| (19) |
 |
|
(11) |
EP 0 393 970 B2 |
| (12) |
NEW EUROPEAN PATENT SPECIFICATION |
| (45) |
Date of publication and mentionof the opposition decision: |
|
17.03.1999 Bulletin 1999/11 |
| (45) |
Mention of the grant of the patent: |
|
06.07.1994 Bulletin 1994/27 |
| (22) |
Date of filing: 17.04.1990 |
|
|
| (54) |
Cooling of hot bodies
Kühlung von heissen Körpern
Refroidissement de parties chaudes
|
| (84) |
Designated Contracting States: |
|
AT BE DE ES FR GB GR IT LU NL SE |
| (30) |
Priority: |
20.04.1989 GB 8908997
|
| (43) |
Date of publication of application: |
|
24.10.1990 Bulletin 1990/43 |
| (73) |
Proprietor: DAVY MCKEE (STOCKTON) LIMITED |
|
Stockton-on-Tees
Cleveland TS18 3RE (GB) |
|
| (72) |
Inventors: |
|
- Featherstone, William Barry
Guisborough,
Cleveland TS14 8HZ (GB)
- Macauley, Derek
Nr. Darlington,
Country Durham (GB)
|
| (74) |
Representative: Kirk, Geoffrey Thomas et al |
|
BATCHELLOR, KIRK & CO.
2 Pear Tree Court
Farringdon Road London EC1R 0DS London EC1R 0DS (GB) |
| (56) |
References cited: :
EP-A- 44 513 EP-A- 0 044 512 DE-A- 2 757 694 DE-B- 2 444 613 US-A- 4 815 096
|
EP-A- 77 448 WO-A-89/03011 DE-A- 2 801 698 US-A- 4 789 991
|
|
| |
|
|
|
|
| |
|
[0001] In pyro-metallurgical processes, heat is generated during the smelting, melting,
or refining of the metal. The process ingredients are usually confined within a steel
vessel which is lined with refractory material in order to protect the steel shell,
as far as possible, from the high temperatures used in the process. Nevertheless,
the shell usually becomes hot so it is beneficial to provide cooling of at least part
of the shell in order that distortion is reduced and the shell material retains sufficient
of its strength to operate according to the designer's intentions.
[0002] In recent years, the use of magnesite carbon refractories as the lining material
has given a longer working life to the lining, but it has resulted in higher shell
temperatures. It is now well recognised in the metallurgical industry that it is extremely
dangerous to allow liquid water and liquid metal to come into close proximity to one
another because, in the event of a fault occurring, the sudden expansion and vaporisation
of water on contact with liquid metal can cause a dangerous explosion.
[0003] It is known from WOB9/03011 to cool a hot metal body forming part of a vessel containing
molten metal by applying droplets of liquid coolant to the outer surface of the body
in a controlled manner such that the volume of coolant applied in a given time period
does not exceed the volume of coolant which is vaporised by contact with the hot surface
in the given time period. In one embodiment described in this document, the shell
of a basic oxygen furnace has a slag shedder plate spaced apart from the shell adjacent
the mouth of the furnace. Nozzles are located in the space between the shell and the
shedder plate and sprays of atomised liquid coolant from the nozzles are directed
in normal and overlapping relation onto the surface of the shell.
[0004] According to a first aspect of the present invention is atomised by a gaseous medium
and is discharged in overlapping sprays in the space between the two surfaces so that
the entire surface to be cooled receives droplets of atomised coolant liquid, the
volume of liquid coolant applied in a given time period being controlled so that it
does not exceed the volume of liquid coolant which is vaporised by contact with the
surface of the hot body in the given time period, characterised in that the liquid
coolant sprays are substantially flat and are directed in the space in directions
substantially parallel with the surfaces.
[0005] The liquid coolant is conveniently water and, since the water is applied in the form
of fine droplets on to the outer surface of the body to be cooled, cooling by vaporisation
takes place. In this way, advantage can be taken of the fact that a much greater quantity
of heat can be removed by each unit mass of water employed when it is vaporised than
when it remains liquid. As the water is applied at a rate not exceeding the rate at
which the water is vaporised by contact with the surface, there is no water remaining
to run off the surface being cooled into possible contact with the molten metal contained
within the vessel.
[0006] The features of spraying the liquid coolant in flat sprays and in directions substantially
parallel with the surface to be cooled means that the water droplets spread over a
greater area and uniform cooling of the part of the container can be achieved and
only a very few spray nozzles are required in order to bring about the desired cooling
as compared with a much greater number of nozzles which are required when the liquid
coolant is sprayed substantially at right angles on to the surface to be cooled from
nozzles close to the surface.
