11) Numéro de publication:

0 389 326 Δ1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 90400622.8

(51) Int. Cl.5: H01J 35/30, H01J 35/14

22) Date de dépôt: **08.03.90**

3 Priorité: 24.03.89 FR 8903888

(43) Date de publication de la demande: 26.09.90 Bulletin 90/39

Etats contractants désignés: DE ES GB IT NL

71) Demandeur: GENERAL ELECTRIC CGR S.A. 100, rue Camille-Desmoulins F-92130 Issy les Moulineaux(FR)

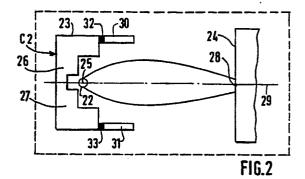
(72) Inventeur: Evain, Bernard, Cabinet **Ballot-Schmit**

> 7 rue Le Sueur F-75116 Paris(DE)

Inventeur: Dumitrescu, Horia, Cabinet

Ballot-Schmit 7 rue Le Sueur F-75116 Paris(DE)

Inventeur: Fourmigue, Jean-Marie, Cabinet


Ballot-Schmit 7 rue Le Sueur F-75116 Paris(DE)

(74) Mandataire: Ballot, Paul Denis Jacques et al Cabinet Ballot-Schmit 7, rue le Sueur F-75116 Paris(FR)

- (54) Tube à rayons x à balayage avec plaques de déflexion.
- (57) L'invention concerne les tubes à rayons X du type à déflexion de faisceau.

L'invention réside dans le fait que les marches du dispositif de concentration 23 du faisceau d'électrons sont prolongés par des électrodes métalliques 30,31 de déflexion disposées parallèlement auxdites marches et isolées électriquement par un isolant 32,33 de ces dernières. Ces électrodes 30,31 sont ■ portées à des potentiels différents dont les polarités et les valeurs dépendent du sens et de l'amplitude de la déflexion à obtenir.

L'invention est applicable aux appareils de radio-

TUBE A RAYONS X A BALAYAGE AVEC PLAQUES DE DEFLEXION

10

L'invention concerne un tube à rayons X qui est utilisé notamment en radiologie pour obtenir un faisceau de rayons X pouvant avoir différentes directions dans l'espace.

Ce type de tubes à rayons X est, par exemple mis en oeuvre en radiodiagnostic pour balayer une zone à analyser ou pour obtenir au moins deux faisceaux de rayons X ayant des caractéristiques énergétiques différentes et/ou des angles d'incidence différents sur la zone à analyser.

Un tube à rayons X comporte, dans une enceinte sous vide, une cathode constituée d'un filament chauffé qui émet des électrons et d'un dispositif de concentration adossé au filament qui focalise les électrons émis sur une anode portée à un potentiel positif par rapport à la cathode. Le point d'impact du faisceau d'électrons sur l'anode constitue la source de rayonnement X sous la forme d'un faisceau.

Pour déplacer angulairement le faisceau de rayons X, il est généralement proposé de déplacer le point d'impact du faisceau d'électrons sur l'anode à l'aide de moyens de déflexion. Ces moyens de déflexion sont habituellement constitués par des lentilles magnétiques ou électrostatiques qui sont disposées sur le trajet du faisceau ou à proximité de ce trajet entre la cathode et l'anode. La mise en oeuvre de ces lentilles nécessite une énergie non négligeable du fait de l'importante énergie cinétique des électrons du faisceau due à leur grande vitesse par suite d'une différence de potentiels élevée entre la cathode et l'anode, supérieure à cent kilovolts.

Dans le brevet français 2 538 948, il a été proposé un tube à rayons X à balayage dans lequel le dispositif de concentration comporte au moins deux pièces métalliques qui sont électriquement isolées l'une de l'autre et du filament pour permettre leur polarisation indépendante par rapport à ce dernier et ainsi obtenir une déflexion du faisceau d'électrons.

