | cycle                           | ohexyl                          | F                               | н      |
|    | CH₃            | cycle                           | ohexyl                          | CI                              | Н      |
| 30 | CH₃            | cycle                           | ohexyl                          | Br                              | Н      |
|    | CH₃            | cycl                            | ohexyl                          | CH₃                             | Н      |
|    | CH₂CH₃         | CH₃                             | CH₃                             | F                               | Н      |
| -  | CH₃            | CH₃                             | CH₃                             | Н                               | Н      |
| 35 | CH₃            | CH₂CH₃                          | CH₂CH₃                          | Н                               | Н      |
|    | CH₃            | cycle                           | pentyl                          | Н                               | Н      |
|    | CH₃            | cycl                            | ohexyl                          | Н                               | Н      |

## TABLE III

|    |                 |                                 | JOCH <sub>2</sub> Q             |        |      |
|----|-----------------|---------------------------------|---------------------------------|--------|------|
| 5  |                 |                                 | J is J-1                        |        |      |
|    |                 | (                               | ) is Q-11                       |        |      |
|    |                 | R₃ is ir                        | the 4 position                  | on     |      |
| 10 | R <sub>1</sub>  | R <sub>2</sub>                  | Rз                              | R 9    | R 10 |
| 10 | CH <sub>3</sub> | CH₃                             | CH₃                             | F      | Н    |
|    | CH₃             | CH₃                             | CH₂CH₃                          | F      | Н    |
|    | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | F      | Н    |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃                          | CI     | Н    |
| 15 | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Br     | Н    |
|    | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | CH₃    | Н    |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃                          | CH₂CH₃ | Н    |
|    | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Br     | 3-F  |
| 20 | CH₃             | cyclo                           | pentyl                          | F      | Н    |
| 20 | CH₃             | cyclo                           | pentyl                          | CI     | Н    |
|    | CH₃             | cyclo                           | pentyl                          | Br     | Н    |
|    | CH₃             | cyclo                           | pentyl                          | CH₃    | н    |
| 25 | CH <sub>3</sub> | cyclo                           | pentyl                          | CH₂CH₃ | Н    |
|    | CH₃             | cycl                            | ohexyl                          | F      | н    |
|    | CH₃             | cycl                            | ohexyl                          | CI     | Н    |
| 30 | CH₃             | cycl                            | ohexyl                          | Br     | н    |
|    | CH₃             | cycl                            | ohexyl                          | CH₃    | н    |
|    | CH₂CH₃          | CH₃                             | CH₃                             | F      | Н    |
|    | CH₃             | CH₃                             | CH₃                             | Н      | Н    |
| 35 | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | Н      | Н    |
|    | CH₃             | cycle                           | opentyl                         | Н      | Н    |
|    | CH₃             | cycl                            | ohexyl                          | ] н    | Н    |

TABLE IIj

|         |                                                                                 | ,                                                                                                                                                                           | JOCH₂Q                                                                                                                                                          |                                                                      |                    |  |
|---------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|--|
| 5       | J is J-1                                                                        |                                                                                                                                                                             |                                                                                                                                                                 |                                                                      |                    |  |
|         |                                                                                 | (                                                                                                                                                                           | Q is Q-12                                                                                                                                                       |                                                                      |                    |  |
|         |                                                                                 | R₃ is ir                                                                                                                                                                    | the 4 position                                                                                                                                                  | on                                                                   |                    |  |
| 10      | R <sub>1</sub>                                                                  | R <sub>2</sub>                                                                                                                                                              | Rз                                                                                                                                                              | Rэ                                                                   | R 10               |  |
|         | CH₃<br>CH₃<br>CH₃                                                               | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                        | CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>                                                                           | F<br>F                                                               | H<br>H<br>H        |  |
| 15      | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CI<br>Br<br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>Br | H<br>H<br>H<br>5-F |  |
| 20      | CH₃<br>CH₃                                                                      |                                                                                                                                                                             | pentyl<br>pentyl                                                                                                                                                | F<br>Cl                                                              | H                  |  |
|         | CH₃                                                                             | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                          | Br                                                                   | Н                  |  |
|         | CH₃                                                                             | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                          | CH₃                                                                  | Н                  |  |
| 25<br>- | CH₃                                                                             | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                          | CH₂CH₃                                                               | Н                  |  |
| •       | CH₃                                                                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                          | F                                                                    | Н                  |  |
|         | CH₃                                                                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                          | CI                                                                   | Н                  |  |
| 30      | CH₃                                                                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                          | Br                                                                   | Н                  |  |
|         | CH₃                                                                             | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                          | CH₃                                                                  | Н                  |  |
| 35      | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub>           | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>                                                                                                       | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>                                                                                           | F<br>H<br>H                                                          | H<br>H<br>H        |  |
|         | CH₃                                                                             | cycle                                                                                                                                                                       | ppentyl                                                                                                                                                         | Н                                                                    | Н                  |  |
|         | CH₃                                                                             | cycl                                                                                                                                                                        | ohexyl                                                                                                                                                          | Н                                                                    | н                  |  |
|         |                                                                                 |                                                                                                                                                                             |                                                                                                                                                                 |                                                                      |                    |  |

## TABLE IIk

| [  |                                                                       |                                                                                                                                                                             | JOCH₂Q                                                                                                                                                                      |                                 |                         |
|----|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|
| 5  |                                                                       |                                                                                                                                                                             | J is J-1                                                                                                                                                                    |                                 |                         |
|    |                                                                       | (                                                                                                                                                                           | Q is Q-13                                                                                                                                                                   |                                 |                         |
|    |                                                                       | R <sub>9</sub> is ir                                                                                                                                                        | the 4 position                                                                                                                                                              | on                              |                         |
| 10 | R <sub>1</sub>                                                        | R <sub>2</sub>                                                                                                                                                              | R <sub>3</sub>                                                                                                                                                              | R <sub>9</sub>                  | R 10                    |
| 10 | CH₃<br>CH₃<br>CH₃                                                     | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                        | CH₃<br>CH₂CH₃<br>CH₂CH₃                                                                                                                                                     | F<br>F<br>F                     | H<br>H<br>H             |
| 15 | CH₃<br>CH₃<br>CH₃<br>CH₃<br>CH₃                                       | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> | CI<br>Br<br>CH₃<br>CH₂CH₃<br>Br | H<br>H<br>H<br>H<br>2-F |
| 20 | CH₃<br>CH₃                                                            | cyclopentyl                                                                                                                                                                 |                                                                                                                                                                             | F<br>Cl                         | H<br>H                  |
|    | CH₃                                                                   | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                                      | Br                              | Н                       |
|    | CH₃                                                                   | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                                      | CH₃                             | Н                       |
| 25 | CH₃                                                                   | cyclo                                                                                                                                                                       | pentyl                                                                                                                                                                      | CH₂CH₃                          | Н                       |
|    | CH₃                                                                   | cyclo                                                                                                                                                                       | ohexyl                                                                                                                                                                      | F                               | Н                       |
|    | CH₃                                                                   | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                                      | CI                              | Н                       |
| 30 | CH₃                                                                   | cycle                                                                                                                                                                       | ohexyl                                                                                                                                                                      | Br                              | Н                       |
|    | CH₃                                                                   | cyclohexyl                                                                                                                                                                  |                                                                                                                                                                             | CH₃                             | Н                       |
| 35 | CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>                                                                                                       | CH₃<br>CH₃<br>CH₂CH₃                                                                                                                                                        | F<br>H<br>H                     | Н<br>Н<br>Н             |
|    | CH₃                                                                   | cyclopentyl                                                                                                                                                                 |                                                                                                                                                                             | Н                               | н                       |
|    | CH₃                                                                   | cycl                                                                                                                                                                        | ohexyl                                                                                                                                                                      | Н                               | Н                       |

TABLE III

| _  |                 |                                 |                                 |        |      |  |  |
|----|-----------------|---------------------------------|---------------------------------|--------|------|--|--|
|    |                 |                                 | JOCH₂Q                          |        |      |  |  |
| 5  | •               |                                 | J is J-1                        |        |      |  |  |
|    | Q is Q-14       |                                 |                                 |        |      |  |  |
|    |                 | R <sub>9</sub> is in            | the 5 position                  | on     |      |  |  |
| 10 | R <sub>1</sub>  | R <sub>2</sub>                  | Rз                              | Rэ     | R 10 |  |  |
|    | CH₃             | CH₃                             | CH₃                             | F      | Н    |  |  |
|    | CH₃             | CH₃                             | CH₂CH₃                          | F      | Н    |  |  |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃                          | F      | Н    |  |  |
|    | CH₃             | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub> | CI     | Н    |  |  |
| 15 | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | Br     | Н    |  |  |
| ļ  | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | CH₃    | Н    |  |  |
|    | CH₃             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | CH₂CH₃ | Н    |  |  |
|    | CH₃             | CH₂CH₃                          | CH₂CH₃                          | Br     | 2-F  |  |  |
| 20 | CH₃             | cyclopentyl                     |                                 | F      | Н    |  |  |
|    | CH₃             | cyclopentyl                     |                                 | CI     | Н    |  |  |
|    | CH₃             | cyclopentyl                     |                                 | Br     | Н    |  |  |
|    | CH <sub>3</sub> | cyclopentyl                     |                                 | CH₃    | Н    |  |  |
| 25 | CH₃             | cyclopentyl                     |                                 | CH₂CH₃ | Н    |  |  |
|    | CH₃             | cyclohexyl                      |                                 | F      | Н    |  |  |
|    | CH₃             | cyclohexyl                      |                                 | CI     | Н    |  |  |
| 30 | CH₃             | cycle                           | ohexyl                          | Br     | Н    |  |  |
|    | CH₃             | cyclohexyl                      |                                 | CH₃    | н    |  |  |
|    | CH₂CH₃          | CH₃                             | CH₃                             | F      | Н    |  |  |
|    | CH₃             | CH₃                             | CH₃                             | Н      | н    |  |  |
| 35 | CH₃             | CH₂CH₃                          | CH₂CH₃                          | Н      | Н    |  |  |
|    | CH₃             | cyclo                           | cyclopentyl                     |        | н    |  |  |
|    | CH₃ cyclohexyl  |                                 | Н                               | Н      |      |  |  |

TABLE III

JOCH<sub>2</sub>Q J is J-2 Q is Q-2 R<sub>9</sub> is in the 3 position R 10 Rэ R<sub>5</sub> Rб R<sub>4</sub> СНз F Н CH₃ CH₃ CI Н CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> Н CH<sub>3</sub> CH<sub>3</sub> CH₃ Br СН3 СНз СН3 CH<sub>3</sub> Н Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub> CH₃ CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CH₃ CH₃ Н CH<sub>2</sub>CH<sub>3</sub> CH₃ CH₃ Br CH<sub>2</sub>CH<sub>3</sub> 6-F CH<sub>2</sub>CH<sub>3</sub> Br CH<sub>3</sub> 6-F CH<sub>3</sub> CH<sub>3</sub> CH₃ Н 6-F CH₃ CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н

СНз

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

JOCH<sub>2</sub>Q J is J-2 Q is Q-3 R<sub>9</sub> is in the 2 position R<sub>9</sub> R 10 R<sub>4</sub> R 5 R<sub>6</sub> СНз F Н СНз CH<sub>3</sub> CI Н CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> Н CH₃ CH<sub>3</sub> Br CH₃ CH<sub>3</sub> Н CH₃ CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CH<sub>3</sub> CH₃ CH₃ Н CH<sub>3</sub> CH₃ CH<sub>2</sub>CH<sub>3</sub> Br CH₃ Br Н CH<sub>2</sub>CH<sub>3</sub> CH₃ 4-F CH<sub>2</sub>CH<sub>3</sub> Br CH<sub>2</sub>CH<sub>3</sub> CH₃ 4-F CH<sub>3</sub> F CH₃ CH₃ Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CH<sub>3</sub> Н Н CH₃ CH<sub>3</sub> CH<sub>3</sub> F Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub>

CH₃

TABLE IIIa

CH<sub>2</sub>CH<sub>3</sub>

Н

Н

Н

Н

55

5

10

15

20

25

30

35

40

45

## TABLE IIIb

| JOCH₂Q         |                                 |                  |                                 |              |  |  |  |
|----------------|---------------------------------|------------------|---------------------------------|--------------|--|--|--|
|                |                                 | J is J-2         |                                 |              |  |  |  |
| <del> </del>   |                                 | Q is Q-4         |                                 |              |  |  |  |
|                | R <sub>9</sub> is i             | n the 3 position | on                              |              |  |  |  |
| R <sub>4</sub> | R <sub>5</sub>                  | R <sub>6</sub>   | Rэ                              | R 10         |  |  |  |
| CH₃            | CH₃                             | CH₃              | F                               | Н            |  |  |  |
| CH₃            | CH₃                             | CH₃              | CI                              | Н            |  |  |  |
| CH₃            | CH₃                             | CH₃              | Br                              | Н            |  |  |  |
| CH₃            | CH₃                             | CH₃              | CH₃                             | Н            |  |  |  |
| CH₃            | CH₃                             | CH₃              | CH <sub>2</sub> CH <sub>3</sub> | Н            |  |  |  |
| CH₃            | CH₃ CH₂CH₃ Br H                 |                  |                                 |              |  |  |  |
| CH₂CH₃         | CH₃                             | CH₃              | Br                              | Н            |  |  |  |
| CH₃            | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃           | Br                              | 5 <b>-</b> F |  |  |  |
| CH₃            |                                 |                  |                                 |              |  |  |  |
| CH₃            | 1                               |                  |                                 |              |  |  |  |
| CH₃            |                                 |                  |                                 |              |  |  |  |
| CH₃            | CH₂CH₃                          | CH₂CH₃           | Н                               | Н            |  |  |  |
| CH₃            | CH₂CH₃                          | CH₂CH₃           | F                               | Н            |  |  |  |

### TABLE IIIc

| JOCH₂Q         |                                                                             |                                 |    |   |  |  |  |
|----------------|-----------------------------------------------------------------------------|---------------------------------|----|---|--|--|--|
|                |                                                                             | J is J-2                        |    |   |  |  |  |
|                |                                                                             | Q is Q-5                        |    |   |  |  |  |
|                | R <sub>9</sub> is i                                                         | n the 4 position                | on |   |  |  |  |
| R <sub>4</sub> | R <sub>4</sub> R <sub>5</sub> R <sub>6</sub> R <sub>9</sub> R <sub>10</sub> |                                 |    |   |  |  |  |
| CH₃            | CH₃                                                                         | CH₃                             | F  | Н |  |  |  |
| CH₃            | CH₃                                                                         | CH₃                             | CI | Н |  |  |  |
| CH₃            | CH₃                                                                         | CH₃                             | Br | Н |  |  |  |
| CH₃            | CH₃                                                                         |                                 |    |   |  |  |  |
| CH₃            | CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> H           |                                 |    |   |  |  |  |
| CH₃            | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> Br H                        |                                 |    |   |  |  |  |
| CH₂CH₃         | CH₃ CH₃ Br                                                                  |                                 |    |   |  |  |  |
| CH₃            | CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> Br          |                                 |    |   |  |  |  |
| CH₃            | CH₃                                                                         | 01.201.0                        |    |   |  |  |  |
| CH₃            | CH <sub>2</sub> CH <sub>3</sub>                                             | CH₂CH₃                          | н  | Н |  |  |  |
| CH₃            | CH₂CH₃                                                                      | CH <sub>2</sub> CH <sub>3</sub> | F  | Н |  |  |  |

TABLE IIId

R 10

Н

Н

Н

5-F

Н

Н

Н

F

Br

Br

Н

Н

F

CH<sub>2</sub>CH<sub>3</sub>

JOCH<sub>2</sub>Q J is J-2 5 Q is Q-6 R<sub>9</sub> is in the 3 position R 4 R<sub>5</sub> Rб Rэ 10 F CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH₃ CH<sub>3</sub> CI CH<sub>3</sub> CH<sub>3</sub> СН3 Br CH<sub>3</sub>

Н Н CH<sub>3</sub> CH₃ CH<sub>3</sub> CH<sub>3</sub> CH₃ СН3 CH₃ CH<sub>2</sub>CH<sub>3</sub> Н 15 CH<sub>2</sub>CH<sub>3</sub> Br Н CH<sub>3</sub> CH<sub>3</sub> Н CH<sub>2</sub>CH<sub>3</sub> Br CH<sub>3</sub> CH₃ 5-F CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br CH<sub>3</sub> Н CH₃ Н CH<sub>3</sub> CH₃ CH<sub>2</sub>CH<sub>3</sub> Н CH<sub>2</sub>CH<sub>3</sub> Н CH₃ 20

CH<sub>2</sub>CH<sub>3</sub>

25 **TABLE IIIe** 

CH₃

JOCH<sub>2</sub>Q J is J-2 30 Q is Q-7 R<sub>9</sub> is in the 4 position R 10 Rб R 9 R<sub>5</sub> R 4 35 F Н CH₃ СН₃ CH<sub>3</sub> CI Н CH<sub>3</sub> CH<sub>3</sub> СН3 CH<sub>3</sub> Br Н CH₃ CH<sub>3</sub> Н CH₃ CH<sub>3</sub> CH<sub>3</sub> CH₃ CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CH₃ CH<sub>3</sub> 40 CH<sub>2</sub>CH<sub>3</sub> Br Н CH₃ CH₃ Н