[0007] The fact that the space between the surfaces is open to the atmosphere permits air
to be drawn into the space by the action of the sprays and the air and the sprays
achieve a combined flow pattern which disperses the coolant over the entire surface
to be cooled.
[0008] According to a second aspect of the invention, ranged with a surface substantially
parallel to, and spaced from, a surface of the body to be cooled to form a space open
to the atmosphere, a plurality of nozzles arranged to receive a gaseous medium and
a liquid coolant and to discharge the liquid coolant in the form of atomised overlapping
sprays of coolant in the space between the two surfaces, so that the entire surface
to be cooled receives droplets of atomised coolant liquid, characterised in that the
nozzles are arranged to discharge the sprays, which are substantially flat, in directions
substantially parallel with the surfaces.
[0009] In use, the amount of liquid coolant applied to the surface of the part of the vessel
to be cooled is preferably controlled by means which determines the temperature of
the outer surface of the part to be cooled and valve means for controlling the supply
of liquid coolant in response to the determined temperature such that the droplets
which are applied over a time period on to the surface do not exceed the droplets
which are vaporised by contact with the surface during that time period.
[0010] The surface of the body to be cooled is conveniently the roof of the relevant vessel,
which further may comprise, e.g. a ladle furnace or an electric arc furnace. In the
case of the barrel and trunnion ring of a basic oxygen furnace, both surfaces are
cooled.
[0011] In order that the invention may be more readily understood, it will now be described,
by way of example only, with reference to the accompanying drawings, in which:-
Figure 1 is a plan showing the roof of a ladle furnace;
Figure 2 is a section on the line X-X of Figure 1;
Figure 3 is a perspective view of the nose cone of a basic oxygen furnace; and
Figure 4 is a section through the nose cone.
[0012] The roof 1 of a ladle furnace is of annular form and consists of a metal plate 2
having a central opening 3 and a lining 4 of refractory material attached to the underside
of the metal plate. The plate is inclined upwardly from its outer edge towards the
central opening 3. Electrodes 5 are raised and lowered and enter into the ladle furnace
through the opening 3.
[0013] In use, the exterior roof surface becomes very hot and its temperature has to be
reduced by applying liquid coolant to it. To this end, an additional body 6 in the
form of an annular plate is mounted above the said roof surface and a space 7 is formed
between the outer surface of the plate 2 and the inner surface of the body 6. These
surfaces are arranged to be substantially parallel but the orientation thereof may
be varied, in the event that a physical obstruction is present. Apart from support
struts 8, provided at the outer edge of the roof surface and around the opening 3,
the sides of the space 7 are open to atmosphere. A plurality of spray nozzles 9 are
located inside the space 7 adjacent to the outer edge of the roof surface. These spray
nozzles are supplied with liquid coolant, usually water, from a ring main 9A and also
with air under pressure from a pipe 9B and, in use, they provide a wide-angled flat
spray of water droplets, indicated by broken lines 10 in Figure 1. Alternatively the
spray nozzles could be operated by high pressure means to discharge atomised sprays.
[0014] The centre-line of each spray is substantially parallel to the surfaces 2 and 6 and
is directed towards the opening 3 but is not radial to the opening 3. The sprays are
arranged so that the boundary of one spray overlaps with the boundary of the adjacent
sprays so that substantially the entire surface 2 receives droplets of atomised coolant
liquid issuing from the nozzles 9. The wide-angled flat sprays are used to cover a
large surface area and the nozzles are arranged to cause the water droplets to initially
travel essentially parallel to the surface in a swirling action. This is achieved
for a wide range of water flow rates by the use of the atomising air.
[0015] The action of the sprays draws in additional air through the open parts of the outer
edge between the exterior roof surface and the body 6 and the free access of air ensures
a good flow of the droplets across the surface 2 and improves the range of the sprays
and the heat transfer coefficient between the coolant and the surface to be cooled.
The entrained air and vapour resulting from evaporation of the coolant leaves the
space between the open upper edge 8B of the space.
[0016] The area covered by the water from each nozzle is very large and, if the nozzles
were directed at right angles to the surface 2, the area covered by each nozzle would
be very considerably reduced and ten to twenty five times as many nozzles would be
required for the same cooling capacity.