La figure 1 montre schématiquement un tube à rayons X du type de celui decrit dans la demande de brevet précitée. Il comprend, dans une enceinte sous vide représentée par le rectangle 11 en tirets, un filament 12, un dispositif de concentration 13 adossé au filament 12 et une anode 14. Le filament 12 et le dispositif de concentration 13 constituent une cathode C1. Le dispositif de concentration 13 est constitué d'une première pièce métallique 15 et d'une seconde pièce métallique 16 qui sont électriquement isolées l'une de l'autre par une cloison isolante 17 solidaire d'une embase isolante 18. Les pièces métalliques 15 et 16 sont disposées symétriquement de part et d'autre du filament 12 par

rapport à un plan de symétrie perpendiculaire au plan de la figure 1. Ce plan de symétrie contient l'axe du filament 12 perpendiculaire au plan de la figure 1 et est perpendiculaire à l'embase 18. L'intersection de ce plan de symétrie avec le plan de la figure 1 définit l'axe 19 du faisceau d'électrons.

Lorsque des tensions égales sont appliquées aux pièces métalliques 15 et 16, la cathode C1 émet un faisceau d'électrons F suivant l'axe 19 dont la concentration est obtenue par la géométrie de la cathode C1.

Pour obtenir une déflexion du faisceau d'électrons, c'est-à-dire conférer à ce dernier une direction moyenne différente de l'axe d'émission 19, il suffit d'introduire une dissymétrie au champ électrique créé autour du filament 12 en donnant des valeurs différentes aux tensions appliquées aux pièces métalliques 15 et 16, l'une de ces valeurs pouvant être nulle mais aucune ne devant être positive. Ainsi on obtient un faisceau F d'axe 19 pour une différence de potentiels positive entre la pièce 15 et la pièce 16; par contre, on obtient un faisceau F d'axe 19 pour une différence de potentiels négative entre la pièce 15 et la pièce 16.

Le tube à rayons X qui vient d'être décrit présente des performances de déflexion satisfaisantes sans nécessiter l'application de tensions trop élevées. Cependant, la concentration du faisceau n'est pas satisfaisante pour des applications dans lesquelles il est nécessaire que la source de rayons X soit ponctuelle et que la répartition énergétique du faisceau de rayons X soit uniformément et symétriquement répartie sur sa section.

Pour pallier ces inconvénients, l'invention propose un tube à rayons X dans lequel les fonctions de concentration et de déflexion sont séparées spatialement au niveau de la cathode.

L'invention se rapporte à un tube à rayons X comportant dans une enceinte sous vide une cathode qui émet un faisceau d'électrons et une anode qui reçoit ledit faisceau et émet un rayonnement X, ladite cathode étant constituée d'un filament émetteur d'électrons et d'un dispositif de concentration du faisceau d'électrons, caractérisé en ce qu'il comporte en outre deux électrodes de déflexion disposées de part et d'autre du faisceau d'électrons et isolées de la cathode et de l'anode, lesdites électrodes pouvant être portées à des potentiels différents entre eux et de ceux de la cathode.

Selon l'invention, les électrodes de déflexion sont fixées chacune à la cathode par l'intermédiaire d'un élément isolant et sont constituées par des plaques métalliques opposées l'une à l'autre et parallèles à l'axe du faisceau d'électrons en l'ab-

35

45

10

20

25

35

sence de déflexion. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'exemples particuliers de réalisation, ladite description étant faite en relation avec les dessins joints dans lesquels :

- la figure 1 est un schéma d'un tube à rayons X selon l'art antérieur,
- la figure 2 est un schéma d'un tube à rayons X selon l'invention,
- la figure 3 est un diagramme permettant de déterminer la longueur optimale des électrodes de déflexion,
- les figures 4a et 4b sont des diagrammes montrant la déflexion du faisceau et sa répartition énergétique pour des polarisations symétriques des électrodes de déflexion par rapport au potentiel de la masse,
- les figures 5a et 5b sont des diagrammes montrant la déflexion du faisceau et sa répartition énergétique en l'absence de polarisation (fig. 5a) des électrodes de déflexion ou pour une polarisation dissymétrique (fig. 5b).
- la figure 6 est un schéma d'une variante d'un tube à rayons X selon l'invention, et
- les figures 7 et 8 illustrent en coupe axiale des modes de réalisation de cathodes de tubes à rayons X selon l'invention.