CH₃

CH₃

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

50

55

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>

CH₃

CH<sub>3</sub>

CH<sub>3</sub>

45

CH₃

CH<sub>2</sub>CH<sub>3</sub> CH₃

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

TABLE IIIf

5

10

15

20

25

30

35

40

45

JOCH<sub>2</sub>Q J is J-2 Q is Q-8  $R_9$  is in the 5 position R 4 R 5 Rб Rэ СН3 СН3 CH<sub>3</sub> F CH₃ CH₃ CH₃ CI CH<sub>3</sub> СН3 CH<sub>3</sub> Br CH₃ СН3 CH<sub>3</sub> CH₃ CH₃ CH<sub>3</sub> CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH₃ CH₃ CH<sub>2</sub>CH<sub>3</sub> Br CH₃ CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub> Br СН₃ CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br СН3 CH₃ CH<sub>3</sub> Н CH₃  $\mathsf{CH}_2\mathsf{CH}_3$  $\text{CH}_2\text{CH}_3$ Н СНз  $\text{CH}_2\text{CH}_3$  $CH_2CH_3$ F

TABLE IIIg

| JOCH₂Q                          |                                                                                   |                  |     |      |  |  |
|---------------------------------|-----------------------------------------------------------------------------------|------------------|-----|------|--|--|
|                                 |                                                                                   | J is J-2         |     |      |  |  |
|                                 |                                                                                   | Q is Q-9         |     |      |  |  |
|                                 | R₃ is i                                                                           | n the 4 position | on  |      |  |  |
| R <sub>4</sub>                  | R <sub>5</sub>                                                                    | R <sub>6</sub>   | Rэ  | R 10 |  |  |
| CH₃                             | CH₃                                                                               | CH₃              | F   | Н    |  |  |
| CH₃                             | CH₃ CH₃ CI H                                                                      |                  |     |      |  |  |
| CH₃                             | CH₃ CH₃ Br H                                                                      |                  |     |      |  |  |
| CH₃                             | CH₃                                                                               | CH₃              | CH₃ | Н    |  |  |
| CH₃                             | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> H |                  |     |      |  |  |
| CH₃                             |                                                                                   |                  |     |      |  |  |
| CH <sub>2</sub> CH <sub>3</sub> |                                                                                   |                  |     |      |  |  |
| CH₃                             | · i i i i i                                                                       |                  |     |      |  |  |
| CH₃                             |                                                                                   |                  |     |      |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub>                                                   | CH₂CH₃           | Н   | н    |  |  |
| CH₃                             | CH₂CH₃                                                                            | CH₂CH₃           | F   | Н    |  |  |

50

TABLE IIIh

10

15

20

25

30

35

40

45

JOCH<sub>2</sub>Q J is J-2 Q is Q-10 R<sub>9</sub> is in the 5 position R 10 R<sub>4</sub> **R** 5 Rб Rэ Н CH₃ CH<sub>3</sub> CH₃ СН₃ CI Н CH<sub>3</sub> СH<sub>3</sub> CH₃ Br Н CH<sub>3</sub> CH<sub>3</sub> Н CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH₃ CH<sub>2</sub>CH<sub>3</sub> Н CH<sub>2</sub>CH<sub>3</sub> Br Н CH<sub>3</sub> CH₃ Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub> Br CH₃ 3-F CH<sub>2</sub>CH<sub>3</sub>  $CH_2CH_3$ Br CH<sub>3</sub> Н Н CH<sub>3</sub> CH₃ CH₃ CH<sub>2</sub>CH<sub>3</sub> Н Н CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub>  $\text{CH}_2\text{CH}_3$ F Н CH<sub>3</sub>

TABLE IIIi

| JOCH₂Q                          |            |                                 |     |      |  |  |  |
|---------------------------------|------------|---------------------------------|-----|------|--|--|--|
|                                 |            | J is J-2                        |     |      |  |  |  |
|                                 |            | Q is Q-11                       |     |      |  |  |  |
|                                 | R₃ is i    | n the 4 position                | on  |      |  |  |  |
| R <sub>4</sub>                  | R 5        | R <sub>6</sub>                  | Rэ  | R 10 |  |  |  |
| CH₃                             | CH₃        | CH₃                             | F   | Н    |  |  |  |
| CH₃                             | CH₃ CH₃ CI |                                 |     |      |  |  |  |
| CH₃                             | CH₃        | CH₃                             | Br  | Н    |  |  |  |
| CH₃                             | CH₃        | CH₃                             | CH₃ | Н    |  |  |  |
| CH₃                             |            |                                 |     |      |  |  |  |
| CH₃                             |            |                                 |     |      |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> |            |                                 |     |      |  |  |  |
| CH₃                             |            |                                 |     |      |  |  |  |
| CH₃                             |            |                                 |     |      |  |  |  |
| CH₃                             | CH₂CH₃     | CH <sub>2</sub> CH <sub>3</sub> | Н   | Н    |  |  |  |
| CH₃                             | CH₂CH₃     | CH₂CH₃                          | F   | Н    |  |  |  |

50

TABLE IIIj

| JOCH₂Q                          |                                 |                                 |     |      |  |  |
|---------------------------------|---------------------------------|---------------------------------|-----|------|--|--|
|                                 |                                 | J is J-2                        | •   |      |  |  |
|                                 | (                               | Q is Q-12                       |     |      |  |  |
|                                 | R₃ is i                         | n the 3 position                | on  |      |  |  |
| R <sub>4</sub>                  | R <sub>5</sub>                  | R <sub>6</sub>                  | Rэ  | R 10 |  |  |
| CH₃                             | CH₃                             | CH₃                             | F   | Н    |  |  |
| CH₃                             | CH₃                             | CH₃                             | CI  | Н    |  |  |
| CH₃                             | CH₃                             | CH₃                             | Br  | Н    |  |  |
| CH₃                             | CH₃                             | CH₃                             | CH₃ | Н    |  |  |
| CH₃                             | CH₃ CH₃ CH₂CH₃                  |                                 |     |      |  |  |
| CH₃                             | CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | Br  | Н    |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₃                             | CH₃                             | Br  | Н    |  |  |
| CH₃                             | CH₃ CH₃ H H                     |                                 |     |      |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                          | Н   | Н    |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | F   | Н    |  |  |

TABLE IIIk

| JOCH₂Q                          |                                                              |                                 |     |   |  |  |  |
|---------------------------------|--------------------------------------------------------------|---------------------------------|-----|---|--|--|--|
|                                 | -,                                                           | J is J-2                        |     |   |  |  |  |
|                                 | (                                                            | Q is Q-13                       |     |   |  |  |  |
|                                 | R₃ is i                                                      | n the 5 position                | on  | 7 |  |  |  |
| R <sub>4</sub>                  | R <sub>5</sub> R <sub>6</sub> R <sub>9</sub> R <sub>10</sub> |                                 |     |   |  |  |  |
| CH₃                             | CH₃                                                          | CH₃                             | F   | Н |  |  |  |
| CH₃                             | CH₃                                                          | CH₃                             | Cl  | Н |  |  |  |
| CH₃                             | CH₃                                                          | CH₃                             | Br  | Н |  |  |  |
| CH₃                             | CH₃                                                          | CH₃                             | CH₃ | Н |  |  |  |
| CH₃                             | CH₃ CH₃ CH₂CH₃ H                                             |                                 |     |   |  |  |  |
| CH₃                             |                                                              |                                 |     |   |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₃                                                          | Br                              | Н   |   |  |  |  |
| CH₃                             |                                                              |                                 |     |   |  |  |  |
| CH₃                             |                                                              |                                 |     |   |  |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub>                              | CH₂CH₃                          | Н   | н |  |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub>                              | CH <sub>2</sub> CH <sub>3</sub> | F   | Н |  |  |  |
|                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      |                                 |     |   |  |  |  |

TABLE IIII

5

10

15

20

25

30

35

40

45

50

JOCH<sub>2</sub>Q J is J-2 Q is Q-14 R<sub>9</sub> is in the 5 position Rэ R 10 R<sub>4</sub> R<sub>5</sub> Rб F Н CH<sub>3</sub> CH₃ CH₃ CI CH₃ Н СН3 CH<sub>3</sub> Br Н CH₃ CH₃ CH₃ Н CH<sub>3</sub> CH₃ CH₃ CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CH₃ CH₃ CH₃ CH<sub>2</sub>CH<sub>3</sub> Br Н CH₃ CH<sub>3</sub> Br Н CH<sub>2</sub>CH<sub>3</sub> CH₃ CH₃ 2-F Br CH<sub>2</sub>CH<sub>3</sub>  $\text{CH}_2\text{CH}_3$ CH<sub>3</sub> Н CH<sub>3</sub> CH₃ Н CH<sub>3</sub> Н CH<sub>2</sub>CH<sub>3</sub> Н  $\mathsf{CH}_3$ CH<sub>2</sub>CH<sub>3</sub> Н F  $\text{CH}_2\text{CH}_3$ CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub>

### TABLE IV

| JOCH₂Q                          |                                   |                |       |  |  |  |
|---------------------------------|-----------------------------------|----------------|-------|--|--|--|
| J is J-3                        |                                   |                |       |  |  |  |
|                                 | Q is C                            | Q-2            |       |  |  |  |
|                                 | R <sub>9</sub> is in the          | 3 position     |       |  |  |  |
| R 7                             | R <sub>8</sub>                    | R <sub>9</sub> | R 10  |  |  |  |
| CH₃                             | CH₃                               | Br             | Н     |  |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub>   | Br             | H     |  |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Br             | Н     |  |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | F              | Н     |  |  |  |
| CH₃                             | CH(CH₃)₂                          | Cl             | H     |  |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃            | Н     |  |  |  |
| CH₃                             | CH(CH₃) <sub>2</sub>              | CH₂CH₃         | Н     |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | F              | Н     |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | CI             | Н     |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | Br             | H     |  |  |  |
| CH₂CH₃                          | CH₂CH₃                            | CH₃            | Н     |  |  |  |
| CH₂CH₃                          |                                   |                |       |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> |                                   |                |       |  |  |  |
| CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub>   | Br             | 4-Cl  |  |  |  |
| CH₂CH₃                          | CH₂CH₃                            | Br             | 5-CH₃ |  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Н              | 6-F   |  |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Н              | 6-F   |  |  |  |

## TABLE IVa

| 1  |                                     | JOCH                              | 2Q                              |        |  |  |
|----|-------------------------------------|-----------------------------------|---------------------------------|--------|--|--|
| 5  | J is J-3                            |                                   |                                 |        |  |  |
|    | Q is Q-3                            |                                   |                                 |        |  |  |
|    | R <sub>9</sub> is in the 2 position |                                   |                                 |        |  |  |
| 10 | R 7                                 | R <sub>8</sub>                    | Rэ                              | R 10   |  |  |
|    | CH₃                                 | CH₃                               | Br                              | H<br>H |  |  |
|    | CH₃<br>CH₃                          | CH₂CH₃<br>CH(CH₃)₂                | Br<br>Br                        | H      |  |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | F                               | Н      |  |  |
| 15 | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | CI                              | Н      |  |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃                             | Н      |  |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₂CH₃                          | Н      |  |  |
|    | CH₂CH₃                              | CH₂CH₃                            | F                               | Н      |  |  |
|    | CH₂CH₃                              | CH <sub>2</sub> CH <sub>3</sub>   | Cl                              | Н      |  |  |
| 20 | CH₂CH₃                              | CH₂CH₃                            | Br                              | Н      |  |  |
|    | CH₂CH₃                              | CH <sub>2</sub> CH <sub>3</sub>   | CH₃                             | Н      |  |  |
|    | CH₂CH₃                              | CH <sub>2</sub> CH <sub>3</sub>   | CH <sub>2</sub> CH <sub>3</sub> | Н      |  |  |
|    | CH₂CH₃                              | CH <sub>2</sub> CH <sub>3</sub>   | Br                              | 5-F    |  |  |
|    | CH₂CH₃                              | CH <sub>2</sub> CH₃               | Br                              | 4-Cl   |  |  |
| 25 | CH₂CH₃                              | CH₂CH₃                            | Br                              | 5-CH₃  |  |  |
|    | CH <sub>2</sub> CH <sub>3</sub>     | CH₂CH₃                            | H                               | H      |  |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | Н                               | Н      |  |  |
|    | CH₂CH₃                              | CH₂CH₃                            | F                               | 4-F    |  |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | F                               | 4-F    |  |  |
| 30 |                                     |                                   |                                 |        |  |  |

## TABLE IVb

|    |                | JOCH                              | l₂Q          |       |
|----|----------------|-----------------------------------|--------------|-------|
| 5  |                | J is J                            | l <b>-</b> 3 |       |
|    |                | Q is (                            | Q-4          |       |
|    |                | R <sub>9</sub> is in the          | 3 position   |       |
| 10 | R <sub>7</sub> | R 8                               | Rэ           | R 10  |
|    | CH₃            | CH₃                               | Br           | Н     |
|    | CH₃            | CH₂CH₃                            | Br           | Н     |
|    | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | Br           | Н     |
|    | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | F            | Н     |
| 15 | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | CI           | н     |
|    | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | СН₃          | Н     |
|    | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₂CH₃       | Н     |
|    | CH₂CH₃         | CH₂CH₃                            | F            | Н     |
|    | CH₂CH₃         | CH <sub>2</sub> CH <sub>3</sub>   | CI           | Н     |
| 20 | CH₂CH₃         | CH <sub>2</sub> CH <sub>3</sub>   | Br           | Н     |
|    | CH₂CH₃         | CH₂CH₃                            | CH₃          | Н     |
|    | CH₂CH₃         | CH₂CH₃                            | CH₂CH₃       | Н     |
|    | CH₂CH₃         | CH <sub>2</sub> CH <sub>3</sub>   | Br           | 5-F   |
|    | CH₂CH₃         | CH₂CH₃                            | Br           | 4-Cl  |
| 25 | CH₂CH₃         | CH₂CH₃                            | Br           | 5-CH₃ |
|    | CH₂CH₃         | CH <sub>2</sub> CH₃               | Н            | Н     |
|    | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | Н            | Н     |
|    | CH₂CH₃         | CH <sub>2</sub> CH <sub>3</sub>   | F            | 5-F   |
|    | CH₃            | CH(CH <sub>3</sub> ) <sub>2</sub> | F            | 5-F   |
|    |                |                                   |              |       |

### TABLE IVc

JOCH<sub>2</sub>Q J is J-3 5 Q is Q-5 R<sub>9</sub> is in the 4 position R<sub>7</sub> Rэ R 10 R<sub>8</sub> 10 CH<sub>3</sub> Н CH₃ Br CH₃ CH<sub>2</sub>CH<sub>3</sub> Br Н CH<sub>3</sub> CH(CH<sub>3</sub>)<sub>2</sub> Br Н CH₃ CH(CH<sub>3</sub>)<sub>2</sub> F Н CH₃ CH(CH<sub>3</sub>)<sub>2</sub> CI Н 15 Н CH(CH<sub>3</sub>)<sub>2</sub> CH₃ CH₃ CH<sub>2</sub>CH<sub>3</sub> Н CH<sub>3</sub> CH(CH<sub>3</sub>)<sub>2</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CI Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н  $\text{CH}_2\text{CH}_3$ CH<sub>2</sub>CH<sub>3</sub> Br 20 CH<sub>3</sub> Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> 5-F CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br 4-CI 5-CH<sub>3</sub> Br 25 CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Н Н CH<sub>3</sub> CH(CH<sub>3</sub>)<sub>2</sub> Н Н

50

30

35

40

45

## TABLE IVd

|    | JOCH₂Q                          |                                     |                                 |       |  |
|----|---------------------------------|-------------------------------------|---------------------------------|-------|--|
| 5  | J is J-3                        |                                     |                                 |       |  |
|    | Q is Q-6                        |                                     |                                 |       |  |
|    |                                 | R <sub>9</sub> is in the 3 position |                                 |       |  |
| 10 | R 7                             | R 8                                 | Rэ                              | R 10  |  |
|    | CH₃                             | CH₃                                 | Br                              | Н     |  |
|    | CH₃                             | CH₂CH₃                              | Br                              | Н     |  |
|    | CH₃                             | CH(CH₃)₂                            | Br                              | Н     |  |
| 15 | CH₃                             | CH(CH₃)₂                            | F                               | Н     |  |
|    | CH₃                             | CH(CH₃)₂                            | Cl                              | Н     |  |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub>   | CH₃                             | Н     |  |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub>   | CH₂CH₃                          | Н     |  |
| 20 | CH₂CH₃                          | CH₂CH₃                              | F                               | Н     |  |
|    | CH₂CH₃                          | CH <sub>2</sub> CH₃                 | CI                              | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                              | Br                              | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                              | CH₃                             | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                              | CH <sub>2</sub> CH <sub>3</sub> | Н     |  |
| 25 | CH <sub>2</sub> CH₃             | CH <sub>2</sub> CH <sub>3</sub>     | Br                              | 5-F   |  |
|    | CH <sub>2</sub> CH₃             | CH₂CH₃                              | Br                              | 5-Cl  |  |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                              | Br                              | 5-CH₃ |  |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub>   | Н                               | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                              | Н                               | н     |  |
|    | 1                               |                                     | 1                               | L     |  |