[0017] Figures 3 and 4 show the nose cone of a basic oxygen furnace. The cone consists of
a steel shell 12 having an internal lining 14 formed from blocks of refractory material.
The conical nose section of the shell is surrounded by a slag shedder plate 17 which
protects the conical section of the shell from slag and molten metal spilled from
the mouth of the vessel and the shedder plates 17 are, in fact, substantially parallel
to the outer surface of the shell 12. The shedder plates are held in position by struts
18 and the space 19 between the plates 12 and 17 is open at its lower and upper ends.
A plurality of headers 20 are arranged radially on the nose cone 12 in the space 19
and the headers are connected to a water main 21 and an air main 21A. A plurality
of nozzles 22 are provided on each header. The spray nozzles are provided with liquid
coolant and air under pressure and are arranged to produce a wide-angled spray of
atomised droplets, which may initially be generally flat, and the sprays are arranged
to extend substantially parallel to the outer surface of the plate 12 and the inner
surface of the shedder plate 17. The rate at which the droplets are applied to the
surface is controlled such that the coolant is vaporised by contact with the hot surface
and the surface is not cooled to such an extent that water runs off the surface. The
boundaries of the sprays are overlapped and the air is used to atomise the water issuing
from the sprays so that a mist is caused to move with a swirling action around the
space 19. The swirling action also has a component in the direction towards the upper
end of the plate 12 whereby that swirling vortex moves across the face of the entire
plate 12 to its upper edge where the vapour generated as a result of the cooling of
the surface leaves the space, along with the entrained air drawn in through the bottom,
out through the space at the upper end of the shedder plate.
[0018] In all the embodiments of the invention control means are provided for determining
the temperature of the surface to be cooled and for controlling the flow of water
from the nozzles such that adequate cooling is provided but that all the cooling water
is vaporised and no water runs off the surface.
[0019] In most applications, the purpose of the liquid coolant is to cool the hot body but,
of course, some of the coolant will contact the additional body and provide a degree
of cooling. This is particularly advantageous when the additional body has to be cooled
to prevent it from distorting, such as is the case with the slag shedder system on
a basic oxygen furnace, or when cooling the barrel of a basic oxygen furnace and the
additional body is the trunnion ring which forms part of the furnace suspension system.
[0020] The system is basically fail-safe in that the headers and pipes leading to the nozzles
are openended. Thus, in the event of water supply failure, pipework damage, due to
rapid expansion experienced during evaporation of the water inside the pipes, etc.,
is avoided.
1. A method of cooling a hot metal body (2,12) which forms part of a vessel containing
molten metal in which an additional metal body (6,17) is arranged with a surface thereof
substantially parallel to, and spaced from, an outer surface of the hot metal body
(2,12) which is to be cooled to form a space (7,19) open to the atmosphere, a quantity
of liquid coolant is atomised by a gaseous medium and is discharged in overlapping
sprays (10) in the space between the two surfaces so that the entire surface to be
cooled receives droplets of atomised coolant liquid, the volume of liquid coolant
applied in a given time period being controlled so that it does not exceed the volume
of liquid coolant which is vaporised by contact with the surface of the hot body in
the given time period, characterised in that the liquid coolant sprays (10) are substantially
flat and are directed in the space in directions substantially parallel with the surfaces.
2. A method as claimed in claim 1, characterised in that the surface of the body to be
cooled is monitored to determine its temperature and the liquid coolant is applied
at a controlled rate determined by the monitored temperature.
3. A method as claimed in claim 1 or 2, characterised in that the liquid coolant is water
and the gaseous medium is air under pressure.
4. A vessel for containing molten metal having a metal body (2,12) which forms part of
the vessel and which in use has to be cooled with liquid coolant, said metal body
having an additional metal body (6,17) arranged with a surface thereof substantially
parallel to, and spaced from an outer surface of the metal body to be cooled to form
a space (7,19) open to the atmosphere, a plurality of nozzles (9,22) arranged to receive
a gaseous medium and a liquid coolant and to discharge the liquid coolant in the form
of atomised overlapping sprays (10) of coolant in the space between the two surfaces,
so that the entire surface to be cooled receives droplets of atomised coolant liquid,
characterised in that the nozzles (9,22) are arranged to discharge the sprays, which
are substantially flat, in directions substantially parallel with the surfaces.
5. A vessel as claimed in claim 4, characterised in the provision of means for monitoring
the surface of the body to be cooled to determine its temperature and means for controlling
the discharge of coolant at a rate determined by the monitored temperature so that
the volume of liquid coolant applied in a given time period does not exceed the volume
of liquid coolant which is vaporised by contact with the surface to be cooled in the
given time period.