La figure 2 montre schématiquement un tube à rayons X selon la présente invention. Il comprend, dans une enceinte sous vide, représentée par le cadre en tirets 21, un filament 22, un dispositif de concentration 23 et une anode 24. Le dispositif de concentration 23 et le filament 22 constituent une cathode C2. Le dispositif de concentration 23 est constitué d'une seule pièce métallique qui est symétrique par rapport à un plan de symétrie perpendiculaire au plan de la figure 2 et contenant l'axe 25 du filament 22 perpendiculaire au plan de la figure. L'intersection de ce plan de symétrie avec le plan de la figure 2 définit l'axe 29 du faisceau d'électrons.

De manière connue, les faces opposées et symétriques 26 et 27 du dispositif de concentration 23 sont en forme de marches d'escalier dont la première marche est au niveau filament 22. Lorsqu'une tension nulle ou positive est appliquée à la pièce métallique 23, par des moyens non représentés sur la figure 2, on obtient une concentration du faisceau d'électrons en un point 28 de l'anode 24 situé sur l'axe 29.

Selon l'invention, la déflexion du faisceau d'électrons est obtenue par des plaques métalliques 30 et 31 qui prolongent les marches du dispositif de concentration 23 et sont disposées symétriquement par rapport au plan de symétrie. Elles sont électriquement isolées du dispositif de concentration par des couches isolantes 32 et 33.

Ces plaques peuvent être portées, par des moyens non représentés sur la figure 2, à des potentiels différents l'un par rapport à l'autre, par rapport à la pièce métallique 23 et par rapport à l'anode 24.

Ainsi, en appliquant une tension de + 2000 volts sur la plaque supérieure 30 et une tension de - 2000 volts sur la plaque inférieure 31, on obtient une déflexion du faisceau vers la plaque supérieure 30. Bien entendu, la déflexion serait inverse, c'està-dire vers la plaque inférieure, au cas où les tensions seraient inversées sur les plaques. L'amplitude de la déflexion sur l'anode est d'un millimètre environ lorsque la distance cathode-anode est de deux centimètres environ. Par ailleurs, la longueur des plaques 30 et 31 dans le sens de la propagation est de trois millimètres environ.

Il est à remarquer que l'amplitude de la déflexion n'est pas proportionnelle à la longueur des plaques comme on pourrait le penser a priori.

C'est ce que montre le diagramme des courbes H1, H2, H3 de la figure 3 dans lequel on a représenté la déflexion δ sur l'anode en fonction de la tension V_p en valeur absolue appliquée sur les plaques 30 et 31 pour différentes longueurs respectives h1, h2 et h3 desdites plaques telles que h1 < h2 < h3, la tension cathode-anode restant égale à 140 kilovolts environ.

Dans ce diagramme, la déflexion la plus grande a été obtenue avec la longueur h2 qui est intermédiaire entre h1 et h3.

Les courbes de la figure 3 montrent également que la déflexion sur l'anode est directement proportionnelle aux tensions appliquées aux plaques.

Les figures 4a et 4b sont des diagrammes montrant la densité A de la répartition énergétique de l'impact sur l'anode en fonction de la distance δ de l'impact par rapport à l'axe 29. Le diagramme de la figure 4a correspond à une absence de polarisation sur les plaques tandis que la figure 4b correspond à une déflexion obtenue en appliquant des tensions de polarisation de + 2000 volts et -2000 volts. Ces diagrammes montrent qu'il y a une légère détérioration de la répartition énergétique de l'impact pour la partie la plus éloignée de l'axe.

Au lieu d'appliquer des tensions inverses sur les plaques, il est possible de leur appliquer des tensions dissymétriques, par exemple - 500 volts sur l'une et le potentiel de la masse sur l'autre. On obtient, bien entendu, des déflexions moins importantes mais avec une détérioration de la répartition énergétique du point d'impact sur l'anode. C'est ce que montrent les diagrammes des figures 5a et 5b analogues à ceux des figures 4a et 4b mais avec une tension appliquée à la cathode égale à la moitié de celle utilisée dans le cas de la figure 4.