# TABLE IVe

| _  |                                     |                                   |                                 |       |  |
|----|-------------------------------------|-----------------------------------|---------------------------------|-------|--|
|    | JOCH₂Q                              |                                   |                                 |       |  |
| 5  | J is J-3                            |                                   |                                 |       |  |
|    | Q is Q-7                            |                                   |                                 |       |  |
|    | R <sub>9</sub> is in the 4 position |                                   |                                 |       |  |
| 10 | R 7                                 | R <sub>8</sub>                    | R <sub>9</sub>                  | R 10  |  |
|    | CH₃                                 | CH₃                               | Br                              | Н     |  |
|    | CH₃                                 | CH₂CH₃                            | Br                              | Н     |  |
|    | CH₃                                 | CH(CH₃)₂                          | Br                              | Н     |  |
| 15 | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | F                               | Н     |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | Cl                              | Н     |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃                             | Н     |  |
|    | CH₃                                 | CH(CH₃) <sub>2</sub>              | CH <sub>2</sub> CH <sub>3</sub> | Н     |  |
| 20 | CH₂CH₃                              | CH₂CH₃                            | F                               | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub>     | CH <sub>2</sub> CH <sub>3</sub>   | CI                              | Н     |  |
|    | CH₂CH₃                              | CH₂CH₃                            | Br                              | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub>     | CH <sub>2</sub> CH <sub>3</sub>   | CH₃                             | Н     |  |
|    | CH <sub>2</sub> CH <sub>3</sub>     | CH₂CH₃                            | CH₂CH₃                          | H     |  |
| 25 | CH <sub>2</sub> CH <sub>3</sub>     | CH₂CH₃                            | Br                              | 5-F   |  |
|    | CH <sub>2</sub> CH <sub>3</sub>     | CH₂CH₃                            | Br                              | 5-Cl  |  |
|    | CH₂CH₃                              | CH <sub>2</sub> CH <sub>3</sub>   | Br                              | 5-CH₃ |  |
|    | CH <sub>2</sub> CH <sub>3</sub>     | CH <sub>2</sub> CH <sub>3</sub>   | н                               | Н     |  |
|    | CH₃                                 | CH(CH <sub>3</sub> ) <sub>2</sub> | Н                               | Н     |  |
|    |                                     |                                   |                                 |       |  |

### TABLE IVf

JOCH<sub>2</sub>Q J is J-3

Q is Q-8

R<sub>8</sub>

Rэ

Н

CH<sub>2</sub>CH<sub>3</sub>

5 10

Br CH₃ CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br CH₃ CH(CH<sub>3</sub>)<sub>2</sub> Br CH<sub>3</sub> CH(CH<sub>3</sub>)<sub>2</sub> F СН₃ CI CH(CH<sub>3</sub>)<sub>2</sub> CH₃ CH₃ CH₃ CH(CH<sub>3</sub>)<sub>2</sub> CH(CH<sub>3</sub>)<sub>2</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub>  $CH_2CH_3$ CI CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> 20 CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub>  $\text{CH}_2\text{CH}_3$ CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub>  $\text{CH}_2\text{CH}_3$ Br Br CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub> Br 25 CH(CH<sub>3</sub>)<sub>2</sub> Н CH₃

R<sub>7</sub>

CH<sub>2</sub>CH<sub>3</sub>

30

35

40

45

50

# TABLE IVg

|    |                                 | JOCH                              | <sub>2</sub> Q                  |       |
|----|---------------------------------|-----------------------------------|---------------------------------|-------|
| 5  |                                 | J is J                            | -3                              |       |
|    |                                 | Q is (                            | પ્ર-9                           |       |
|    |                                 | R <sub>9</sub> is in the          | 4 position                      |       |
| 10 | R 7                             | R <sub>8</sub>                    | R <sub>9</sub>                  | R 10  |
| 70 | CH₃                             | CH₃                               | Br                              | Н     |
|    | CH₃                             | CH <sub>2</sub> CH <sub>3</sub>   | Br                              | Н     |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Br                              | Н     |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | F                               | Н     |
| 15 | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CI                              | Н     |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃                             | Н     |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>2</sub> CH <sub>3</sub> | Н     |
|    | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub>   | F                               | Н     |
|    | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub>   | Cl                              | Н     |
| 20 | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub>   | Br                              | Н     |
|    | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | CH₃                             | Н     |
|    | CH₂CH₃                          | CH₂CH₃                            | CH₂CH₃                          | Н     |
|    | CH₂CH₃                          | CH₂CH₃                            | Br                              | 5-F   |
|    | CH₂CH₃                          | CH₂CH₃                            | Br                              | 5-Cl  |
| 25 | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Br                              | 5-CH₃ |
|    | CH₂CH₃                          | CH₂CH₃                            | Н                               | н     |
|    | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Н                               | Н     |
|    |                                 |                                   |                                 |       |

### TABLE IVh

| 5  |  | • |
|----|--|---|
| 10 |  |   |
| 15 |  |   |

|                                 | JOCH₂Q                            |            |       |  |  |
|---------------------------------|-----------------------------------|------------|-------|--|--|
|                                 | J is J-3                          |            |       |  |  |
|                                 | Q is C                            | 1-10       |       |  |  |
|                                 | R <sub>9</sub> is in the          | 5 position |       |  |  |
| R 7                             | R <sub>8</sub>                    | Rэ         | R 10  |  |  |
| CH <sub>3</sub>                 | CH₃                               | Br         | Н     |  |  |
| CH₃                             | CH <sub>2</sub> CH <sub>3</sub>   | Br         | Н     |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Br         | H     |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | F          | Н     |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CI         | Н     |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃        | Н     |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₂CH₃     | Н     |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | F          | Н     |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | CI         | Н     |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | Br         | Н     |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | CH₃        | Н     |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | CH₂CH₃     | Н     |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Br         | 2-F   |  |  |
| CH₂CH₃                          | CH₂CH₃                            | Br         | 2-Cl  |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Br         | 2-CH₃ |  |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Н          | Н     |  |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Н          | Н     |  |  |

## TABLE IVI

R 10

H H H H H H H H H 2-F

2-CI

Н

Н

2-CH₃

|    |                                                                                                                                                                                                 | JOCH                                                                                                                                                                                            | <sub>2</sub> Q                                                      |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---|
| 5  |                                                                                                                                                                                                 | J is J                                                                                                                                                                                          | -3                                                                  | _ |
|    |                                                                                                                                                                                                 | Q is Q                                                                                                                                                                                          | -11                                                                 |   |
|    |                                                                                                                                                                                                 | R <sub>9</sub> is in the                                                                                                                                                                        | 4 position                                                          |   |
| 10 | R <sub>7</sub>                                                                                                                                                                                  | R 8                                                                                                                                                                                             | Rэ                                                                  | _ |
| 10 | CH₃<br>CH₃<br>CH₃                                                                                                                                                                               | CH₃<br>CH₂CH₃<br>CH(CH₃)₂                                                                                                                                                                       | Br<br>Br<br>Br                                                      |   |
| 15 | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                 | CH(CH <sub>3</sub> ) <sub>2</sub><br>CH(CH <sub>3</sub> ) <sub>2</sub><br>CH(CH <sub>3</sub> ) <sub>2</sub><br>CH(CH <sub>3</sub> ) <sub>2</sub>                                                | F<br>CI<br>CH₃<br>CH₂CH₃                                            |   |
| 20 | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | F<br>Cl<br>Br<br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub> |   |
|    |                                                                                                                                                                                                 |                                                                                                                                                                                                 | 1                                                                   | 1 |

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

СН₃

25

30

35

40

45

50

55

TABLE IVj

Br

Br

Н

Н

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

| JOCH₂Q                          |                                   |                                 |      |  |
|---------------------------------|-----------------------------------|---------------------------------|------|--|
| J is J-3                        |                                   |                                 |      |  |
|                                 | Q is Q-                           | 12                              |      |  |
|                                 | R <sub>9</sub> is in the 5        | position                        |      |  |
| R 7                             | R <sub>8</sub>                    | e Я                             | R 10 |  |
| CH₃                             | CH₃                               | Br                              | Н    |  |
| CH₃                             | CH₂CH₃                            | Br                              | Н    |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Br                              | Н    |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | F                               | Н    |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CI                              | Н    |  |
| CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH₃                             | H    |  |
| CH₃                             | CH(CH₃) <sub>2</sub>              | CH <sub>2</sub> CH <sub>3</sub> | Н    |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | F                               | Н    |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | CI                              | Н    |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | Br                              | Н    |  |
| CH <sub>2</sub> CH₃             | CH₂CH₃                            | CH₃                             | Н    |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | CH <sub>2</sub> CH <sub>3</sub> | Н    |  |
| CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | Н                               | Н    |  |
| CH₃                             | CH(CH₃) <sub>2</sub>              | Н                               | Н    |  |

## TABLE IVk

|   |                                 | JOCH                              | <sub>2</sub> Q                  |       |
|---|---------------------------------|-----------------------------------|---------------------------------|-------|
|   | -                               | J is J                            | -3                              |       |
|   |                                 | Q is Q                            | -13                             |       |
|   |                                 | R <sub>9</sub> is in the          | 4 position                      |       |
|   | R <sub>7</sub>                  | R 8                               | Rэ                              | R 10  |
|   | CH₃                             | CH₃                               | Br                              | Н     |
| • | CH₃                             | CH₂CH₃                            | Br                              | Н     |
|   | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Br                              | Н     |
|   | CH₃                             | CH(CH₃)₂                          | F                               | Н     |
|   | CH₃                             | CH(CH₃)₂                          | CI                              | Н     |
|   | CH₃                             | CH(CH₃)₂                          | CH₃                             | Н     |
|   | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>2</sub> CH <sub>3</sub> | Н     |
|   | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | F                               | Н     |
|   | CH₂CH₃                          | CH <sub>2</sub> CH <sub>3</sub>   | CI                              | Н     |
|   | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Br                              | Н     |
|   | CH <sub>2</sub> CH₃             | CH₂CH₃                            | CH₃                             | Н     |
|   | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | CH <sub>2</sub> CH <sub>3</sub> | Н     |
|   | CH₂CH₃                          | CH₂CH₃                            | Br                              | 2-F   |
|   | CH <sub>2</sub> CH <sub>3</sub> | CH₂CH₃                            | Br                              | 2-CI  |
|   | CH₂CH₃                          | CH₂CH₃                            | Br                              | 2-CH₃ |
| + | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | Н                               | Н     |
|   | CH₃                             | CH(CH <sub>3</sub> ) <sub>2</sub> | Н                               | Н     |

### **TABLE IVI**

JOCH<sub>2</sub>Q

J is J-3

Q is Q-14

R<sub>9</sub> is in the 5 position

R<sub>8</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH<sub>3</sub> CH<sub>2</sub>CH<sub>3</sub>

R<sub>7</sub>

CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

СН3

СН3

CH<sub>3</sub>

CH₃

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>

R<sub>9</sub>

Br

Br

Br

F

CI

CI

Br

Br

Br

Br

Н

Н

CH₃

CH<sub>2</sub>CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>2</sub>CH<sub>3</sub>

R 10

Н

Н

Н

Н

Н

Н

H H

Н

Н

Н

Н

Н

Н

2-F

2-CI

2-CH<sub>3</sub>

| 5 |  |
|---|--|
|   |  |

10

15

20

25

30

#### **Formulations**

The method of this invention can be conveniently carried out by formulating a compound of Formula I in the conventional ways. They include dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray volumes of from a few liters to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The herbicidal formulations of the invention comprise 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% surfactant(s) and (b) about 1% to 99.9% solid or liquid inert diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

45

50

|                                                                                               |              | Weight Percent* | nt*                      |
|-----------------------------------------------------------------------------------------------|--------------|-----------------|--------------------------|
|                                                                                               | Active       | Diluent(s)      | Diluent(s) Surfactant(s) |
|                                                                                               | Ingredient   |                 |                          |
| Wettable Powders                                                                              | 20-90        | 0-74            | 1-10                     |
| Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates)                  | 3-20         | 40-95           | 0-15                     |
| Aqueous Suspension                                                                            | 10-20        | 40-84           | 1-20                     |
| Dusts                                                                                         | 1-25         | 20-99           | 0-2                      |
| Granules and Pellets                                                                          | 0.1-95       | 5-99.9          | 0-15                     |
| High Strength Compositions                                                                    | 66-06        | 0-10            | 0-5                      |
| * Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent. | tht percent. |                 |                          |
|                                                                                               |              |                 |                          |

Lower or higher levels of active ingredient can, of course, be present depending on the intended use and the physical properties of the compound. Higher ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Dorland Books, Caldwell, New Jersey, but other solids, either mined or manufactured, may be used. The more absorptive diluents are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience, New York, 1950. Solubility under 0.1% is preferred for suspension concentrates; solution concentrates are preferably stable against phase separation at 0 °C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publishing Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, microbiological growth, etc.

The methods of making such compositions are well known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, Littler, U.S. Patent 3,060,084). Granules and pellets may be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp. 147ff. and "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York, 1973, pp. 8-57ff.

For further information regarding the art of formulation, see for example:

- H. M. Loux, U.S. Patent 3,235,361, February 15, 1966, Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41;
- R. W. Luckenbaugh, U.S. Patent 3,309,192, March 14, 1967, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182;
  - H. Gysin and E. Knusli, U.S. Patent 2,891,855, June 23, 1959, Col. 3, line 66 through Col. 5, line 17 and
  - G. C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pp. 81-96; and
- J. D. Fryer and S. A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pp. 101-103.

In the following Examples, all parts are by weight unless otherwise indicated.

|    | Example A                                                                                                                                                              |                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 35 | Wettable Powder                                                                                                                                                        |                        |
|    | 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane sodium alkylnaphthalenesulfonate low viscosity methyl cellulose diatomaceous earth | 50%<br>2%<br>2%<br>46% |

The ingredients are blended, coarsely hammer-milled and then air-milled to produce particles essentially all below 10 microns in diameter. The product is reblended before packaging.

| Example B                                                                              |           |
|----------------------------------------------------------------------------------------|-----------|
| Granule                                                                                |           |
| Wettable Powder of Example A attapulgite granules (U.S.S. 20 to 40 mesh; 0.84-0.42 mm) | 5%<br>95% |

A slurry of wettable powder containing 25% solids is sprayed on the surface of attapulgite granules in a double-cone blender. The granules are dried and packaged.

44

45

50

| Example C                                                                           |     |
|-------------------------------------------------------------------------------------|-----|
| Extruded Pellet                                                                     |     |
| 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane | 25% |
| anhydrous sodium sulfate                                                            | 10% |
| crude calcium ligninsulfonate                                                       | 5%  |
| sodium alkylnaphthalenesulfonate                                                    | 1%  |
| calcium/magnesium bentonite                                                         | 59% |

The ingredients are blended, hammer-milled and then moistened with about 12% water. The mixture is extruded as cylinders about 3 mm diameter which are cut to produce pellets about 3 mm long. These may be used directly after drying, or the dried pellets may be crushed to pass a U.S.S. No. 20 sieve (0.84 mm openings). The granules held on a U.S.S. No. 40 sieve (0.42 mm openings) may be packaged for use and the fines recycled.

| Example D                                                                                                                       |               |
|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| Low Strength Granule                                                                                                            |               |
| 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane attapulgite granules (U.S.S. 20 to 40 mesh) | 0.1%<br>99.9% |

The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

| Example E                                                                                                                                              |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Low Strength Granule                                                                                                                                   |                 |
| 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane N,N-dimethylformamide attapulgite granules (U.S.S. 20 to 40 sieve) | 1%<br>9%<br>90% |

The active ingredient is dissolved in the solvent and the solution is sprayed upon dedusted granules in a double cone blender. After spraying of the solution has been completed, the blender is allowed to run for a short period and then the granules are packaged.

| 4 | 5 |  |
|---|---|--|

| Example F                                                                                                                       |                   |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Wettable Powder                                                                                                                 |                   |
| 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane sodium ligninsulfonate montmorillonite clay | 40%<br>20%<br>40% |

The ingredients are thoroughly blended, coarsely hammer-milled and then air-milled to produce particles essentially all below 10 microns in size. The material is reblended and then packaged.

| Example G                                                                                                                                                              |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Emulsifiable Concentrate                                                                                                                                               |                  |
| 6-endo-[(2,6-diffuorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane blend of polyalcohol carboxylic esters and oil soluble petroleum sulfonates xylene | 35%<br>6%<br>59% |

The ingredients are combined and filtered to remove undissolved solids. The product can be used directly, extended with oils, or emulsified in water.

| Example H                                                                                                    |                   |
|--------------------------------------------------------------------------------------------------------------|-------------------|
| Dust                                                                                                         |                   |
| 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane attapulgite Pyrophyllite | 10%<br>10%<br>80% |

20

15

5

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce particles substantially all below 200 microns. The ground concentrate is then blended with powdered pyrophyllite until homogeneous.

25

30

| Example I                                                                                                                                                                              |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Wettable Powder                                                                                                                                                                        |                              |
| 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane sodium alkylnaphthalenesulfonate sodium ligninsulfonate low viscosity methyl cellulose attapulgite | 20%<br>4%<br>4%<br>3%<br>69% |

35

The ingredients are thoroughly blended. After grinding in a hammer-mill to produce particles essentially all below 100 microns, the material is reblended and sifted through a U.S.S. No. 50 sieve (0.3 mm opening) and packaged.

40

### Utility

Test results indicate that compounds of this invention are active postemergence and, in particular, preemergence herbicides. Many compounds of this invention are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops such as barley (Hordeum vulgare), corn (Zea mays), cotton (Gossypium hirsutum), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), and wheat (Triticum aestivum). Grass weeds controlled include, but are not limited to, barnyardgrass (Echinochloa crus-galli), blackgrass (Alopecurus myosuroides), crabgrass (Digitaria spp.), foxtail (Setaria spp.), and johnsongrass (Sorghum halepense). Several compounds in this invention are particularly useful for the control of barnyardgrass in upland and paddy rice. Utility in paddy rice includes both direct-seeded and transplanted paddy rice.

Several compounds in this invention have utility in non-crop areas where selected weed control is desired, such as around storage tanks, parking lots, drive-in theaters, billboards, highways, and railroad structures. These compounds are also useful in fallow areas of crop production such as in wheat and barley and in plantation crops such as palm, banana, citrus, rubber, etc. Alternatively, these compounds may be useful to modify plant growth.