6. A vessel as claimed in claim 5 characterised in that the vessel is a basic oxygen
furnace.
7. A vessel as claimed in claim 6 characterised in that the metal body to be cooled is
a conical nose section of the shell of the vessel and the additional metal body is
the shedder plate system.
8. A vessel as claimed in claim 6 or 7 characterised in that the metal body to be cooled
is part of the barrel of the vessel and the additional metal body is a trunnion ring.
9. A vessel as claimed in claim 5 characterised in that the vessel is an electric arc
furnace or plasma arc furnace.
10. A vessel as claimed in claim 5 characterised in that the vessel is a ladle furnace.
1. Verfahren zum Kühlen eines heißen Metallkörpers (2, 12), der einen Teil eines geschmolzenes
Metall enthaltenden Gefäßes bildet, worin ein weiterer Metallkörper (6, 17) angeordnet
ist, der eine Oberfläche aufweist, die im wesentlichen parallel zu und beabstandet
von einer äußeren Oberfläche des zu kühlenden heißen Metallkörpers (2, 12) ist, um
einen zur Atmosphäre offenen Raum (7, 19) zu bilden, wobei durch ein gasförmiges Medium
eine Menge eines flüssigen Kühlmittels zerstäubt und in überlappenden Sprühnebeln
(10) im Raum zwischen den zwei Oberflächen ausgelassen wird, so daß die gesamte zu
kühlende Oberfläche Tropfen der zerstäubten Kühlflüssigkeit empfängt, wobei das innerhalb
einer gegebenen Zeitspanne eingesetzte Volumen des flüssigen Kühlmittels gesteuert
wird, so daß es das Volumen des flüssigen Kühlmittels nicht übersteigt, welches durch
Kontakt mit der Oberfläche des heißen Körpers innerhalb der gegebenen Zeitspanne verdampft
wird
dadurch gekennzeichnet, daß
die Sprühnebel (10) des flüssigen Kühlmittels im wesentlichen flach sind und in den
Raum im wesentlichen in paralleler Richtung zu den Oberflächen gerichtet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche des zu kühlenden
Körpers zur Bestimmung ihrer Temperatur überwacht und das flüssige Kühlmittel mit
gesteuerter Rate eingesetzt wird, die von der überwachten Temperatur bestimmt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das flüssige Kühlmittel
Wasser und das gasförmige Medium unter Druck stehende Luft ist.
4. Gefäß zur Aufnahme von geschmolzenem Metall, aufweisend einen Metallkörper (2, 12),
der einen Teil des Gefäßes bildet und im Einsatz mit einem flüssigen Kühlmittel zu
kühlen ist, wobei der Metallkörper einen weiteren Metallkörper (6, 17), aufweist,
der so angeordnet ist, daß eine Oberfläche von ihm im wesentlichen parallel zu und
beabstandet von einer äußeren Oberfläche des zu kühlenden Metallkörpers angeordnet
ist, um einen zur Atmosphäre offenen Raum (7, 19) zu bilden, mehrere Düsen (9, 22),
die zum Empfangen eines gasförmigen Mediums und eines flüssigen Kühlmittels und zum
Auslassen des flüssigen Kühlmittels in Form von zerstäubten überlappenden Sprühnebeln
(10) des Kühlmittels im Raum zwischen den zwei Oberflächen angeordnet ist, so daß
die gesamte zu kühlende Oberfläche Tropfen der zerstäubten Kühlflüssigkeit empfängt,
dadurch gekennzeichnet,
daß die Düsen (9, 22) so angeordnet sind, daß sie die Sprühnebel, die im wesentlichen
flach sind, im wesentlichen in paralleler Richtung zu den Oberflächen auslassen.
5. Gefäß nach Anspruch 4, gekennzeichnet durch Mittel zum Überwachen der Oberfläche des
zu kühlenden Körpers zur Bestimmung von deren Temperatur und Mittel zum Steuern des
Kühlmittelauslasses mit einer von der überwachten Temperatur bestimmten Rate, so daß
das innerhalb einer gegebenen Zeitspanne eingesetzte Volumen des flüssigen Kühlmittels
das Volumen des flüssigen Kühlmittels nicht übersteigt, welches durch Kontakt mit
der zu kühlenden Oberfläche innerhalb der gegebenen Zeitspanne verdampft wird.