La figure 5b montre que la répartition énergétique du faisceau est moins régulière sur le diamètre de l'impact lorsque la tension appliquée sur une

plaque est de 500 volts, l'autre plaque étant à la masse.

Sur l'exemple schématique de réalisation de la figure 2 la concentration du faisceau est obtenue à l'aide d'une cathode comportant deux marches de part et d'autre du filament. Par ailleurs, la déflexion est obtenue par deux plaques disposées dans le prolongement extérieur de la deuxième marche. Une telle disposition conduit à appliquer des tensions de déflexion relativement élevées sur ces plaques car l'énergie du faisceau est déjà importante au niveau des plaques. Pour diminuer ces tensions de déflexion, il est possible (figure 6) de supprimer les deux dernières marches de la cathode et de les remplacer par des plaques de déflexion qui agissent alors sur un faisceau présentant moins d'énergie. Une telle réalisation conduit à une moins bonne concentration du faisceau car l'effet du dispositif de concentration est moindre.

Afin d'aboutir au résultat recherché, de multiples variantes peuvent être envisagées telles que celles décrites ci-dessus. On peut en ajouter d'autres sans sortir du cadre de la présente invention telles que des plaques de déflexion de longueurs différentes et polarisées symétriquement ou non. Egalement, les plaques de déflexion peuvent présenter un profil en forme de marches d'escalier.

Un tube à rayons X selon l'invention a été décrit à l'aide de vues schématiques sans indiquer la manière de réaliser de telles plaques de déflexion solidaires de la cathode. Les figures 7 et 8 montrent, à titre illustratif et non limitatif, deux façons parmi d'autres de réaliser une cathode à plaques de déflexion selon la présente invention. Dans ces figures, les éléments analogues à ceux de la figure 2 portent les mêmes références.

Dans le mode de réalisation de la figure 7, la cathode est constituée d'une pièce métallique 40 percée d'au moins un trou 41 en son centre pour le passage des conducteurs 42 d'alimentation du filament 22; ces conducteurs 42 servent également de support mécanique au filament 22. Ces conducteurs 42 sont isolés entre eux et vis-à-vis de la pièce métallique 40 par un isolant 43.

Pour obtenir la concentration souhaitée du faisceau d'électrons, la pièce métallique 40 est conformée, côté filament, de manière à présenter des marches d'escalier référencées 44, 45 d'un côté et 46, 47 de l'autre, qui éloignent les bords de la pièce du filament. Le filament est disposé au niveau de la première marche 44 et 46.

Chaque deuxième marche 45 ou 47 se prolonge diamétralement vers l'extérieur suivant une face plane 48 ou 49 qui sert de support à une barre isolante 50 ou 51. Cette barre isolante 50 ou 51 constitue en quelque sorte une troisième marche pour le dispositif de concentration. Chaque barre isolante 50 ou 51 sert de support à une électrode

métallique 52 ou 53 qui a la forme d'une équerre dont un côté 54 ou 55 est fixé sur la barre correspondante et dont l'autre côté 56 ou 57 vient en retour parallèlement à l'axe central du faisceau. Ce deuxième côté 56 ou 57 s'étend en direction de la pièce métallique 40 mais s'arrête à une certaine distance de cette dernière pour éviter tout claquage électrique entre les deux éléments métalliques portés à des potentiels différents.

Ces électrodes métalliques 52 et 53, et notamment leur partie 56 ou 57, constituent les plaques de déflexion décrites précédemment. Les tensions de déflexion sont appliquées à ces électrodes 52 et 53 par des conducteurs respectifs 58 et 59 qui traversent chacun la barre isolante associée 50 ou 51 et la pièce métallique 40 grâce à des trous, notamment les trous 60 et 61 percés dans la pièce métallique 40. Bien entendu, il est prévu un isolant 62 entre le conducteur 58 ou 59 et la pièce métallique 40.

Par ailleurs, la tension de polarisation de la cathode est appliquée par l'intermédiaire d'une borne métallique 63.

Les barres isolantes 50 et 51 peuvent être réalisées en tout matériau isolant susceptible de supporter des températures élevées. Il en est ainsi de l'alumine. Ces barres en alumine peuvent être soudées sur la pièce métallique 40.