The effective amount for compounds of this invention is determined by a number of factors. These

factors include: formulation selected, method of application, amount of vegetation present, growing conditions, etc. In general terms, the effective amount of the subject compounds is applied at rates from 0.01 to 20 kg/ha with a preferred rate range of from 0.02 to 1 kg/ha. One skilled in the art can easily determine rates needed for the desired level of weed control.

Compounds of this invention may be used alone or in combination with other commercial herbicides, insecticides, or fungicides. The following list exemplifies some of the herbicides suitable for use in mixtures. A combination of compounds from this invention with one or more of the following herbicides may be particularly useful for weed control.

| 10 | Common Name | Chemical Name                                                                     |
|----|-------------|-----------------------------------------------------------------------------------|
|    | acetochlor  | 2-chloro-N-(ethoxymethyl)-N- (2-ethyl-6-methylphenyl)acetamide                    |
| 15 | acifluorfen | 5-[2-chloro-4-(trifluoromethyl)-<br>phenoxy]-2-nitrobenzoic acid                  |
|    | acrolein    | 2-propenal                                                                        |
| 20 | alachlor    | 2-chloro-N-(2,6-diethylphenyl)-N-<br>(methoxymethyl)acetamide                     |
| 25 | anilofos    | S-4-chloro-N-isopropylcarbaniloyl-<br>methyl-O,O-dimethyl phosphorodi-<br>thioate |
| 30 |             |                                                                                   |
|    |             |                                                                                   |

|    | Common Name           | Chemical Name                                                                                                            |
|----|-----------------------|--------------------------------------------------------------------------------------------------------------------------|
| 5  | ametryn               | N-ethyl-N'-(1-methylethyl)-6-<br>(methylthio)-1,3,5-triazine-2,4-<br>diamine                                             |
|    | amitrole              | 1H-1,2,4-triazol-3-amine                                                                                                 |
| 10 | AMS                   | ammonium sulfamate                                                                                                       |
|    | asulam                | <pre>methyl [(4-aminophenyl)sulfonyl]-   carbamate</pre>                                                                 |
| 15 | atrazine              | 6-chloro-N-ethyl-N'-(1-methylethyl)-<br>1,3,5-triazine-2,4-diamine                                                       |
| 20 | barban                | 4-chloro-2-butynyl 3-chlorocarbamate                                                                                     |
|    | benefin               | N-butyl-N-ethyl-2,6-dinitro-4-(tri-fluoromethyl)benzenamine                                                              |
| 25 | bensulfuron<br>methyl | <pre>2-[[[[[(4,6-dimethoxy-2-pyrimi- dinyl)amino]methylcarbonyl]- amino]sulfonyl]methyl]benzoic acid, methyl ester</pre> |
| 30 | bensulide             | O,O-bis(1-methylethyl) S-[2-<br>[(phenylsulfonyl)amino]-<br>ethyl]phosphorodithioate                                     |
| 35 | bentazon              | <pre>3-(1-methylethyl)-(1H)-2,1,3- benzothiadiazin-4(3H)-one, 2,2-dioxide</pre>                                          |
|    | benzofluor            | N-[4-(ethylthio)-2-(trifluoro-<br>methyl)phenyl]methanesulfonamide                                                       |
| 40 | benzoylprop           | N-benzoyl-N-(3,4-dichlorophenyl)-DL-<br>alanine                                                                          |
| 45 | bifenox               | <pre>methyl 5-(2,4-dichlorophenoxy)-2-    nitrobenzoate</pre>                                                            |
|    | bromacil              | 5-bromo-6-methyl-3-(1-methylpropyl)-<br>2,4(1H,3H)pyrimidinedione                                                        |
| 50 | bromoxynil            | 3,5-dibromo-4-hydroxybenzonitrile                                                                                        |

|    | Common Name          | Chemical Name                                                                                                      |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------|
| 5  | butachlor ·          | N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide                                                           |
| 10 | buthidazole          | <pre>3-[5-(1,1-dimethylethyl)-1,3,4-thia- diazol-2-yl]-4-hydroxy-1-methyl-2- imidazolidinone</pre>                 |
|    | butralin             | 4-(1,1-dimethylethyl)-N-(1-methyl-propyl)-2,6-dinitrobenzenamine                                                   |
| 15 | butylate             | S-ethyl bis(2-methylpropyl)- carbamothioate                                                                        |
|    | cacodylic<br>acid    | dimethyl arsinic oxide                                                                                             |
| 20 | CDAA                 | 2-chloro-N, N-di-2-propenylacetamide                                                                               |
|    | CDEC                 | 2-chloroallyl diethyldithiocarbamate                                                                               |
| 25 | CGA 142,464          | <pre>3-(4,6-dimethoxy-1,3,5-triazin-2-yl)- 1-[2-(2-methoxyethoxy)-phenyl- sulfonyl]-urea</pre>                     |
|    | chloramben           | 3-amino-2,5-dichlorobenzoic acid                                                                                   |
| 30 | chlorbromuron        | 3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea                                                                  |
| 35 | chlorimuron<br>ethyl | <pre>2-[[[(4-chloro-6-methoxy-2-pyrimi- dinyl)ethylamino]carbonyl]- amino]sulfonyl]benzoic acid, ethyl ester</pre> |
| 40 | chlormethoxy-<br>nil | 2,4-dichlorophenyl 4-nitro-3-<br>methoxyphenyl ether                                                               |
|    | chlornitrofen        | 2,4,6-trichlorophenyl-4-nitro-<br>phenyl ether                                                                     |
| 45 | chloroxuron          | N'-[4-(4-chlorophenoxy)phenyl]-N,N-dimethylurea                                                                    |
|    | chlorpropham         | 1-methylethyl 3-chlorophenylcarbamate                                                                              |
| 50 | chlorsulfuron        | <pre>2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-     triazin-2-yl)amino]carbonyl]benzene- sulfonamide</pre>            |

|    | Common Name  | Chemical Name                                                                                                               |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| 5  | chlortoluron | N'-(3-chloro-4-methylphenyl)-N,N-dimethylurea                                                                               |
| 10 | cinmethylin  | <pre>exo-1-methyl-4-(1-methylethyl)-2-[(2- methylphenyl)methoxy]-7-oxabicyclo- [2.2.1]heptane</pre>                         |
|    | clethodim    | <pre>(E,E)-(±)-2-[1-[[(3-chloro-2-propenyl)- oxy]imino]propyl]-5-[2-(ethylthio)- propyl]-3-hydroxy-2-cyclohexen-1-one</pre> |
| 15 | clomazone    | <pre>2-[(2-chlorophenyl)methyl]-4,4-dimethyl-<br/>3-isoxazolidinone</pre>                                                   |
| 20 | cloproxydim  | <pre>(E,E)-2-[1-[[(3-chloro-2-propenyl)oxy)- imino]butyl]-5-[2-(ethylthio)propyl]- 3-hydroxy-2-cyclohexen-1-one</pre>       |
|    | clopyralid   | 3,6-dichloro-2-pyridinecarboxylic acid                                                                                      |
| 25 | CMA          | calcium salt of MAA                                                                                                         |
|    | cyanazine    | 2-[[4-chloro-6-(ethylamino)-1,3,5-tri-<br>azin-2-yl]amino]-2-methylpropanenitrile                                           |
| 30 | cycloate     | S-ethyl cyclohexylethylcarbamothioate                                                                                       |
|    | cycluron     | 3-cyclooctyl-1,l-dimethylurea                                                                                               |
|    | cyperquat    | l-methyl-4-phenylpyridinium                                                                                                 |
| 35 | cyprazine    | 2-chloro-4-(cyclopropylamino)-6-(iso-propylamino)-s-triazine                                                                |
| 40 | cyprazole    | N-[5-(2-chloro-1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]cyclopropanecarbox-amide                                            |
|    | cypromid     | 3',4'-dichlorocyclopropanecarboxanilide                                                                                     |
| 45 | dalapon      | 2,2-dichloropropanoic acid                                                                                                  |
|    | dazomet      | tetrahydro-3,5-dimethyl-2H-1,3,5-thia-diazine-2-thione                                                                      |
| 50 | DCPA         | <pre>dimethyl 2,3,5,6-tetrachloro-1,4-benzene- dicarboxylate</pre>                                                          |

|     | Common Name  | <u>Chemical Name</u>                                                                                                             |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| 5   | desmediphan  | <pre>ethyl [3-[[(phenylamino)carbonyl]oxy]-   phenyl]carbamate</pre>                                                             |
|     | desmetryn    | 2-(isopropylamino)-4-(methylamino)-6-<br>(methylthio)- <u>s</u> -triazine                                                        |
| 10  | diallate     | <pre>S-(2,3-dichloro-2-propenyl)bis(1- methylethyl)carbamothioate</pre>                                                          |
|     | dicamba      | 3,6-dichloro-2-methoxybenzoic acid                                                                                               |
| 15  | dichlobenil  | 2,6-dichlorobenzonitrile                                                                                                         |
|     | dichlorprop  | <pre>(±)-2-(2,4-dichlorophenoxy)propanoic acid</pre>                                                                             |
| 20  | dichlofop    | $(\pm)-2-[4-(2,4-dichlorophenoxy)phenoxy]-$ propanoic acid, methyl ester                                                         |
| or. | diethatyl    | N-(chloroacetyl)-N-(2,6-diethylphenyl)- glycine                                                                                  |
| 25  | difenzoquat  | 1,2-dimethyl-3,5-diphenyl-1H-pyrazolium                                                                                          |
| 00  | dimepiperate | S-1-methyl-1-phenylethylpiperidine-<br>1-carbothioate                                                                            |
| 30  | dinitramine  | N <sup>3</sup> , N <sup>3</sup> -diethyl-2,4-dinitro-6-(trifluoro-methyl)-1,3-benzenediamine                                     |
| 35  | dinoseb      | 2-(1-methylpropyl)-4,6-dinitrophenol                                                                                             |
| 30  | diphenamid   | $N$ , $N$ -dimethyl- $\alpha$ -phenylbenzeneacetamide                                                                            |
| 40  | dipropetryn  | 6-(ethylthio)-N,N'-bis(l-methylethyl)-<br>1,3,5-triazine-2,4-diamine                                                             |
| .0  | diquat       | <pre>6,7-dihydrodipyrido[1,2-a:2',1'-c]- pyrazinedium ion</pre>                                                                  |
| 45  | diuron       | N'-(3,4-dichlorophenyl)-N,N-dimethylurea                                                                                         |
|     | DNOC         | 2-methyl-4,6-dinitrophenol                                                                                                       |
| 50  | DPX-M6316    | <pre>3-[[[(4-methoxy-6-methyl-1,3,5-triazin- 2-yl)amino]carbonyl]amino]sulfonyl]- 2-thiophenecarboxylic acid, methyl ester</pre> |

|            | Common Name           | Chemical Name                                                                                                                              |
|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|            | DSMA                  | disodium salt of MAA                                                                                                                       |
| 5          | dymron                | N-(4-methylphenyl)-N'-(1-methyl-<br>l-phenylethyl)urea                                                                                     |
| 10         | endothall             | <pre>7-oxabicyclo[2.2.1]heptane-2,3-dicarbox- ylic acid</pre>                                                                              |
|            | EPTC                  | S-ethyl dipropylcarbamothicate                                                                                                             |
| 15         | esprocarb<br>(SC2957) | S-benzyl-N-ethyl-N-(1,2-dimethyl)- propyl)thiolcarbamate                                                                                   |
| 00         | ethalfluralin         | N-ethyl-N-(2-methyl-2-propenyl)-2,6-<br>dinitro-4-(trifluoromethyl)-<br>benzenamine                                                        |
| 20         | ethofumesate          | <pre>(±)-2-ethoxy-2,3-dihydro-3,3-dimethyl-<br/>5-benzofuranyl methanesulfonate</pre>                                                      |
| 25         | Express®              | <pre>2-[[[N-(4-methoxy-6-methyl-1,3,5-     triazine-2-yl)-N-methylamino]-     carbonyl]amino]sulfonyl]benzoic     acid, methyl ester</pre> |
| 20         | fenac                 | 2,3,6-trichlorobenzeneacetic acid                                                                                                          |
| 30         | fenoxaprop            | <pre>(±)-2-[4-[(6-chloro-2-benzoxazolyl)oxy]- phenoxy]propanoic acid</pre>                                                                 |
| 35         | fenuron               | N, N-dimethyl-N'-phenylurea                                                                                                                |
| 33         | fenuron TCA           | Salt of fenuron and TCA                                                                                                                    |
| 40         | flamprop              | N-benzoyl-N-(3-chloro-4-fluorophenyl)-<br>DL-alanine                                                                                       |
|            | fluazifop             | <pre>(±)-2-[4-[[5-(trifluoromethy1)-2-pyri-<br/>diny1]oxy]phenoxy]propanoic acid</pre>                                                     |
| <b>4</b> 5 | fluazifop-P           | (R)-2-[4-[[5-(trifluoromethy1)-2-pyri-diny1]oxy]phenoxy]propanoic acid                                                                     |
|            | fluchloralin          | N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)benzenamine                                                                      |
| 50         | fluometuron           | N, N-dimethyl-N'-[3-(trifluoromethyl)- phenyl]urea                                                                                         |

|    | Common Name           | Chemical Name                                                                                                                                                                |
|----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | fluorochlor-<br>idone | <pre>3-chloro-4-(chloromethy1)-1-[3-(tri-<br/>fluoromethy1)pheny1]-2-pyrrolidincne</pre>                                                                                     |
|    | fluorodifen           | <pre>p-nitrophenyl α,α,α-trifluoro-2-nitro-<br/>p-tolyl ether</pre>                                                                                                          |
| 10 | fluorogly-<br>cofen   | <pre>carboxymethyl 5-[2-chloro-4-(tri-<br/>fluoromethyl)phenoxy]-2-nitrobenzoate</pre>                                                                                       |
| 15 | fluridone             | <pre>1-methyl-3-phenyl-5-[3-(trifluoro-<br/>methyl)phenyl]-4(lH)-pyridinone</pre>                                                                                            |
|    | fomesafen             | 5-[2-chloro-4-(trifluoromethyl)phenoxy]-<br>N-(methylsulfonyl)-2-nitrobenzamide                                                                                              |
| 20 | fosamine              | ethyl hydrogen (aminocarbonyl)- phosphate                                                                                                                                    |
|    | glyphosate            | N-(phosphonomethyl)glycine                                                                                                                                                   |
| 25 | haloxyfop             | <pre>2-[4-[[3-chloro-5-(trifluoromethyl)-2-     pyridinyl]oxy]phenoxy]propanoic acid</pre>                                                                                   |
|    | hexaflurate           | potassium hexafluoroarsenate                                                                                                                                                 |
| 30 | hexazinone            | 3-cyclohexyl-6-(dimethylamino)-1-methyl-<br>1,3,5-triazine-2,4(1H,3H)-dione                                                                                                  |
| 35 | imazametha-<br>benz   | 6-(4-isopropyl-4-methyl-5-oxo-2-<br>imidazolin-2-yl)-m-toluic acid,<br>methyl ester and 6-(4-isopropyl-<br>4-methyl-5-oxo-2-imidazolin-2-yl)-<br>p-toluic acid, methyl ester |
| 40 | imazapyr              | <pre>(±)-2-[4,5-dihydro-4-methyl-4-(1-methyl-<br/>ethyl)-5-oxo-lH-imidazol-2-yl]-3-<br/>pyridinecarboxylic acid</pre>                                                        |
| 45 | imazaquin             | 2-[4,5-dihydro-4-methyl-4-(1-methyl-ethyl)-5-oxo-1H-imidazol-2-yl]-3-quinolinecarboxylic acid                                                                                |
|    | imazethapyr           | <pre>(±)-2-[4,5-dihydro-4-methyl-4-(1-methyl-<br/>ethyl)-5-oxo-lH-imidazol-2-yl]-5-<br/>ethyl-3-pyridinecarboxylic acid</pre>                                                |
| 50 | ioxynil               | 4-hydroxy-3,5-diiodobenzonitrile                                                                                                                                             |

|    | Common Name         | Chemical Name                                                                                              |
|----|---------------------|------------------------------------------------------------------------------------------------------------|
| 5  | isopropalin .       | 4-(1-methylethyl)-2,6-dinitro-N,N-dipropylbenzenamine                                                      |
|    | isoproturon         | N-(4-isopropylphenyl)-N',N'-dimethylurea                                                                   |
| 10 | isouron             | N'-[5-(1,1-dimethylethyl)-3-isoxazolyl]-<br>N,N-dimethylurea                                               |
|    | isoxaben            | N-[3-(1-ethyl-1-methylpropyl)-5-<br>isoxazolyl]-2,6-dimethoxybenzamide                                     |
| 15 | karbutilate         | <pre>3-[[(dimethylamino)carbonyl]amino]- phenyl-(1,1-dimethylethyl)carbamate</pre>                         |
| 20 | lactofen            | <pre>(±)-2-ethoxy-1-methyl-2-oxoethyl 5-[2- chloro-4-(trifluoromethyl)phenoxy]- 2-nitrobenzoate</pre>      |
|    | lenacil             | <pre>3-cyclohexyl-6,7-dihydro-lH-cyclopenta-<br/>pyrimidine-2,4(3H,5H)-dione</pre>                         |
| 25 | linuron             | N'-(3,4-dichlorophenyl)-N-methoxy-N-methylurea                                                             |
|    | MAA                 | methylarsonic acid                                                                                         |
| 30 | MAMA                | monoammonium salt of MAA                                                                                   |
|    | MCPA                | (4-chloro-2-methylphenoxy)acetic acid                                                                      |
| 35 | МСРВ                | 4-(4-chloro-2-methylphenoxy)butanoic acid                                                                  |
| 40 | MON 7200            | S,S-dimethyl-2-(difluoromethyl)-4-<br>(2-methylpropyl)-6-(trifluoromethyl)-<br>3,5-pyridinedicarbothionate |
|    | mecoprop            | <pre>(±)-2-(4-chloro-2-methylphenoxy)- propanoic acid</pre>                                                |
| 45 | mefenacet           | 2-(2-benzothiazolyloxy-N-methyl-N-phenylacetamide                                                          |
|    | mefluidide          | N-[2,4-dimethyl-5-[[(trifluoromethyl)-sulfonyl]amino]phenyl]acetamide                                      |
| 50 | methal-<br>propalin | N-(2-methyl-2-propenyl)-2,6-dinitro-N-<br>propyl-4-(trifluoromethyl)benzenamide                            |