6. Gefäß nach Anspruch 5, dadurch gekennzeichnet, daß das Gefäß ein basischer Sauerstoff-Aufblas-Konverter
ist.
7. Gefäß nach Anspruch 6, dadurch gekennzeichnet, daß der zu kühlende Metallkörper einen
konischen Halsbereich der Gefäßschale und der weitere Metallkörper das Abstreif-Plattensystem
darstellt.
8. Gefäß nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß der zu kühlende Metallkörper
Teil der Walze des Gefäßes und der weitere Metallkörper ein Drehzapfenring ist.
9. Gefäß nach Anspruch 5, dadurch gekennzeichnet, daß das Gefäß ein elektrischer Bogenofen
oder ein Plasma-Bogenofen ist.
10. Metallkörper nach Anspruch 5, dadurch gekennzeichnet, daß das Gefäß ein Pfannenofen
ist.
1. Procédé de refroidissement d'un corps métallique chaud (2, 12) faisant partie intégrante
d'une cuve contenant du métal fondu dans lequel un corps métallique supplémentaire
(6, 17) est agencé avec une de ses surfaces sensiblement parallèle à, et espacée d'une
surface extérieure du corps métallique chaud (2, 12) qui doit être refroidi pour former
un espace (7, 19) ouvert à l'air libre, une certaine quantité de liquide de refroidissement
est atomisée avec un milieu gazeux et est déchargée en pulvérisations (10) qui se
chevauchent dans l'espace entre les deux surfaces de telle sorte que toute la surface
à refroidir reçoit des gouttelettes de liquide de refroidissement atomisé, le volume
de liquide de refroidissement appliqué pendant une période donnée étant contrôlé de
manière à ne pas dépasser le volume de liquide de refroidissement qui est vaporisé
par contact avec la surface du corps chaud pendant la période donnée, caractérisé
en ce que les pulvérisations de liquide de refroidissement (10) sont sensiblement
plates et sont dirigées dans l'espace dans des directions sensiblement parallèles
aux surfaces.
2. Procédé selon la revendication 1, caractérisé en ce que la surface du corps à refroidir
est surveillée pour déterminer sa température et le liquide de refroidissement est
appliqué à un débit contrôlé déterminé par la température surveillée.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le liquide de refroidissement
est de l'eau et le milieu gazeux est de l'air sous pression.
4. Cuve destinée à contenir du métal fondu ayant un corps métallique (2, 12) qui fait
partie intégrante de la cuve et qui, en service, doit être refroidi avec le liquide
de refroidissement, ledit corps métallique ayant un corps métallique supplémentaire
(6, 17) agencé avec une de ses surfaces sensiblement parallèle à, et espacée d'une
surface extérieure du corps métallique à refroidir pour former un espace (7, 19) ouvert
à l'air libre, une pluralité de buses (9, 22) agencée pour recevoir un milieu gazeux
et un liquide de refroidissement et pour décharger le liquide de refroidissement sous
la forme de pulvérisations atomisées (10) qui se chevauchent dans l'espace entre les
deux surfaces, de telle sorte que toute la surface à refroidir reçoit des gouttelettes
de liquide de refroidissement atomisé, caractérisé en ce que les buses (9, 22) sont
agencées pour décharger les pulvérisations, qui sont sensiblement plates, dans des
directions sensiblement parallèles aux surfaces.
5. Cuve selon la revendication 4, caractérisé en ce qu'on fournit des moyens pour surveiller
la surface du corps à refroidir afin de déterminer sa température et des moyens pour
contrôler la décharge de liquide de refroidissement à un débit déterminé par la température
surveillée de telle sorte que le volume de liquide de refroidissement appliqué pendant
une période donnée ne dépasse pas le volume de liquide de refroidissement qui est
vaporisé par contact avec la surface à refroidir pendant la période donnée.
6. Cuve selon la revendication 5, caractérisée en ce que la cuve est un four Martin classique.
7. Cuve selon la revendication 6, caractérisée en ce que le corps métallique à refroidir
est une section de cône de nez de la coque de la cuve et le corps métallique supplémentaire
est le système de revêtisseur.
8. Cuve selon la revendication 6 ou 7, caractérisé en ce que le corps métallique à refroidir
fait partie intégrante du cylindre de la cuve et le corps métallique supplémentaire
est un anneau de tourillon.
9. Cuve selon la revendication 5, caractérisé en ce que la cuve est un four à arc électrique
ou un four à arcplasma.
10. Cuve selon la revendication 5, caractérisé en ce que la cuve est un four de poche
de coulée.