En ce qui concerne les électrodes métalliques de déflexion 52 et 53, il faut également des métaux ou des alliages de métaux qui résistent aux hautes températures. On peut utiliser du molybdène qui peut être soudé à l'alumine des barres isolantes 50 et 51.

Le mode de réalisation de la figure 8 est semblable à celui de la figure 7 en ce qui concerne la cathode et son filament. Il en diffère par la manière dont sont réalisées les électrodes de déflexion. Alors que sur la figure 7, les électrodes 52 et 53 sont supportées par la face avant plane 48 ou 49 de la cathode sur laquelle les barres isolantes sont fixées, sur la figure 8, les éléments isolants 77 et 78 sont fixés sur la face latérale 79 et 79 extérieure de la pièce métallique 40. Les éléments isolants 77 et 78 comprennent deux parties distinctes, l'une 64 ou 65 de fixation à la face latérale extérieure 79 et l'autre 66 ou 67 de support des électrodes de déflexion 68 et 69. Les parties isolantes 66 et 67 sont conformées de manière à présenter, côté filament, deux faces opposées 70 et 71 parallèles aux marches du dispositif de concentration. Les électrodes métalliques 68 et 69 sont déposées sur ces faces opposées 70 et 71 ainsi que sur les surfaces supérieures 72 et 73 et inférieures 74 et 75 des parties isolantes 66 et 67. Ces électrodes sont connectées à un dispositif d'alimentation en tension (non représenté) par des conducteurs 76 et 76 qui traversent les éléments isolants 64 et 65.

30

On remarquera que les faces inférieures 73 et 74 sont écartées de la pièce métallique 40 de manière à éviter un claquage électrique.

Les éléments isolants 77 et 78 peuvent être réalisés en tout matériau isolant susceptible de supporter des températures élevées, par exemple en alumine. Ces éléments 77 et 78 peuvent être soudés ou collés à la pièce 40. Le matériau des électrodes 68 et 69 est un métal ou un alliage de métaux qui résiste aux hautes températures, par exemple le molybdène.

·

10

Revendications

15

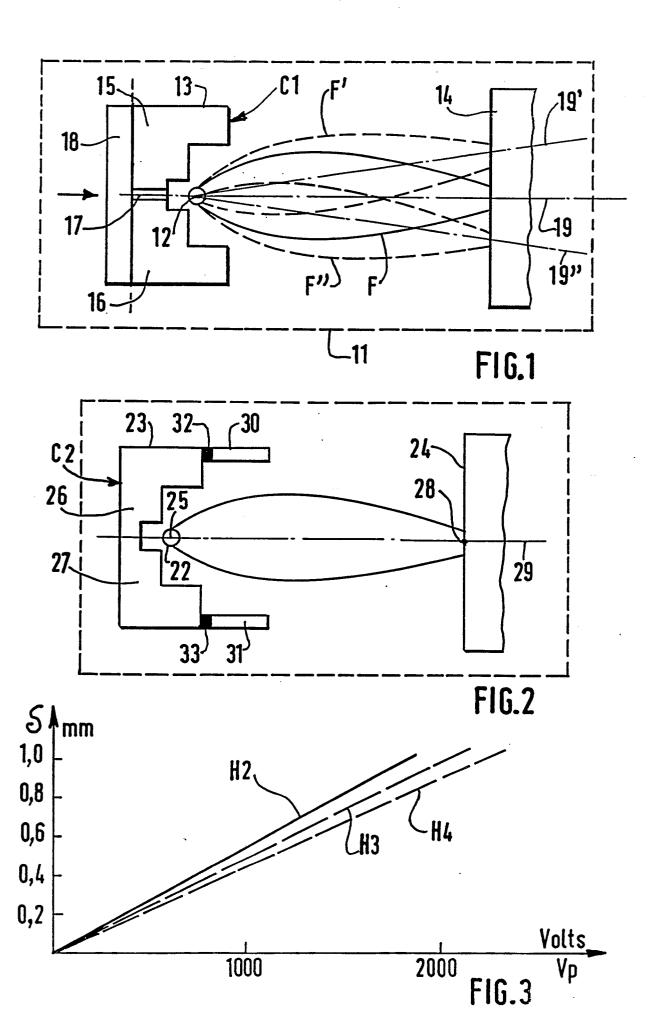
1. Tube à rayons X comportant, dans une enceinte sous vide, une cathode (C2) qui émet un faisceau d'électrons et une anode (24) qui reçoit ledit faisceau et émet un rayonnement X, ladite cathode (C2) étant constituée d'un filament (22) émetteur d'électrons, d'un dispositif de concentration (23) du faisceau d'électrons et de deux électrodes de déflexion (30,31) disposées de part et d'autre du faisceau d'électrons et isolées de la cathode (C2) et de l'anode (24), lesdites électrodes pouvant être portées à des potentiels différents entre eux et de celui de la cathode et de l'anode, caractérisé en ce que lesdites électrodes de dé-