|    | Common Name             | Chemical Name                                                                                                       |
|----|-------------------------|---------------------------------------------------------------------------------------------------------------------|
| 5  | methabenz-<br>thiazuron | 1,3-dimethyl-3-(2-benzothiazolyl)urea                                                                               |
|    | metham                  | methylcarbamodithioic acid                                                                                          |
| 10 | methazole               | <pre>2-(3,4-dichlorophenyl)-4-methyl-1,2,4- oxadiazolidine-3,5-dione</pre>                                          |
|    | methoxuron              | N'-(3-chloro-4-methoxyphenyl)-N,N-dimethylurea                                                                      |
| 15 | metolachlor             | 2-chloro-N-(2-ethyl-6-methylphenyl)-N-<br>(2-methoxy-1-methylethyl)acetamide                                        |
| 20 | metribuzin              | 4-amino-6-(1,1-dimethylethyl)-3-(methyl-thio)-1,2,4-triazin-5(4H)-one                                               |
| 25 | metsulfuron<br>methyl   | <pre>2-[[[(4-methoxy-6-methyl-1,3,5-tri- azin-2-yl)amino]carbonyl]- amino]sulfonyl]benzoic acid, methyl ester</pre> |
|    | мн                      | 1,2-dihydro-3,6-pyridazinedione                                                                                     |
| 30 | molinate                | S-ethyl hexahydro-lH-azepine-l-carbo-<br>thioate                                                                    |
|    | monolinuron             | 3-(p-chlorophenyl)-1-methoxy-1-methyl-<br>urea                                                                      |
| 35 | monuron                 | N'-(4-chlorophenyl)-N,N-dimethylurea                                                                                |
|    | monuron TCA             | Salt of monuron and TCA                                                                                             |
| 40 | MSMA                    | monosodium salt of MAA                                                                                              |
| 40 | napropamide             | N, N-diethyl-2-(1-naphthalenyloxy)- propanamide                                                                     |
| 45 | naptalam                | <pre>2-[(1-naphthalenylamino)carbonyl]- benzoic acid</pre>                                                          |
|    | neburon                 | <pre>l-butyl-3-(3,4-dichlorophenyl)-1-methyl- urea</pre>                                                            |
| 50 | nitralin                | <pre>4-(methylsulfonyl)-2,6-dinitro-N,N- dipropylaniline</pre>                                                      |

#### Common Name Chemical Name nitrofen 2,4-dichloro-1-(4-nitrophenoxy)benzene 5 nitrofluorfen 2-chloro-1-(4-nitrophenoxy)-4-(trifluoromethyl)benzene norea N, N-dimethyl-N'-(octahydro-4,7-methano-10 lH-inden-5-yl)urea 3aα,- $4\alpha$ , $5\alpha$ , $7\alpha$ , $7a\alpha$ -isomer norflurazon 4-chloro-5-(methylamino)-2-[3-(trifluoromethyl)phenyl]-3(2H)-15 pyridazinone oryzalin 4-(dipropylamino)-3,5-dinitrobenzenesulfonamide 20 oxadiazon 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2(3H)-oneoxyfluorfen 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-25 (trifluoromethyl)benzene paraquat 1,1'-dimethyl-4,4'-dipyridinium ion pebulate S-propyl butylethylcarbamothicate 30 pendimethalin N-(1-ethylpropyl)-3,4-dimethyl-2,6dinitrobenzenamine perfluidone 1,1,1-trifluoro-N-[2-methyl-4-(phenyl-25 sulfonyl)phenyl]methanesulfonamide phenmedipham 3-[(methoxycarbonyl)amino]phenyl (3methylphenyl)carbamate 40 picloram 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid PPG-1013 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone 45 oxime-O-acetic acid, methyl ester pretilachlor α-chloro-2,6-diethyl-N-(2-propoxyethyl)acetanilide

55

|    | Common Name             | Chemical Name                                                                              |
|----|-------------------------|--------------------------------------------------------------------------------------------|
| 5  | procyazine              | 2-[[4-chloro-6-(cyclopropylamino)-1,3,5-triazine-2-yl]amino]-2-methylpropane-nitrile       |
| 10 | profluralin             | N-(cyclopropylmethyl)-2,6-dinitro-N-<br>propyl-4-(trifluoromethyl)benzenamine              |
|    | prometon                | 6-methoxy-N,N'-bis(l-methylethyl)-1,3,5-triazine-2,4-diamine                               |
| 15 | prometryn               | N, N'-bis(1-methylethyl)-6-(methylthio)-<br>1,3,5-triazine-2,4-diamine                     |
|    | pronamide               | 3,5-dichloro-N-(1,1-dimethy1-2-propyn-yl)benzamide                                         |
| 20 | propachlor              | 2-chloro-N-(1-methylethyl)-N- phenylacetamide                                              |
|    | propanil                | N-(3,4-dichlorophenyl)propanamide                                                          |
| 25 | propazine               | 6-chloro-N, N'-bis(l-methylethyl)- 1,3,5-triazine-2,4-diamine                              |
|    | propham                 | 1-methylethyl phenylcarbamate                                                              |
| 30 | prosulfalin             | N-[[4-(dipropylamino)-3,5-dinitro-<br>phenyl]sulfonyl]-S,S-dimethylsulfil-<br>imine        |
| 35 | prynachlor              | <pre>2-chloro-N-(1-methyl-2-propynyl)acet- anilide</pre>                                   |
|    | pyrazolate              | 4-(2,4-dichlorobenzoyl)-1,3-dimethyl-<br>pyrazol-5-yl-p-toluenesulphonate                  |
| 40 | pyrazon                 | 5-amino-4-chloro-2-phenyl-3(2H)-<br>pyridazinone                                           |
| 45 | pyrazosulfuron<br>ethyl | ethyl S-[3-(4,6-dimethoxypyrimidin-2-yl)ureadosulfonyl]-1-methylpyrazole-4-carboxylate     |
|    | quinclorac              | 3,7-dichloro-8-quinoline carboxylic acid                                                   |
| 50 | quizalofop<br>ethyl     | <pre>(±)-2-[4-[(6-chloro-2-quinoxalinyl)-    oxy]phenoxy]propanoic acid, ethyl ester</pre> |

|    | Common Name            | Chemical Name                                                                                            |
|----|------------------------|----------------------------------------------------------------------------------------------------------|
| 5  | secbumeton             | N-ethyl-6-methoxy-N'-(1-methylpropyl)-<br>1,3,5-triazine-2,4-diamine                                     |
| 10 | sethoxydim             | <pre>2-[1-(ethoxyimino)butyl]-5-[2-(ethyl-<br/>thio)propyl]-3-hydroxy-2-cyclohexen-<br/>l-one</pre>      |
|    | siduron                | N-(2-methylcyclohexyl)-N'-phenylurea                                                                     |
| 15 | simazine               | 6-chloro-N, N'-diethyl-1,3,5-triazine-2,4-diamine                                                        |
|    | SK-233                 | <pre>1-(α,α-dimethylbenzyl)-3-(4-methyl- phenyl)urea</pre>                                               |
| 20 | sulfometuron<br>methyl | <pre>2-[[[(4,6-dimethyl-2-pyrimidinyl)- amino]carbonyl]amino]sulfonyl]- benzoic acid, methyl ester</pre> |
|    | TCA                    | trichloroacetic acid                                                                                     |
| 25 | tebuthiuron            | N-[5-(1,1-dimethylethyl)-1,3,4-thiadi-<br>azol-2-yl]-N,N'-dimethylurea                                   |
| 30 | terbacil               | 5-chloro-3-(1,1-dimethylethyl)-6-<br>methyl-2,4(1H,3H)-pyrimidinedione                                   |
|    | terbuchlor             | N-(butoxymethyl)-2-chloro-N-[2-(1,1-dimethylethyl)-6-methylphenyl]-acetamide                             |
| 35 | terbuthyl-<br>azine    | 2-( <u>tert</u> -butylamino)-4-chloro-6-(ethyl-amino)- <u>s</u> -triazine                                |
| 40 | terbutol               | 2,6-di- <u>tert</u> -butyl- <u>p</u> -tolyl methylcar-<br>bamate                                         |
|    | terbutryn              | N-(1,1-dimethylethyl)-N'-ethyl-6-<br>(methylthio)-1,3,5-triazine-<br>2,4-diamine                         |
| 45 | thiobencarb            | S-[(4-chlorophenyl)methyl] diethylcar-<br>bamothioate                                                    |
| 50 | triallate              | S-(2,3,3-trichloro-2-propenyl) bis(1-methylethyl)carbamothioate                                          |

|    | Common Name | Chemical Name                                                  |
|----|-------------|----------------------------------------------------------------|
| 5  | triclopyr . | <pre>[(3,5,6-trichloro-2-pyridinyl)- oxy]acetic acid</pre>     |
|    | tridiphane  | 2-(3,5-dichlorophenyl)-2-(2,2,2-<br>trichloroethyl)oxirane     |
| 10 | trifluralin | 2,6-dinitro-N,N-dipropyl-4-(tri-fluoromethyl)benzenamine       |
| 15 | trimeturon  | <pre>l-(p-chlorophenyl)-2,3,3-trimethylpseu- dourea</pre>      |
|    | 2,4-D       | (2,4-dichlorophenoxy)acetic acid                               |
|    | 2,4-DB      | 4-(2,4-dichlorophenoxy)butanoic acid                           |
| 20 | vernolate   | S-propyl dipropylcarbamothicate                                |
|    | xylachlor   | 2-chloro-N-(2,3-dimethylphenyl)-N-<br>(1-methylethyl)acetamide |
| 25 |             |                                                                |

Herbicidal properties of the subject compounds were discovered in a series of greenhouse tests. Test procedures and results follow.

# BIOLOGICAL TABLE 1

10 R7

|    | CMPD | R <sub>7</sub>                  | <u>R</u> 8                        | Q                                    |
|----|------|---------------------------------|-----------------------------------|--------------------------------------|
| 25 |      |                                 |                                   |                                      |
|    | 1    | CH <sub>3</sub>                 | CH(CH <sub>3</sub> ) <sub>2</sub> | $Q-3 (R_9 = 2-Br, R_{10} = H)$       |
|    | 2    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-3 (R_9 = 2-CH_3, R_{10} = H)$     |
| 30 | 3    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-3 (R_9 = 2-CH_2CH_3, R_{10} = H)$ |
|    | 4    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-3 (R_9 = H, R_{10} = H)$          |
|    | 5    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-14 (R_9 = H, R_{10} = H)$         |
|    | 6    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-2 (R_9 = H, R_{10} = 6-F)$        |
| 35 | 7    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-14 (R_9 = 2-CH_3, R_{10} = H)$    |
|    | 8    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-2 (R_9 = 6-CH_3, R_{10} = H)$     |
|    | 9    | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-5 (R_9 = 4-CH_3, R_{10} = H)$     |
| 40 | 10   | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-13 (R_9 = H, R_{10} = 4-CH_3)$    |
|    | 11   | CH <sub>3</sub>                 | $CH(CH_3)_2$                      | $Q-2 (R_9 = H, R_{10} = 6-Br)$       |
|    | 12   | CH <sub>3</sub>                 | CH(CH <sub>3</sub> ) <sub>2</sub> | $Q-5 (R_9 = H, R_{10} = H)$          |
| 45 | 13   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | $Q-2 (R_9 = H, R_{10} = 6-F)$        |
|    | 14   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | $Q-2 (R_9 = H, R_{10} = 6-CH_3)$     |
|    | 15   | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub>   | $Q-14 (R_9 = H, R_{10} = H)$         |
|    | 17   | CH <sub>3</sub>                 | CH(CH <sub>3</sub> ) <sub>2</sub> | $Q-3 (R_9 = 2-C1, R_{10} = H)$       |
| 50 | 18   | CH <sub>3</sub>                 | CH(CH <sub>3</sub> ) <sub>2</sub> | $Q-2 (R_9 = H, R_{10} = 6-C1)$       |

|   | CMPD | R <sub>7</sub>  | R <sub>8</sub>                    | Q                              |
|---|------|-----------------|-----------------------------------|--------------------------------|
|   | 19   | CH <sub>3</sub> | CH(CH <sub>3</sub> ) <sub>2</sub> | $Q-3 (R_9 = H, R_{10} = 6-C1)$ |
| 5 | 20   | CH <sub>3</sub> | $CH(CH_3)_2$                      | $Q-3 (R_9 = 2-F, R_{10} = H)$  |
|   | 21   | CH <sub>3</sub> | $CH(CH_3)_2$                      | $Q-4 (R_9 = 2-F, R_{10} = H)$  |

# **BIOLOGICAL TABLE 2**

 $R_2$   $R_3$   $R_1$   $OCH_2Q$ 

| 30 | CMPD | R <sub>1</sub>  | R <sub>2</sub>                  | R <sub>3</sub>                  | Ω                         |
|----|------|-----------------|---------------------------------|---------------------------------|---------------------------|
|    | 22   | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Q-1 (X = 2-C1, Y = H)     |
| •  | 23   | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Q-1 (X = 2-F, Y = 6-F)    |
| 35 | 24   | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | $Q-1 (X = 2-CH_3, Y = H)$ |
|    | 25   | CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> CH <sub>3</sub> | Q-1 (X = 2-C1, Y = 6-F)   |
|    | 26   | CH <sub>2</sub> | -(CH                            | 2)4-                            | Q-1 (X = H, Y = H)        |

### **BIOLOGICAL TABLE 3**

5

10

20

15

CMPD R4

 $R_5$ 

R<sub>6</sub>

Q

<sup>25</sup> 16 CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>3</sub>

 $Q-2 (R_9 = H, R_{10} = H)$ 

30

## TEST A

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), cheatgrass (Bromus secalinus), cocklebur (Xanthium pensylvanicum), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), giant foxtail (Setaria faberi), morningglory (Ipomoea spp.), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beat vulgaris), velvetleat (Abutilon theophrasti), wheat (Triticum aestivum), and wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also treated with postemergence applications of test chemicals. Plants ranged in height from two to eighteen cm (two to three leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for approximately sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

45

50

|     | Table A         | COMPOUND | Table A        | COMPOUND |
|-----|-----------------|----------|----------------|----------|
|     | Rate (1000 g/ha | a) 5     | Rate (1000 g/h | a) 5     |
| 5   | POSTEMERGENCE   |          | PREEMERGENCE   |          |
| · · | Barley          | 8        | Barley         | 9        |
|     | Barnyardgrass   | 9        | Barnyardgrass  | 10       |
|     | Cheatgrass      | 0        | Cheatgrass     | 9        |
| 10  | Cocklebur       | 2        | Cocklebur      | 3        |
|     | Corn            | 9        | Corn           | 10       |
|     | Cotton          | 0        | Cotton         | 0        |
| 15  | Crabgrass       | 9        | Crabgrass      | 10       |
|     | Giant foxtail   | 9        | Giant foxtail  | 10       |
|     | Morningglory    | 0        | Morningglory   | 0        |
| 20  | Nutsedge        | 0        | Nutsedge       | 9        |
|     | Rice            | 9        | Rice           | 10       |
|     | Sorghum         | 3        | Sorghum        | 10       |
|     | Soybean         | 2        | Soybean        | 9        |
| 25  | Sugar beet      | 2        | Sugar beet     | 0        |
|     | Velvetleaf      | 0        | Velvetleaf     | 8        |
|     | Wheat           | 8        | Wheat          | 10       |
| 30  | Wild Oat        | 9        | Wild Oat       | 9        |

|    | Table A         |   |   |   |   |   |   | COMPOUND |    |    |    |    |    |    |    |    |  |
|----|-----------------|---|---|---|---|---|---|----------|----|----|----|----|----|----|----|----|--|
|    | Rate (400 g/ha) | 1 | 2 | 3 | 4 | 6 | 8 | 11       | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  |
|    | POSTEMERGENCE   |   |   |   |   |   |   |          |    |    |    |    |    |    |    |    |  |
| 5  | Barley          | 0 | 0 | 0 | 0 | 4 | 0 | 0        | 0  | 2  | 0  | 4  | 0  | 0  | 0  | 0  |  |
|    | Barnyardgrass   | 7 | 2 | 1 | 0 | 8 | 2 | 0        | 6  | 8  | 0  | 9  | 0  | 5  | 9  | 2  |  |
|    | Cheatgrass      | 0 | 0 | 0 | 0 | 2 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
| 10 | Cocklebur       | 2 | 1 | 1 | 0 | 1 | 1 | 2        | 2  | 1  | 0  | 1  | 0  | 1  | 1  | 3  |  |
|    | Corn            | 2 | 0 | 0 | 0 | 7 | 0 | 0        | 0  | 5  | 0  | 6  | 0  | 0  | 0  | 0  |  |
|    | Cotton          | 2 | 0 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 8  | 10 | 0  |  |
| 15 | Crabgrass       | 7 | 2 | 2 | 0 | 2 | 4 | 2        | 0  | 2  | 0  | 0  | 0  | 9  | 9  | 4  |  |
|    | Giant foxtail   | 7 | 3 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|    | Morningglory    | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|    | Nutsedge        | 0 | - | - | 0 | 0 | 0 | 0        | 0  | 5  | 0  | 0  | 0  | -  | 0  | 0  |  |
| 20 | Rice            | 5 | 2 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|    | Sorghum         | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|    | Soybean         | 0 | 2 | 3 | 0 | 1 | 0 | 0        | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |  |
| 25 | Sugar beet      | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|    | Velvetleaf      | 8 | 6 | 2 | 0 | 1 | 2 | 1        | 3  | 0  | 0  | 0  | 0  | 6  | 0  | 6  |  |
|    | Wheat           | 0 | 0 | 0 | 0 | 3 | 0 | 0        | 0  | 0  | 0  | 5  | 0  | 0  | 0  | 0  |  |
| 30 | Wild Oat        | 0 | 0 | 0 | 0 | 0 | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |  |
|    |                 |   |   |   |   |   |   |          |    |    |    |    |    |    |    |    |  |

|    | Table A COMPOUND |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |
|----|------------------|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
|    | Rate (400 g/ha)  | 1 | 2 | 3 | 4  | 6  | 8  | 11 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|    | PREEMERGENCE     |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |
| 5  | Barley           | 0 | 0 | 0 | 0  | 2  | 0  | 0  | 0  | 1  | 0  | 6  | 0  | 0  | 0  | 0  |
|    | Barnyardgrass    | 9 | 5 | 2 | 0  | 10 | 2  | 10 | 9  | 10 | 7  | 10 | 5  | 10 | 10 | 10 |
|    | Cheatgrass       | 5 | 0 | 0 | 0  | 2  | 0  | 0  | 8  | 6  | 0  | 8  | 0  | 0  | 9  | 5  |
| 10 | Cocklebur        | 4 | 0 | 0 | 0  | -  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Corn             | 2 | 0 | 0 | 0  | 5  | 0  | 0  | 5  | 8  | 2  | 7  | 0  | 3  | 8  | 3  |
|    | Cotton           | 2 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 15 | Crabgrass        | 9 | 9 | 8 | 8  | 8  | 7  | 8  | 9  | 10 | 2  | 8  | 0  | 9  | 10 | 8  |
|    | Giant foxtail    | 9 | 9 | 9 | 8  | 9  | 8  | 9  | 9  | 10 | 7  | 10 | 8  | 9  | 10 | 9  |
|    | Morningglory     | 1 | 0 | 0 | 0  | 0  | .0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Nutsedge         | 0 | 0 | 0 | 10 | 0  | 0  | 0  | 0  | 0  | 0  | 10 | 0  | 7  | 10 | 0  |
| 20 | Rice             | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 7  | 0  | 0  | 10 | 0  |
|    | Sorghum          | 0 | 0 | 0 | 0  | 8  | 0  | 0  | 3  | 7  | 0  | 5  | 0  | 0  | 6  | 0  |
|    | Soybean          | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 4  | 0  | 0  | 2  | 0  | 0  | 0  | 0  |
| 25 | Sugar beet       | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 4  |
|    | Velvetleaf       | 5 | 5 | 2 | 0  | 6  | 2  | 2  | 7  | 7  | 0  | 6  | 3  | 0  | 5  | 0  |
|    | Wheat            | 3 | 0 | 0 | 0  | 5  | 0  | 0  | 5  | 3  | 0  | 7  | 0  | 0  | 0  | 0  |
| 30 | Wild Oat         | 0 | 0 | 0 | 0  | 0  | 3  | 0  | 0  | 6  | 0  | 7  | 0  | 0  | 0  | 2  |
|    |                  |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |

|    | Table A         | COMPOUND |   |    |    |    |    |    |    |    |
|----|-----------------|----------|---|----|----|----|----|----|----|----|
|    | Rate (200 g/ha) | 7        | 9 | 10 | 12 | 13 | 14 | 15 | 16 | 26 |
| _  | POSTEMERGENCE   |          |   |    |    |    |    |    |    |    |
| 5  | Barley          | 0        | 0 | 0  | 0  | 0  | 0  | 9  | 0  | 0  |
|    | Barnyardgrass   | 5        | 0 | 2  | 0  | 0  | 0  | 9  | 1  | 0  |
|    | Cheatgrass      | 0        | 0 | 0  | 0  | 0  | 0  | 8  | 0  | 0  |
| 10 | Cocklebur       | -        | 1 | 0  | 1  | 1  | 1  | 1  | 1  | 1  |
|    | Corn            | 0        | 0 | 0  | 0  | 0  | 0  | 9  | 0  | 0  |
|    | Cotton          | 0        | 0 | 0  | 0  | 0  | 0  | 2  | 0  | 0  |
| 15 | Crabgrass       | 3        | 3 | 0  | 0  | 0  | 0  | 5  | 0  | 2  |
|    | Giant foxtail   | 2        | 0 | 0  | 2  | 0  | 0  | 9  | 0  | 0  |
|    | Morningglory    | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 20 | Nutsedge        | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 20 | Rice            | 0        | 0 | 0  | 3  | 0  | 0  | 9  | 0  | 0  |
|    | Sorghum         | 0        | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
|    | Soybean         | 0        | 0 | 0  | 2  | 0  | 0  | 2  | 0  | 0  |
| 25 | Sugar beet      | 0        | 0 | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
|    | Velvetleaf      | 0        | 0 | 1  | 3  | 0  | 0  | 2  | 2  | 0  |
|    | Wheat           | 0        | 0 | 0  | 0  | 0  | 0  | 7  | 0  | 0  |
| 30 | Wild Oat        | 0        | 0 | 0  | 0  | 0  | 0  | 4  | 0  | 0  |
|    |                 |          |   |    |    |    |    |    |    |    |

|    | Table A         | COMPOUND |   |    |    |    |    |    |    |    |
|----|-----------------|----------|---|----|----|----|----|----|----|----|
|    | Rate (200 g/ha) | 7        | 9 | 10 | 12 | 13 | 14 | 15 | 16 | 26 |
| _  | PREEMERGENCE    |          |   |    |    |    |    |    |    |    |
| 5  | Barley          | 0        | 2 | 0  | 8  | 0  | 0  | 8  | 0  | 0  |
|    | Barnyardgrass   | 8        | 7 | 9  | 8  | 9  | 0  | 10 | 7  | 8  |
|    | Cheatgrass      | 7        | 3 | 2  | 2  | 5  | 0  | 10 | 4  | 2  |
| 10 | Cocklebur       | 3        | 0 | 0  | -  | 0  |    | 2  | 0  | 0  |
|    | Corn            | 0        | 0 | 0  | 7  | 0  | 0  | 8  | 0  | 0  |
|    | Cotton          | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 15 | Crabgrass       | 5        | 6 | 9  | 9  | 9  | 4  | 10 | 9  | 0  |
|    | Giant foxtail   | 5        | 6 | 7  | 8  | 10 | 0  | 10 | 9  | 5  |
|    | Morningglory    | 0        | 0 | 0  | 0  | 0  | _  | 1  | 0  | 0  |
|    | Nutsedge        | 0        | - | 0  | 0  | 0  | 0  | 4  | 0  | 0  |
| 20 | Rice            | 0        | 0 | 0  | 5  | 0  | 0  | 9  | 0  | 0  |
|    | Sorghum         | 0        | 0 | 0  | 2  | 7  | 0  | 7  | 0  | 0  |
|    | Soybean         | 0        | 0 | 0  | 0  | 2  | 0  | 7  | 0  | 0  |
| 25 | Sugar beet      | 0        | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
|    | Velvetleaf      | 5        | 3 | 2  | 3  | 1  | _  | 5  | 1  | 0  |
|    | Wheat           | 0        | 0 | 0  | 3  | 2  | 0  | 7  | 0  | 0  |
| 30 | Wild Oat        | 0        | 0 | 0  | 0  | 5  | 0  | 6  | 0  | 0  |

|    | Table A COMPOUND |   |   |   |   |   |   |   |   |    |           |            |         |    |    |    |     |    |    |    |
|----|------------------|---|---|---|---|---|---|---|---|----|-----------|------------|---------|----|----|----|-----|----|----|----|
|    | Rate (100 q/ha)  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | мг(<br>11 | JUNI<br>15 | ,<br>17 |    | 19 | 20 | ~ ~ |    |    |    |
|    | POSTEMERGENCE    | 1 | 2 | 3 | * | 5 | 0 | , | 0 | TO | 11        | 15         | 17      | 10 | 19 | 20 | 21  | 22 | 23 | 24 |
| 5  |                  | _ | _ | _ | _ | _ |   |   | _ |    | _         | _          | _       | _  | _  | _  | _   |    |    |    |
| ŭ  | Barley           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 6          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Barnyardgrass    | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 6          | 0       | 0  | 0  | 2  | 0   | 0  | 0  | 0  |
|    | Cheatgrass       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 0          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
| 10 | Cocklebur        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 1         | -          | 0       | 1  | 0  | 0  | 0   | 0  | 1  | 0  |
|    | Corn             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 7          | 0       | 0  | 0  | 1  | 0   | 0  | 0  | 0  |
|    | Cotton           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 0          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Crabgrass        | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 3          | 0       | 0  | 0  | 0  | 0   | 4  | 0  | 2  |
| 15 | Giant foxtail    | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 9          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Morningglory     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 0          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Nutsedge         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 0          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
| 20 | Rice             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 6          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Sorghum          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 0          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Soybean          | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 1          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
| 25 | Sugar beet       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 0          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
| 25 | Velvetleaf       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 1          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 5  |
|    | Wheat            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | -          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
|    | Wild Oat         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0         | 3          | 0       | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
| 30 |                  |   |   |   |   |   |   |   |   |    |           |            |         |    |    |    |     |    |    |    |
|    |                  |   |   |   |   |   |   |   |   |    |           |            |         |    |    |    |     |    |    |    |

|    | Table A         |   |   |   |   |   |    |   |   | CO | 1PO | סאט |    |    |    |    |    |    |    |    |
|----|-----------------|---|---|---|---|---|----|---|---|----|-----|-----|----|----|----|----|----|----|----|----|
|    | Rate (100 g/ha) | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 10 | 11  | 15  | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|    | PREEMERGENCE    |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
| 5  | Barley          | 0 | 0 | 0 | 0 | 3 | 0  | 0 | 0 | 0  | 0   | 7   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Barnyardgrass   | 8 | 0 | 0 | 0 | 7 | 10 | 0 | 0 | 4  | 1   | 10  | 6  | 9  | 0  | 7  | 0  | 9  | 9  | 9  |
|    | Cheatgrass      | 0 | 0 | 0 | 0 | 0 | 0  | 2 | 0 | 0  | 8   | 7   | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  |
| 10 | Cocklebur       | 0 | 1 | 0 | 0 | 2 | 0  | 0 | 0 | 0  | 0   | 2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Corn            | 0 | 0 | 0 | 0 | 2 | 3  | 0 | 0 | 0  | 0   | 6   | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  |
|    | Cotton          | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Crabgrass       | 8 | 5 | 0 | 2 | 8 | 7  | 2 | 2 | 7  | 0   | 10  | 3  | 9  | 0  | 7  | 0  | 7  | 8  | 7  |
| 15 | Giant foxtail   | 9 | 0 | 7 | 5 | 7 | 8  | 0 | 3 | 3  | 2   | 10  | 8  | 9  | 0  | 9  | 0  | 9  | 9  | 7  |
|    | Morningglory    | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Nutsedge        | - | 7 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | -   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 20 | Rice            | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 7   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Sorghum         | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 6   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Soybean         | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 1   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 25 | Sugar beet      | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 20 | Velvetleaf      | 1 | 0 | 0 | 0 | 1 | 1  | 0 | 0 | 0  | -   | 3   | 3  | 1  | 0  | 1  | 0  | 0  | 1  | 0  |
|    | Wheat           | 0 | 0 | 0 | 0 | 3 | 0  | 0 | 0 | 0  | 0   | 7   | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  |
|    | Wild Oat        | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0   | 4   | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  |
| 30 |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
| 35 |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    | •  |    |
| 40 |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |
|    |                 |   |   |   |   |   |    |   |   |    |     |     |    |    |    |    |    |    |    |    |

|    | Table A        | COMPOUND |   |    |    |    |    |    |    |    |
|----|----------------|----------|---|----|----|----|----|----|----|----|
|    | Rate (50 g/ha) | 7        | 9 | 10 | 12 | 13 | 14 | 15 | 16 | 26 |
| _  | POSTEMERGENCE  |          |   |    |    |    |    |    |    |    |
| 5  | Barley         | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Barnyardgrass  | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Cheatgrass     | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 10 | Cocklebur      | 0        | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
|    | Corn           | 0        | 0 | 0  | 0  | 0  | 0  | 2  | 0  | 0  |
|    | Cotton         | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 15 | Crabgrass      | 0        | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
|    | Giant foxtail  | 0        | 0 | 0  | 0  | 0  | 0  | 2  | 0  | 0  |
|    | Morningglory   | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Nutsedge       | 0        | 0 | -  | -  | 0  | 0  | 0  | 0  | 0  |
| 20 | Rice           | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Sorghum        | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Soybean        | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 25 | Sugar beet     | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Velvetleaf     | 0        | 0 | 0  | 3  | 0  | 0  | 0  | 0  | 0  |
|    | Wheat          | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 30 | Wild Oat       | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    |                |          |   |    |    |    |    |    |    |    |

|    | Table A                     | COMPOUND |   |    |    |    |    |    |    |    |
|----|-----------------------------|----------|---|----|----|----|----|----|----|----|
|    | Rate (50 g/ha) PREEMERGENCE | 7        | 9 | 10 | 12 | 13 | 14 | 15 | 16 | 26 |
| 5  | Barley                      | 0        | 0 | 0  | 0  | 0  | 0  | 3  | 0  | 0  |
|    | Barnyardgrass               | 0        | 0 | 2  | 8  | 9  | 0  | 10 | 0  | 0  |
|    | Cheatgrass                  | 0        | 0 | 0  | 0  | 0  | 0  | 4  | 0  | 0  |
| 10 | Cocklebur                   | 0        | 0 | 0  | 0  | 0  | -  | 0  | -  | 0  |
|    | Corn                        | 0        | 0 | 0  | 0  | 0  | 0  | 3  | 0  | 0  |
|    | Cotton                      | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 15 | Crabgrass                   | 0        | 5 | 0  | 3  | 9  | 3  | 10 | 1  | 0  |
|    | Giant foxtail               | 0        | 2 | 2  | 8  | 7  | 0  | 10 | 3  | 0  |
|    | Morningglory                | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Nutsedge                    | 0        | 0 | -  | 0  | 0  | 0  | 0  | 0  | 0  |
| 20 | Rice                        | 0        | 0 | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
|    | Sorghum                     | 0        | 0 | 0  | 2  | 0  | 0  | 2  | 0  | 0  |
|    | Soybean                     | 0        | 0 | 0  | 4  | 0  | 0  | 0  | 0  | 0  |
| 25 | Sugar beet                  | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|    | Velvetleaf                  | 0        | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
|    | Wheat                       | 0        | 0 | 0  | 0  | 0  | 0  | 2  | 0  | 0  |
| 30 | Wild Oat                    | 0        | 0 | 0  | 0  | 0  | 0  | 2  | 0  | 0  |

|    | Table A        | COMPOUND | Table A        | COMPOUND |
|----|----------------|----------|----------------|----------|
|    | Rate (20 g/ha) | 5        | Rate (20 g/ha) | 5        |
| _  | POSTEMERGENCE  |          | PREEMERGENCE   |          |
| 5  | Barley         | 0        | Barley         | 0        |
|    | Barnyardgrass  | 0        | Barnyardgrass  | 0        |
|    | Cheatgrass     | 0        | Cheatgrass     | 0        |
| 10 | Cocklebur      | 0        | Cocklebur      | 0        |
|    | Corn           | 0        | Corn           | 0        |
|    | Cotton         | 0        | Cotton         | 0        |
| 15 | Crabgrass      | . 0      | Crabgrass      | 0        |
|    | Giant foxtail  | 0        | Giant foxtail  | 0        |
|    | Morningglory   | 0        | Morningglory   | 0        |
| 20 | Nutscige       | 0        | Nutsedge       | 0        |
| 20 | Rice           | 0        | Rice           | 0        |
|    | Sorghum        | 0        | Sorghum        | 0        |
|    | Soybean        | 0        | Soybean        | 0        |
| 25 | Sugar beet     | 0        | Sugar beet     | 0        |
|    | Velvetleaf     | 0        | Velvetleaf     | 0        |
|    | Wheat          | 0        | Wheat          | 0        |
| 30 | Wild Oat       | 0        | Wild Oat       | 0        |

#### TEST B

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium pensylvanicum), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), downy brome (Bromus tectorum), giant foxtail (Setaria faberi), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarters (Chenopodium album), morningglory (Ipomoea spp.), rape (Brassica napus), rice (Oryza sativa), sicklepod (Cassia obtusifolia), soybean (Glycine max), sugar beet (Beta vulgaris), teaweed (Sida spinosa), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also treated with postemergence applications of test chemicals. Plants ranged in height from two to eighteen cm (two to three leaf stage) for postemergence treatments. Treated plants and controls wer maintained in a greenhouse for approximately 24 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are reported on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

|    | Table B        | COMPOUND | Table B         | C | OMP( | DUND |
|----|----------------|----------|-----------------|---|------|------|
|    | Rate (500 g/ha | ) 6      | Rate (250 g/ha) | 5 | 13   | 15   |
| 5  | PREEMERGENCE   |          | POSTEMERGENCE   |   |      |      |
| 5  | Barley         | 4        | Barley          | 0 | 4    | 9    |
|    | Barnyardgrass  | 10       | Barnyardgrass   | 0 | 10   | 10   |
|    | Blackgrass     | 7        | Blackgrass      | 0 | 2    | 10   |
| 10 | Chickweed      | 0        | Chickweed       | 5 | 0    | 4    |
|    | Cocklebur      | 3        | Cocklebur       | - | 3    | 0    |
|    | Corn           | 4        | Corn            | 0 | 8    | 5    |
| 15 | Cotton         | 2        | Cotton          | 0 | 2    | 0    |
|    | Crabgrass      | 10       | Crabgrass       | 7 | 8    | 6    |
|    | Downy brome    | 3        | Downy brome     | 0 | 2    | 9    |
| 20 | Giant foxtail  | 10       | Giant foxtail   | 0 | 6    | 10   |
|    | Green foxtail  | 10       | Green foxtail   | 0 | 6    | 5    |
|    | Jimsonweed     | 0        | Jimsonweed      | 6 | 3    | 0    |
|    | Johnsongrass   | 7        | Johnsongrass    | 0 | 6    | 8    |
| 25 | Morningglory   | 0        | Lambsquarters   | 3 | 10   | -    |
|    | Nutsedge       | 0        | Morningglory    | 6 | 3    | 0    |
|    | Rape           | 2        | Nutsedge        | 4 | 0    | 5    |
| 30 | Sicklepod      | 0        | Rape            | 0 | 8    | 0    |
|    | Soybean        | 0        | Rice            | 0 | 3    | 2    |
|    | Sugar beet     | 0        | Sicklepod       | 0 | 0    | 0    |
| 35 | Teaweed        | 3        | Soybean         | 0 | 3    | 0    |
|    | Velvetleaf     | 3        | Sugar beet      | 0 | 5    | 0    |
|    | Wheat          | 3        | Teaweed         | 4 | 3    | 0    |
| 40 | Wild buckwheat | 0        | Velvetleaf      | 0 | 4    | 0    |
| 40 | Wild oat       | 5        | Wheat           | 0 | 0    | 9    |
|    |                |          | Wild buckwheat  | 0 | 5    | 6    |
|    |                |          | Wild oat        | 0 | 0    | 9    |

|     | Table B         | COM   | APOUND  | Table B         | COMPOUND |
|-----|-----------------|-------|---------|-----------------|----------|
|     | Rate (250 g/ha) | 5 6   | 5 13 15 | Rate (125 g/ha) | 5 13 15  |
| 5   | PREEMERGENCE .  |       |         | POSTEMERGENCE   |          |
|     | Barley          | 0 3   | 3 5 9   | Barley          | 0 2 0    |
|     | Barnyardgrass   | 10 10 | 0 10 10 | Barnyardgrass   | 0 7 9    |
|     | Blackgrass      | 0 5   | 5 10 7  | Blackgrass      | 0 2 8    |
| 10  | Chickweed       | 10 0  | 97      | Chickweed       | 5 0 0    |
|     | Cocklebur       | 8 2   | 2 0 7   | Cocklebur       | - 2 0    |
|     | Corn            | 3 3   | 3 10 6  | Corn            | 0 3 3    |
| 15  | Cotton          | 3 0   | 0 0 6   | Cotton          | 0 2 0    |
|     | Crabgrass       | 10 9  | 9 10 10 | Crabgrass       | 0 3 3    |
|     | Downy brome     | 0 2   | 2 4 10  | Downy brome     | 0 0 0    |
| 20  | Giant foxtail   | 6 9   | 9 10 10 | Giant foxtail   | 0 5 6    |
|     | Green foxtail   | 6 9   | 9 10 10 | Green foxtail   | 0 4 1    |
|     | Jimsonweed      | 0 0   | 0 3 4   | Jimsonweed      | 0 3 0    |
| 0.5 | Johnsongrass    | 5 5   | 5 0 9   | Johnsongrass    | 0 3 5    |
| 25  | Lambsquarters   | 8 -   | - 9 -   | Lambsquarters   | 0 3 -    |
|     | Morningglory    | 0 0   | 0 0 6   | Morningglory    | 0 0 0    |
|     | Nutsedge        | 0 0   | 0 4 7   | Nutsedge        | 4 0 4    |
| 30  | Rape            | - 0   | 0 0 0   | Rape            | 0 0 0    |
|     | Rice            | 5 -   | - 10 7  | Rice            | 0 0 0    |
|     | Sicklepod       | 4 0   | 0 0 5   | Sicklepod       | 0 0 0    |
| 35  | Soybean         | 0 0   | 0 3 3   | Soybean         | 0 3 0    |
|     | Sugar beet      | - 0   | 0 0 4   | Sugar beet      | 0 2 0    |
|     | Teaweed         | 8 3   | 3 6 5   | Teaweed         | 0 3 0    |
| 40  | Velvetleaf      | 5 3   | 3 8 10  | Velvetleaf      | 0 2 -    |
| 70  | Wheat           | 0 2   | 2 5 7   | Wheat           | 0 0 2    |
|     | Wild buckwheat  | - 0   | 0 3 7   | Wild buckwheat  | 0 0 0    |
|     | Wild oat        | - 4   | 4 10 8  | Wild oat        | 0 0 2    |

|    | Table B         | COMPOUND | Table B CO     | MPOUND |
|----|-----------------|----------|----------------|--------|
|    | Rate (125 g/ha) | 5 13 15  | Rate (62 g/ha) | 13     |
| 5  | PREEMERGENCE    |          | POSTEMERGENCE  |        |
| •  | Barley          | 0 5 6    | Barley         | 0      |
|    | Barnyardgrass   | 10 10 10 | Barnyardgrass  | 4      |
|    | Blackgrass      | 0 10 5   | Blackgrass     | 0      |
| 10 | Chickweed       | 7 8 5    | Chickweed      | 0      |
|    | Cocklebur       | 3 0 3    | Cocklebur      | 0      |
|    | Corn            | 2 0 6    | Corn           | 0      |
| 15 | Cotton          | 0 0 4    | Cotton         | 0      |
|    | Crabgrass       | 10 10 10 | Crabgrass      | 0      |
|    | Downy brome     | 0 4 10   | Downy brome    | 0      |
| 20 | Giant foxtail   | 5 10 10  | Giant foxtail  | 0      |
|    | Green foxtail   | 0 10 10  | Green foxtail  | 0      |
|    | Jimsonweed      | 0 0 3    | Jimsonweed     | 0      |
| 25 | Johnsongrass    | 0 0 7    | Johnsongrass   | 0      |
| 20 | Lambsquarters   | 6        | Lambsquarters  | 3      |
|    | Morningglory    | 0 0 5    | Morningglory   | 0      |
|    | Nutsedge        | 5        | Nutsedge       | 0      |
| 30 | Rape            | - 0 0    | Rape           | 0      |
|    | Rice            | 3 - 4    | Rice           | 0      |
|    | Sicklepod       | 0 - 3    | Sicklepod ·    | 0      |
| 35 | Soybean         | 0 2 2    | Soybean        | 0      |
|    | Sugar beet      | 3        | Sugar beet     | 0      |
|    | Teaweed         | 3 4 4    | Teaweed        | 0      |
| 40 | Velvetleaf      | 3 - 10   | Velvetleaf     | 0      |
| •  | Wheat           | 0 3 6    | Wheat          | 0      |
|    | Wild buckwheat  | - 3 3    | Wild buckwheat | 0      |
|    | Wild oat        | - 8 6    | Wild oat       | 0      |

|    | Table B        | (  | COMI | POUI | ND | Table B COM    | POUND |
|----|----------------|----|------|------|----|----------------|-------|
|    | Rate (62 g/ha) | 5  | 6    | 13   | 15 | Rate (31 g/ha) | 13    |
| 5  | PREEMERGENCE   |    |      |      |    | POSTEMERGENCE  |       |
|    | Barley         | 0  | 2    | 5    | 4  | Barley         | 0     |
|    | Barnyardgrass  | 10 | 10   | 10   | 10 | Barnyardgrass  | 0     |
|    | Blackgrass     | 0  | 2    | 8    | 3  | Blackgrass     | 0     |
| 10 | Chickweed      | 7  | 0    | 3    | 3  | Chickweed      | 0     |
|    | Cocklebur      | -  | 0    | 0    | -  | Cocklebur      | 0     |
|    | Corn           | 2  | 2    | 0    | 2  | Corn           | 0 .   |
| 15 | Cotton         | 0  | 0    | 0    | 4  | Cotton         | 0     |
|    | Crabgrass      | 8  | 7    | 10   | 10 | Crabgrass      | 0     |
|    | Downy brome    | 0  | 0    | 2    | 5  | Downy brome    | 0     |
| 20 | Giant foxtail  | 2  | 7    | 10   | 10 | Giant foxtail  | 0     |
|    | Green foxtail  | 0  | 6    | 10   | 10 | Green foxtail  | 0     |
|    | Jimsonweed     | 0  | 0    | 0    | 3  | Johnsongrass   | 0     |
| 05 | Johnsongrass   | 0  | 3    | 0    | 6  | Lambsquarters  | 2     |
| 25 | Lambsquarters  | 5  | -    | 0    | -  | Morningglory   | 0     |
|    | Morningglory   | 0  | 0    | 0    | 5  | Nutsedge       | 0     |
|    | Nutsedge       | -  | 0    | 0    | 4  | Rape           | 0     |
| 30 | Rape           | 5  | 0    | 0    | 0  | Rice           | 0     |
|    | Rice           | 2  | 2    | 9    | 3  | Sicklepod      | 0     |
|    | Sicklepod      | 0  | 0    | 0    | 0  | Soybean        | 0     |
| 35 | Soybean        | 0  | 0    | 0    | 2  | Sugar beet     | 0     |
|    | Sugar beet     | -  | 0    | 0    | 0  | Teaweed        | 0     |
|    | Teaweed        | 0  | 0    | 0    | 3  | Velvetleaf     | 0     |
| 40 | Velvetleaf     | 0  | 0    | 0    | 5  | Wheat          | 0     |
| .• | Wheat          | 0  | 0    | 0    | 6  | Wild buckwheat | 0     |
|    | Wild buckwheat | -  | 0    | 0    | 0  | Wild oat       | 0     |
|    | Wild oat       | -  | 2    | 0    | 5  |                |       |

|      | Table B        | C | IMC | POU | ND |
|------|----------------|---|-----|-----|----|
|      | Rate (31 g/ha) | 5 | 6   | 13  | 15 |
| 5    | PREEMERGENCE   |   |     |     |    |
|      | Barley         | 0 | 0   | 0   | 2  |
|      | Barnyardgrass  | 4 | 8   | 8   | 10 |
|      | Blackgrass     | - | 0   | 6   | 0  |
| 10   | Chickweed      | 3 | 0   | 0   | 0  |
|      | Cocklebur      | - | 0   | 0   | 3  |
|      | Corn           | 0 | -   | 0   | 0  |
| 15   | Cotton         | 0 | 0   | 0   | 3  |
|      | Crabgrass      | 5 | 3   | 9   | 9  |
|      | Downy brome    | 0 | 0   | 0   | 4  |
| 20   | Giant foxtail  | 0 | 4   | 7   | 7  |
|      | Green foxtail  | 0 | 3   | 4   | 6  |
|      | Jimsonweed     | 0 | 0   | 0   | 3  |
| as a | Johnsongrass   | 0 | 0   | 0   | 5  |
| 25   | Lambsquarters  | 0 | -   | -   | -  |
|      | Morningglory   | 0 | 0   | 0   | 4  |
|      | Nutsedge       | 0 | 0   | 0   | 3  |
| 30   | Rape           | 5 | 0   | 0   | 0  |
|      | Rice           | 0 | 0   | 2   | 2  |
|      | Sicklepod      | 0 | 0   | 0   | 0  |
| 35   | Soybean        | 0 | 0   | 0   | 0  |
|      | Sugar beet     | - | 0   | 0   | 0  |
|      | Teaweed        | 0 | 0   | 0   | 3  |
| 40   | Velvetleaf     | 0 | 0   | 0   | 3  |
| 40   | Wheat          | 0 | 0   | 0   | 3  |
|      | Wild buckwheat | - | 0   | 0   | 0  |
|      | Wild oat       | - | 0   | 0   | 3  |
| 45   |                |   |     |     |    |

### TEST C

50

Plastic pots were partially filled with silt loam soil. The soil was then saturated with water. Indica and Japonica rice (Oryza sativa) seedlings at the 2.0 to 2.5 leaf stage, seeds of barnyardgrass (Echinochloa crus-galli), bulrush (Scirpus mucronatus), duck salad (Heteranthera limosa), and umbrella sedge (Cyperus difformis), and tubers of arrowhead (Sagittaria spp.) and waterchestnut (Eleocharis spp.) were planted into this soil. Several days after planting, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water. Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant

response ratings, summarized in Table C, are reported on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

|            | Table C         | c  | COMI | 20U1 | ND |
|------------|-----------------|----|------|------|----|
| 5          | Rate (500 g/ha) | 5  | 6    | 7    | 13 |
|            | PADDY           |    |      |      |    |
|            | Arrowhead       | 0  | _    | 0    | 0  |
| 10         | Barnyardgrass   | 10 | 10   | 10   | 10 |
| •          | Bulrush         | 10 | 10   | 10   | 8  |
|            | Duck salad      | -  | 10   | 10   | 10 |
| <i>1</i> 5 | Indica rice     | 8  | 9    | 2    | 8  |
| 70         | Japonica rice   | 9  | 7    | 3    | 9  |
|            | Umbrella sedge  | 10 | 10   | 10   | 10 |
|            | Waterchestnut   | 9  | 7    | 0    | 7  |
| 20         |                 |    |      |      |    |
|            | Table C         | (  | COMI | POU  | ND |
|            | Rate (250 g/ha) | 5  | 6    | 7    | 13 |
| 25         | PADDY           |    |      |      |    |
|            | Arrowhead       | 0  | _    | 0    | 0  |
|            | Barnyardgrass   | 10 | 9    | 10   | 10 |
| 30         | Bulrush         | 9  | 9    | 9    | 8  |
|            | Duck salad      | -  | 10   | 10   | 10 |
|            | Indica rice     | 7  | 6    | 0    | 2  |
|            | Japonica rice   | 8  | 4    | 0    | 7  |
| 35         | Umbrella sedge  | 10 | 10   | 10   | 10 |
|            | Waterchestnut   | 8  | 4    | 0    | 7  |
|            |                 |    |      |      |    |
| 40         | Table C         | (  | COMI | POUI | ND |
|            | Rate (125 g/ha) | 5  | 6    | 7    | 13 |
|            | PADDY           |    |      |      |    |
| 45         | Arrowhead       | 0  | -    | 0    | 0  |
|            | Barnyardgrass   | 10 | 10   | 8    | 10 |
|            | Bulrush         | 9  | 0    | 0    | 0  |
| 50         | Duck salad      | -  | 8    | 0    | 8  |
| 00         | Indica rice     | 3  | 0    | 0    | 0  |
|            | Japonica rice   | 6  | 0    | 0    | 0  |
|            | Umbrella sedge  | 10 | 9    | 0    | 10 |
| 55         | Waterchestnut   | 8  | 4    | 0    | 0  |

|    | Table C        | C  | OMP | NUC | ID |
|----|----------------|----|-----|-----|----|
|    | Rate (64 g/ha) | 5  | 6   | 7   | 13 |
| _  | PADDY          |    |     |     |    |
| 5  | Arrowhead      | 0  | -   | 0   | 0  |
|    | Barnyardgrass  | 10 | 7   | 0   | 10 |
|    | Bulrush        | 8  | 0   | 0   | 0  |
| 10 | Duck salad     | -  | 6   | 0   | 7  |
|    | Indica rice    | 3  | 0   | 0   | 0  |
|    | Japonica rice  | 4  | 0   | 0   | 0  |
| 15 | Umbrella sedge | 9  | 5   | 0   | 10 |
|    | Waterchestnut  | 7  | 0   | 0   | 0  |
| 20 | Table C        | C  | OMP | oui | ND |
| 20 | Rate (32 g/ha) | 5  | 6   | 7   | 13 |
|    | PADDY          |    |     |     |    |
|    | Arrowhead      | 0  | _   | 0   | 0  |
| 25 | Barnyardgrass  | 9  | 0   | 0   | 8  |
|    | Bulrush        | 0  | 0   | 0   | 0  |
|    | Duck salad     | -  | 0   | 0   | 0  |
| 30 | Indica rice    | 2  | 0   | 0   | 0  |
|    | Japonica rice  | 2  | 0   | 0   | 0  |
|    | Umbrella sedge | 6  | 0   | 0   | 0  |
| 35 | Waterchestnut  | 0  | 0   | 0   | 0  |

### TEST D

50

This test illustrates herbicidal activity of several compounds of this invention on barnyardgrass (Echinochloa crus-galli) at two growth stages with crop safety to direct-seeded and transplanted Japonica rice (Oryza sativa).

Japonica rice (var. M202) was grown in metromix in 2-cm wide cavity trays until plants were in the three leaf stage. These seedlings were then transplanted into 10-cm diameter pots filled with silt loam soil previously flooded to a depth of 1 cm of water above the soil surface. After 3 days, the water level was then raised to a depth of 3 cm. Test compounds were applied in a non-phytotoxic solvent directly to the paddy water one day after the water level was raised to 3 cm. This 3-cm water level was maintained until test results were recorded.

For direct seeded rice, Japonica rice (var. M202) was previously germinated on moistened burlap until radicals appeared. Uniformly germinated seeds were selected and placed on the surface of a silt loam soil in 10-cm diameter pots. Sufficient water was added to keep the soil surface muddy without covering the seeds with water. One day prior to treatment, the water level was raised to 3 cm above the soil surface and maintained at this level throughout the experiment. Test chemicals, dissolved in a non-phytotoxic solvent, were applied when rice seedlings were in the 1.5 leaf stage.

Barnyardgrass seeds were mixed uniformly into silt loam soil. A 2-cm depth of this seed-soil mix was placed into 10-cm diameter pots partially filled with silt loam soil. Sufficient water was added to keep the soil muddy without flooding the soil surface. One day prior to treatment, the pots were flooded to a depth of

3 cm and maintained at this water level for the duration of the test. Test chemicals, dissolved in a non-phytotoxic solvent, were applied directly to the paddy water when the barnyardgrass was either in the 1 leaf stage or in the 2 leaf stage. Planting times for all species were scheduled so that test chemicals were applied to all plants at the same time.

Plant response ratings, shown in Table D, were recorded 14 days after application of test chemicals. These ratings are reported on a 0 to 10 scale where 0 is no injury and 10 is plant death. A dash (-) response means no test result.

|    | Table D                |    |      |      |    |
|----|------------------------|----|------|------|----|
|    | PADDY                  |    | COMP | OUND |    |
| 5  |                        | 22 | 23   | 24   | 25 |
|    | Rate (1000 g/ha)       |    |      |      |    |
|    | Barnyardgrass (1 leaf) | 10 | 10   | 10   | 10 |
|    | Barnyardgrass (2 leaf) | 10 | 10   | 10   | 10 |
| 10 | Rice (direct-seeded)   | 2  | 6    | 7    | 3  |
|    | Rice (transplanted)    | 2  | 3    | 0    | 0  |
|    | Rate (500 g/ha)        |    |      |      |    |
| 15 | Barnyardgrass (1 leaf) | 10 | 10   | -    | 10 |
|    | Barnyardgrass (2 leaf) | 10 | 10   | -    | 10 |
|    | Rice (direct-seeded)   | 0  | 2    | -    | 2  |
| 20 | Rice (transplanted)    | 0  | 0    | _    | 0  |
|    | Rate (250 g/ha)        |    |      |      |    |
|    | Barnyardgrass (1 leaf) | 10 | 10   | 10   | 10 |
|    | Barnyardgrass (2 leaf) | 10 | 10   | 10   | 9  |
| 25 | Rice (direct-seeded)   | 0  | 0    | 0    | 0  |
|    | Rice (transplanted)    | 0  | 0    | 0    | 0  |
|    | Rate (100 g/ha)        |    |      |      |    |
| 30 | Barnyardgrass (1 leaf) | 10 | 10   | 10   | 10 |
|    | Barnyardgrass (2 leaf) | 9  | 9    | 10   | 8  |
|    | Rice (direct-seeded)   | 0  | 0    | 0    | 0  |
| 35 | Rice (transplanted)    | 0  | 0    | 0    | 0  |
|    | Rate (40 g/ha)         |    |      |      |    |
|    | Barnyardgrass (1 leaf) | 7  | 9    | 5    | 10 |
| 40 | Barnyardgrass (2 leaf) | 4  | 6    | 6    | 4  |
| 40 | Rice (direct-seeded)   | 0  | 0    | 0    | 0  |
|    | Rice (transplanted)    | 0  | 0    | 0    | 0  |
|    | Rate (16 g/ha)         |    |      |      |    |
| 45 | Barnyardgrass (1 leaf) | 6  | 8    | 0    | 3  |
|    | Barnyardgrass (2 leaf) | 0  | 3    | 0    | 0  |
|    | Rice (direct-seeded)   | 0  | 0    | 0    | 0  |
| 50 | Rice (transplanted)    | 0  | 0    | 0    | 0  |

# SPECTRAL DATA TABLE

| 5  | CMPD | Data                                                                                                                                                                                                                            |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 4    | Proton NMR (CDC1 <sub>3</sub> , 200 MHz, ppm): 1.0 (m, 6H), 1.4-1.6 (m, 7H), 1.9-2.2 (m, 3H), 3.58 (m, 1H), 4.5 (q, 2H), 7.26 (m, 1H), 7.7 (m,                                                                                  |
| 15 | 5    | 1H), 8.55 (m, 2H).  Proton NMR (CDCl <sub>3</sub> , 90 HMz, ppm): 0.98 (d, 6H, J = 7 Hz), 1.49 (s, 3H), 1.3-1.7 (m, 4H),                                                                                                        |
| 20 |      | 1.8-2.2 (m, 3H), 3.68 (dd, 1H, $J = 2.8$ , 6.5 Hz), 4.57 (d, 1H, $J = 12$ Hz), 4.78 (d, 1H, $J = 12$ Hz), 7.31 (fine m, 1H), 8.75 (d, 1H, $J = 1.5$ Hz).                                                                        |
| 25 |      | Carbon NMR (CDCl <sub>3</sub> , 100 mHz, ppm): 16.4, 17.9, 18.1, 31.6, 32.5, 33.7, 42.2, 66.6, 83.7, 85.2, 88.4, 114.9, 152.5, 155.3.                                                                                           |
| 30 | 8 ,  | Proton NMR (CDCl <sub>3</sub> , 200 MHz, ppm): 1.0 (d, 6H), 1.5 (m, 8H), 2.0 (m, 2H), 2.5 (s, 3H), 3.6 (dd, 1H), 4.59 (q, 2H), 7.0 (dd, 1H),                                                                                    |
| 35 | 13   | 7.31 (d, 1H), 7.56 (t, 1H). Infrared (neat): 2990, 1605, 1580, 1430, 1110, 920 (broad), 790, 710 cm <sup>-1</sup> .                                                                                                             |
| 40 | 14   | Proton NMR (CDCl <sub>3</sub> , 200 MHz, ppm): 0.95 (t, 6H), 1.3-2.3 (m, 10H), 2.5 (s, 3H), 3.7 (dd, 1H), 4.5 (q, 2H), 7.0 (d, 1H), 7.4 (d, 1H), 7.55 (t, 1H).                                                                  |
| 45 |      | Infrared (neat): 2980, 1590, 1580, 1455, 1100 (broad), 780, 710, cm <sup>-1</sup> .                                                                                                                                             |
| 50 | 15   | Proton NMR (CDCl <sub>3</sub> , 90 MHz, ppm): 0.93 (t, 3H, $J = 7.5 \text{ Hz}$ ), 0.98 (t, 3H, $J = 7.5 \text{ Hz}$ ), 1.3-2.3 (m, 10H), 3.75 (dd, 1H, $J = 2.5$ , 7 Hz), 4.52 (d, 1H, $J = 12 \text{ Hz}$ ), 4.73 (d, 1H, $J$ |
| 55 |      | = 12 Hz), 7.29 (fine m, 1H), 8.77 (d, 1H, $J = 2.5 \text{ Hz}$ ).                                                                                                                                                               |

CMPD Data

5

16 Proton NMR (CDCl<sub>3</sub>, 200 MHz, ppm): 1.1-1.6 (m, 11H), 1.8 (m, 3H), 1.9-2.2 (m, 2H), 3.2 (dd, 1H), 4.6 (q, 2H), 7.1 (dd, 1H), 7.5-7.7 (m, 2H), 8.45 (dd, 1H). Infrared (neat): 2970, 1590, 1580, 1450, 1430, 1360, 1100, 960, 750, 720 cm<sup>-1</sup>.

15

#### Claims

20

1. A method for controlling the growth of undesired vegetation in a paddy rice crop by applying to the locus of the paddy rice crop an effective amount of a compound of Formula I  $JOCH_2Q$  Formula I wherein

25 J is

30

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_6$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 

35

 $R_1$  is  $CH_3$  or  $CH_2CH_3$ ;

R<sub>2</sub> and R<sub>3</sub> are independently H, CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub> or

 $R_{2}$  and  $R_{3}$  may be taken together as -(CH2)n-where n is 4 or 5;

R<sub>4</sub> is H, CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub>;

 $R_{5}$  and  $R_{6}$  are independently  $CH_{3}$  or  $CH_{2}CH_{3};$ 

R<sub>7</sub> is CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub>;

R<sub>8</sub> is CH<sub>3</sub>, CH<sub>2</sub>CH<sub>3</sub> or CH(CH<sub>3</sub>)<sub>2</sub>;

Q is

50

 $R_{10} \longrightarrow R_{10} \longrightarrow R$ 

Q-3 Q-4 Q-5

30

R<sub>10</sub>

R<sub>10</sub>

R<sub>10</sub>

R<sub>9</sub>

CH<sub>3</sub>

R<sub>9</sub>

CH<sub>3</sub>

Q-6

Q-7

Q-8

40

50

45

15

10

$$R_{10}$$
 $R_{10}$ 
 $R$ 

25

35

40

50

20

X is F, Cl, or CH<sub>3</sub>;

Y is H, F, or CI;

R<sub>9</sub> is H, F, Cl, Br, CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub>; and

R<sub>10</sub> is H, F, Cl or CH<sub>3</sub>;

provided that

- (1) when J is J-1 or J-3 and Q is Q-2 then  $R_{9}$  and  $R_{10}$  are not both H,
- (2) when Q is Q-1 then J is J-1,  $R_1$  is  $CH_3$ , and  $R_2$  and  $R_3$  are both  $CH_2CH_3$ ,
- (3) when X is F then Y is other than H,
- (4) when X is CI then Y is other than CI,
- (5) when X is CH3 then Y is H,
- (6) when Y is H then X is Cl or CH<sub>3</sub>,
- (7) when Y is F then X is F or Cl, and
- (8) when Y is CI then X is F or H.
- 2. The method of Claim 1 wherein:

R<sub>1</sub> is CH<sub>3</sub>;

 $R_2$  and  $R_3$  are  $CH_2CH_3$  or  $R_2$  and  $R_3$  are taken together as -( $CH_2$ )<sub>n</sub>- where n is 4 or 5;

R4 is CH3;

R<sub>5</sub> and R<sub>6</sub> are CH<sub>3</sub>;

5 R<sub>7</sub> is CH<sub>3</sub> or CH<sub>2</sub>CH<sub>3</sub>; and

R<sub>8</sub> is CH<sub>2</sub>CH<sub>3</sub> or CH(CH<sub>3</sub>)<sub>2</sub>.

- 3. The method of Claim 2 wherein J is J-1.
- 4. The method of Claim 2 wherein Q is Q-1.
- 5. The method of Claim 2 wherein the crop is transplanted japonica rice.
- 6. The method of Claim 2 wherein the crop is transplanted indica rice.
- 7. The method of Claim 2 wherein among the weeds controlled is barnyardgrass.
- 8. The method of Claim 1 wherein the compound of Formula I is 6-endo-[(2,6-difluorophenyl)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane.
- 9. The method of Claim 1 wherein the compound of Formula I is 6-endo-[(2-chlorophenyi)methoxy]-3,3-diethyl-1-methyl-2-oxabicyclo[2.2.2]octane.
- 10. The method of Claim 1 wherein the compound of Formula I is 6-endo-[(2-chloro-6-fluorophenyl)-methoxy]-3,3-diethyl-1methyl-2-oxabicyclo[2.2.2.]octane.
  - 11. The method of Claim 1 wherein the compound of Formula I is 3,3-diethyl-1-methyl-6-endo-[(2-

methylphenyl)methoxy]-2-oxabicyclo[2.2.2]octane.

- 12. The method of Claim 1 wherein the compound of Formula I is exo-1-methyl-4-(1-methylethyl)-2-[(4'thiazolyl)methoxy]-7-oxabicylco[2.2.1]heptane.
- 13. The method of Claim 1 wherein the compound of Formula I is exo-1,4-diethyl-2-[(4 -thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane.
  - 14. The method of Claim 1 wherein the compound of Formula I is exo-1-methyl-4-(1-methylethyl)-2-[(2'-(6 -fluoropyridyl))methoxy]-7-oxabicyclo[2.2.1]heptane.
  - 15. The method of Claim 1 wherein the compound of Formula I is exo-1,4-diethyl-2-[(2'-(6'fluoropyridyl))-methoxy]-7-oxabicyclo[2.2.1]heptane.
  - 16. Compounds of Claim 1 of Formula I wherein Q is Q-2 through Q-14, provided that when J is J-1 or J-3 and Q is Q-2 then R9 and R10 are not both H.
    - 17. Compounds of Claim 16 of Formula I wherein

R<sub>1</sub> is CH<sub>3</sub>;

 $R_2$  and  $R_3$  are  $CH_2CH_3$  or  $R_2$  and  $R_3$  are taken together as -( $CH_2$ )<sub>n</sub>- where n is 4 or 5;

R<sub>4</sub> is CH<sub>3</sub>;

20

30

R<sub>5</sub> and R<sub>6</sub> are CH<sub>3</sub>;

R7 is CH3 or CH2CH3; and

R<sub>8</sub> is CH<sub>2</sub>CH<sub>3</sub> or CH(CH<sub>3</sub>)<sub>2</sub>.

- 18. Compounds of Claim 17 wherein J is J-3.
- 19. Compounds of Claim 17 wherein J is J-2.
- 20. Compounds of Claim 17 wherein J is J-1.
- 21. The compound of Claim 17 which is exo-1-methyl-4-(1-methylethyl)-2-[(4'-thiazolyl)methoxy]-7oxabicyclo[2.2.1]heptane.
- 22. The compound of Claim 14 which is exo-1,4-diethyl--2-[(4'-thiazolyl)methoxy]-7-oxabicyclo[2.2.1]heptane.
- 23. The compound of Claim 14 which is exo-1-methyl-4-(1-methylethyl)-2-[(2'-(6'-fluoropyridyl)-)methoxy]-7-oxabicyclo[2.2.1]heptane.
- 24. The compound of Claim 14 which is exo-1,4-diethyl-2-[(2'-(6'-fluoropyridyl))methoxy]-7-oxabicyclo-[2.2.1]heptane.
- 25. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 16 and at least one of the following: surfactant, solid diluent or liquid diluent.
- 26. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 17 and at least one of the following: surfactant, solid diluent or liquid diluent.
- 27. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 18 and at least one of the following: surfactant, solid diluent or liquid diluent.
- 28. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 21 and at least one of the following: surfactant, solid diluent or liquid diluent.
- 29. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 22 and at least one of the following: surfactant, solid diluent or liquid diluent.
- 30. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 23 and at least one of the following: surfactant, solid diluent or liquid diluent.
- 31. An agriculturally suitable composition for controlling the growth of undesired vegetation comprising an effective amount of the compound of Claim 24 and at least one of the following: surfactant, solid diluent or liquid diluent.

50

# EUROPEAN SEARCH REPORT

EP 90 30 2693

|                  | DOCUMENTS CONSI                                                                                                               |                                                                  |                                                                                                                              |                                                                                                 |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Category         | Citation of document with in of relevant pa                                                                                   | ndication, where appropriate,<br>ssages                          | Relevant<br>to claim                                                                                                         | CLASSIFICATION OF THE APPLICATION (Int. Cl. 5)                                                  |
| D,X              | US-A-4 798 621 (DU<br>* Claim 1 *                                                                                             | PONT)                                                            | 1                                                                                                                            | C 07 D 493/08<br>C 07 D 405/12                                                                  |
| X                | CHEMICAL ABSTRACTS,<br>page 264, abstract<br>Columbus, Ohio, US;<br>(SHELL KAGAKU K.K.)<br>* Abstract *                       | no. 110124r,<br>& JP-A-63 165 301                                | 1                                                                                                                            | C 07 D 413/12<br>C 07 D 417/12<br>A 01 N 43/90<br>A 01 N 43/40<br>A 01 N 43/56<br>A 01 N 43/653 |
| D,X              | US-A-4 486 219 (SH * Claims 1,9 *                                                                                             | ELL)                                                             | 1                                                                                                                            | A 01 N 43/76<br>A 01 N 43/78                                                                    |
| D,X              | EP-A-0 081 893 (SH * Claims 1,23 * & U                                                                                        |                                                                  | 16,25                                                                                                                        |                                                                                                 |
| X                | GB-A-2 188 931 (SH<br>* Claims 1,13 *                                                                                         | ELL)                                                             | 16,25                                                                                                                        |                                                                                                 |
| Ρ,Χ              | EP-A-0 308 170 (DU<br>* Claim 1 *                                                                                             | PONT)(22-03-1989)                                                | 1                                                                                                                            |                                                                                                 |
|                  | Mary spire data data                                                                                                          |                                                                  |                                                                                                                              | TECHNICAL FIELDS<br>SEARCHED (Int. Cl.5)                                                        |
|                  |                                                                                                                               |                                                                  |                                                                                                                              | C 07 D 493/00<br>C 07 D 405/00<br>C 07 D 413/00<br>C 07 D 417/00<br>A 01 N 43/00                |
|                  |                                                                                                                               |                                                                  |                                                                                                                              |                                                                                                 |
|                  |                                                                                                                               |                                                                  |                                                                                                                              |                                                                                                 |
|                  | The present search report has b                                                                                               |                                                                  |                                                                                                                              | Providen                                                                                        |
| THI              | Place of search E HAGUE                                                                                                       | Date of completion of the s<br>29-05-1990                        | l l                                                                                                                          | Examiner<br>ARO I.                                                                              |
| X: par<br>Y: par | CATEGORY OF CITED DOCUME ricularly relevant if taken alone ricularly relevant if combined with an cument of the same category | NTS T: theory of E: earlier parter the other D: docume L: docume | or principle underlying the patent document, but puble e filing date ent cited in the application on tited for other reasons | invention<br>ished on, or                                                                       |
| A: tec<br>O: no  | hnological background<br>n-written disclosure<br>ermediate document                                                           | &: member<br>docume                                              | r of the same patent famil                                                                                                   | y, corresponding                                                                                |