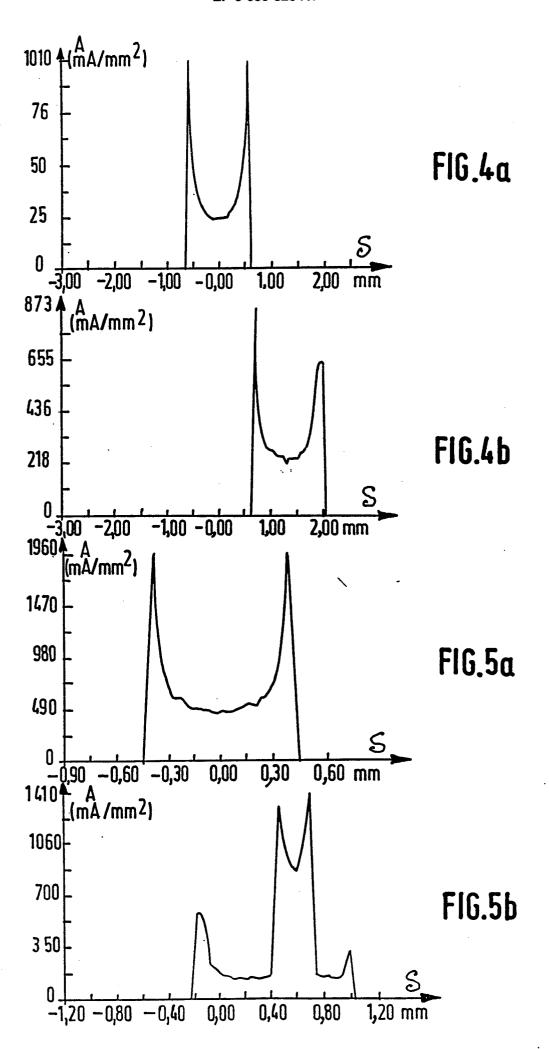
de celui de la cathode et de l'anode, caractérisé en ce que lesdites électrodes de déflexion (30,31) sont disposées à proximité immédiate dudit dispositif de concentration (23) et dans le prolongement de ce dernier et sont fixées chacune à la cathode (C2) par l'intermédiaire d'un élément isolant (32,33 ou 50,51 ou 66,67).

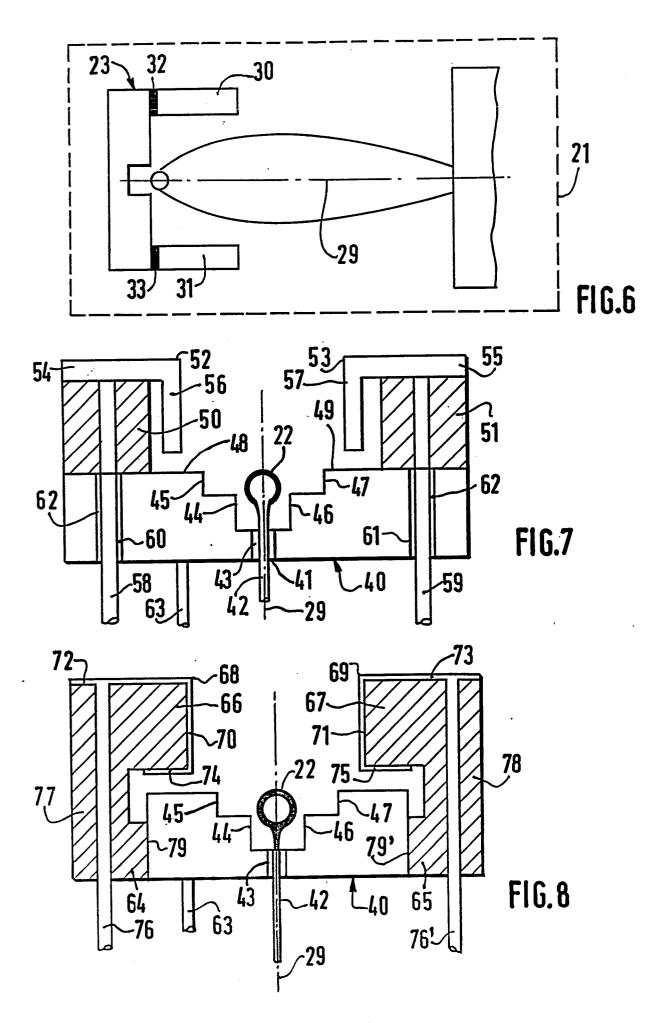
- 2. Tube à rayons X selon la revendication 1, caractérisé en ce que lesdites électrodes de déflexion (30,31) sont constituées par des plaques métalliques opposées l'une à l'autre et parallèles à l'axe (29) du faisceau d'électrons en l'absence de déflexion.
- 3. Tube à rayons X selon la revendication 2, caractérisé en ce que les plaques métalliques (30,31) sont obtenues par dépôt d'un métal ou d'un alliage métallique sur les éléments isolants (66,67), lesdits éléments isolants étant conformés pour présenter entre eux deux faces en regard parallèles à l'axe du faisceau d'électrons en l'absence de déflexion.
- 4. Tube à rayons X selon la revendication 2 ou 3 caractérisé en ce que l'élément isolant (32,33 ou 50,51 ou 66,67) est de l'alumine.
- 5. Tube à rayons X selon l'une quelconque des revendications précédentes, caractérisé en ce que les potentiels appliqués sur les deux électrodes sont égaux mais de polarités opposées.

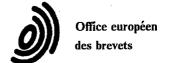
20

25


30


35


40


45

50

RAPPORT DE RECHERCHE EUROPEENNE

90 40 0622

Catégorie	Citation du document avec des parties po	indication, en cas de besoin, ertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
Y	356 (E-459)[2412],	F JAPAN, vol. 10, no. 29 novembre 1986, -61 153 934 (TOSHIBA	1,2	H 01 J 35/30 H 01 J 35/14
A	IDEM		5	
Y	EP-A-0 030 453 (P * Page 3, ligne 22 revendications 1,2	- page 4, ligne 19;	1,2	
A	EP-A-0 030 553		5	
A	EP-A-0 150 364 (S * Page 3, ligne 22 figure 1 *	IEMENS AG) - page 4, ligne 3;	1,5	
A	FR-A-2 536 583 (ELSCINT INC.) * Page 2, lignes 23-35; page 3, lignes 7-15; page 6, ligne 30 - page 7, ligne 33; page 8, ligne 32 - page 9, ligne 16; figures 1-3 * US-A-4 065 690 (S. MAEYAMA) * Colonne 2, ligne 17 - colonne 3, ligne 15; figures 1,2 *		1,2,5	
				DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
A			1-3	H 01 J
A	US-A-4 344 011 (T. HAYASHI et al.) * Colonne 1, lignes 17-47; colonne 5, lignes 39-63 *		1-3	
Le pr	ésent rapport a été établi pour t	outes les revendications		
<u></u>	Lieu de la recherche	Date d'achèvement de la recherche		Examinateur
LA HAYE		11-06-1990	GNUG	ESSER H.M.

- X : particulièrement pertinent à lui seul
 Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
 A : arrière-plan technologique
 O : divulgation non-écrite
 P : document intercalaire

- E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date

 D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant