(19)
(11) EP 0 396 185 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
07.11.1990  Patentblatt  1990/45

(21) Anmeldenummer: 90201056.0

(22) Anmeldetag:  26.04.1990
(51) Internationale Patentklassifikation (IPC)5C22F 1/18, C22C 32/00
(84) Benannte Vertragsstaaten:
BE CH DE FR GB IT LI SE

(30) Priorität: 03.05.1989 AT 1059/89

(71) Anmelder: METALLWERK PLANSEE GESELLSCHAFT M.B.H.
A-6600 Reutte, Tirol (AT)

(72) Erfinder:
  • Eck, Ralf, Dr.
    A-6600 Reutte/Tirol (AT)

(74) Vertreter: Lohnert, Wolfgang, Dr. 
Plansee Aktiengesellschaft
6600 Reutte
6600 Reutte (AT)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zur Herstellung von warmkriechfesten Halbfabrikaten oder Formteilen aus hochschmelzendem Metall


    (57) Die Erfindung betrifft ein Verfahren zur Herstellung dispersionsverfestigter Legierungen der hochschmelzenden Metalle der 5. und 6. Nebengruppe des Periodensystems für Anwendungen in Halbfabrikaten und Formteilen, bei denen besonders hohe Warmkriechfestigkeit gefordert wird. Solche Bauteile sind beispielsweise Werkzeuge für das isotherme Hochtemperaturschmieden oder Drehanoden für Röntgenröhren. Bisher wurden derartige Werkstoffe ausschließlich unter Einbeziehung von Warmumformprozessen mit extrem hohen Umformgraden hergestellt. Gemäß vorliegender Erfindung lassen sich hohe Warmkriechfestigkeiten unter Einbeziehung einer Dispersionsverfestigung in zwei bis vier Teilschritten durch ein Warmumformen von nur 3 - 25 % Umformgrad je Teilschritt und mittels Glühprozessen zumindest zeitweise unterhalb der jeweiligen Rekristallisationstemperatur zwischen den einzelnen Umformprozessen erreichen. Die maximale Umformung derartiger Werkstoffe beträgt 75 %, in der Regel aber wesentlich weniger.


    Beschreibung


    [0001] Die Erfindung betrifft ein Verfahren zur Herstellung von Halbfabrikaten oder Formteilen hoher Warmkriechfestigkeit aus gesinterten oder erschmolzenen Vorprodukten aus dispersionsverfestigten Legierungen der hochschmelzenden Metalle Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, einzeln, zu mehreren oder als Hauptbestandteil mit anderen Metallanteilen.

    [0002] Für Halbfabrikate, insbesondere aber für Formteile aus hochschmelzenden Metallen, besteht der Bedarf nach verbesserten Warmfestigkeitseigenschaften, vor allem nach höherer Warmkriechfestigkeit. Die Festigkeits-Eigenschaften derartiger Metalle werden nebeneinander gleichermaßen durch Legieren, Umformverfestigung, Alterungsprozesse und Dispersionshärtung erzielt. Unter den Verfahren zur Herstellung kriechfester Legierungen haben sich besonders Dotierungs- und Umformverfahren mit dem Ziel bewährt, ein Stapelgefüge im Metall zu erzeugen, d. h. ein Gefüge, bei dem die einzelnen metallischen Körner ein Streckungsverhältnis von mindestens 1:2 aufweisen. Lange Zeit wurden hochschmelzende Metalle zu diesem Zweck vor allem mit Kalium, Aluminium und Silizium dotiert. In den letzten Jahren hat die Dotierung mit Dispersoiden auf oxidischer und karbidischer Basis vermehrt an Bedeutung gewonnen. Derartige Legierungen sind beispielsweise in der AT-PS 386 612 beschrieben.

    [0003] Unter den bekannten Verfahren zur Herstellung warmkriechfester Materialien ergibt die Warmumformung in unmittelbar aufeinanderfolgenden, möglichst großen Umformschritten bis auf sehr hohe Verformungsgrade von 90 % und mehr die besten Warmkriechfestigkeitswerte. Dabei werden die so umgeformten Werkstoffe einer abschließenden Rekristallisationsglühung unterzogen, um ein möglichst ausgeprägtes Stapelgefüge zu formieren. Diese Verfahren mit einer Vielzahl von Umformschritten und Glühungen sind sehr langwierig und kostspielig, nach der herrschenden Lehrmeinung aber unumgänglich, um höchste Warmkriechfestigkeiten zu erreichen. Alternativ erfolgt die Warmumformung auf 60 - 80 % Umformung in einem einzigen Arbeitsgang, ggf. unter Zwischenwärmen des Werkstücks, falls beispielsweise der Umformprozeß auf den gewünschten Umformgrad oder in die gewünschte Werkstückform nicht rasch genug und ohne zu starke Abkühlung erfolgen kann. Die Warmfestigkeitswerte derart gefertigter Legierungen liegen deutlich unter den Werten bei Ausbildung einer Stapelgefügestruktur.

    [0004] Aufgabe vorliegender Erfindung ist danach die Bereitstellung eines Verfahrens zur Herstellung dispersionsverfestigter Halbfabrikate oder Formteile aus hochschmelzenden Metallen, welches sich von den üblicherweise verwendeten Verfahren durch eine geringere Anzahl von Verfahrensschritten sowie höhere Wirtschaftlichkeit unterscheidet. Das Verfahren soll gleichwohl höhere Warmfestigkeitswerte, insbesondere höhere Warmkriechfestigkeit auch noch bei Temperaturwerten um und oberhalb drei Viertel der Schmelztemperatur des Hauptbestandteiles der Legierung, erbringen, als bekannte Werkstoffe.

    [0005] Die Aufgabe wird durch ein Verfahren gemäß vorliegender Erfindung gelöst, bei dem gesinterte oder erschmolzene Vorprodukte aus den eingangs genannten Werkstoffen zu Halbfabrikaten verarbeitet werden, indem die Vorprodukte in Folge zwei- bis viermal bei für den jeweiligen metallischen Hauptbestandteil gebräuchlichen Warmumformungstemperaturen im Bereich von 900oC und 1600oC um jeweils 3 - 25 %, insgesamt jedoch maximal um 75 % thermomechanisch verformt werden und indem die Vorprodukte zwischen den einzelnen Umformschritten bei Temperaturen im Bereich von etwa der jeweiligen Warmumformungstemperatur bis zur jeweiligen Rekristallisationstemperatur 1 und 6 Stunden lang zwischengeglüht werden.

    [0006] Unter dem Begriff Halbfabrikate sind z. B. Schmiederohlinge, Stäbe, Ronden, Bleche und Drähte zu verstehen. Formteile sind demgegenüber solche Teile, die aus Halbfabrikaten durch Formgebungsverfahren wie Zerspanung, aber ohne weitere Beeinflussung des metallischen Gefüges und der metallischen Eigenschaften hergestellt werden; weiterhin auch solche Teile, die aus Vorprodukten im Zuge der Warmumformung gleichzeitig zu anwendungsfertigen Formteilen verarbeitet werden.

    [0007] Die wichtigsten, in Frage kommende Legierungselemente neben den genannten Hauptbestandteilen sind die Metalle der 4. Nebengruppe des Periodensystems, aber auch sonstige in Legierungen der hochschmelzenden Metalle bereits verwendete Elemente, insbesondere Rhenium und Platin. Unter den Dispersoiden für hochschmelzende Metalle haben sich die Oxide, und dort wieder vor allem die Seltenen Erden Ceroxid, Yttriumoxid, Lanthanoxid, neben Thoriumoxid Manganoxid, Titanoxid und Zirkonoxid besonders bewährt. Daneben werden Karbide, Silizide, Boride und Nitride als Dispersoide in hochschmelzenden Metallen erfolgreich eingesetzt. Erdalkalimetalle, Aluminium und Silizium werden wegen ihrer bekannten Nachteile bei sehr hohen Werkstoff-Einsatztemperaturen im vorliegenden Fall kaum angewendet, sind aber nicht vollständig auszuschließen.

    [0008] Unter dem Begriff "gebräuchliche Warmformungstemperaturen" sind die bei der Warmumformung durch Schmieden und/oder Hämmern für das jeweilige hochschmelzende Metall günstigerweise anzuwendenden Temperaturen zu verstehen. Dabei ist eine qualitativ hochwertige, z. B. rißfreie Ausbringung, ebenso Bedingung wie die Wirtschaftlichkeit des Verfahrens. Die günstigste Temperatur liegt selbstverständlich für das vergleichsweise niedrig schmelzende Chrom deutlich niedriger als etwa für Wolfram, in jedem Fall aber unter der Temperatur, bei welcher Rekristallisation einsetzt. Die je Umformschritt anzuwendenden Umformgrade sind auf den Bereich der kritischen Umformung, d. h. auf den Bereich, bei dem durch anschließende Temperaturbehandlung ein Kornwachstum auftritt, zu beschränken.
    Als weitere anwendbare Warmumformverfahren sind das Strangpressen und das Ziehen zu nennen.

    [0009] Es war nun angesichts der bisher praktizierten Lehrmeinung völlig überraschend, daß die Umformung in kleinen prozentuellen Stufen und bis auf maximal 75 %, in der Regel aber wesentlich weniger, in Verbindung mit den angeführten Zwischenglühprozessen so günstige Warmkriechfestigkeits-­Eigenschaften ergibt. Bisher war davon ausgegangen worden, daß zur Erzielung höchstmöglicher Warmkriechfestigkeit bei den genannten Werkstoffen eine Umformung von mindestens 90 %, in der Regel sogar weit mehr unumgänglich ist.

    [0010] Ebenso überraschend und nicht vorhersehbar war, daß nach dem erfindungsgemäßen Verfahren hergestellte, hochschmelzende Legierungen nicht zwingend zur Ausbildung eines Stapelgefüges gebracht werden müssen und sich gleichwohl höhere Warmkriechfestigkeiten erzielen lassen, als bisher für vergleichbare hochschmelzende Legierungen mit Stapelgefüge bekannt geworden ist.
    Dessen ungeachtet konnten Spitzenwerte für die Warmfestigkeit, insbesondere für die Warmkriechfestigkeit, bei einzelnen Legierungen hochschmelzender Metalle dann erreicht werden, wenn in Abwandlung des erfindungsgemäßen Grundverfahrens die Zwischenglühungen nach den einzelnen Umformschritten etwa während der Hälfte der vorgesehenen Gesamtglühzeit bei Temperaturen oberhalb der Rekristallisationstemperatur des jeweiligen Werkstoffes, d. h. bei 1300oC bis 2100oC vorgenommen wurde und anschließend während der zweiten zeitlichen Hälfte bei etwa der Warmumformungstemperatur geglüht wurde, welche Temperatur grundsätzlich unterhalb der Rekristallisationstemperatur für den jeweiligen Werkstoff liegt. Mittels dieser zweigeteilten, im Unterschied zur einheitlichen Zwischenglühung lassen sich Stapelgefüge erzielen, welche die Warmkriechfestigkeit entsprechender Werkstoffe nochmals wesentlich erhöhen.

    [0011] Ein wichtiger Vorteil bei den nach dem erfinderischen Verfahren hergestellten hochschmelzenden Legierungen sind die hohen Warmkriechfestigkeitswerte selbst in Temperaturbereichen, die etwa bei drei Viertel der jeweiligen Schmelztemperatur liegen, wo nach anderen Verfahren hergestellte warmkriechfeste Legierungen in den entsprechenden Werten bereits stark abfallen. Ein weiterer Vorteil des Verfahrens besteht darin, daß neben der Warmkriechfestigkeit auch die anderen Warmfestigkeitswerte, nämlich Zugfestigkeit bei ausreichender Restdehnung, vergleichsweise günstig liegen.

    [0012] Dispersionsverfestigte Legierungen gemäß vorliegender Erfindung finden bevorzugt Anwendung als Formwerkzeuge in Schmiede- oder Preßwerkzeugen für die Hochtemperatur-Umformung metallischer Formstücke, insbesondere beim isothermen Hochtemperaturschmieden. Ein weiteres Anwendungsgebiet sind Drehanoden für Röntgenröhren.

    [0013] Unter den Hochtemperatur-Metallegierungen hoher Warmkriechfestigkeit hatten schon bisher Molybdänlegierungen mit Zusätzen von Zirkonium, Hafnium und etwas Kohlenstoff besonders günstige Warmfestigkeits-­Eigenschaften gezeigt. Diese Legierungen sind als ZHM-Legierungen bekannt geworden und stellen eine Weiterentwicklung der als TZM bekannt gewordenen Molybdänlegierungen dar. Die nachfolgende Tabelle belegt eindrucksvoll, daß entsprechend vorliegender Erfindung hergestellte oxiddispersionsverfestigte ZHM-Legierungen deutlich bessere Warm-, insbesondere Warmkriechfestigkeitswerte, erreichen als nach üblichen Verfahren hergestellte ZHM-Legierungen.

    [0014] Die zum Vergleich dienende ZHM-Molybdänlegierung wurde auf denselben Gesamtumformgrad von ca. 70 % gebracht, jedoch in einem einzigen Arbeitsschritt, ohne Zwischenglühung nach kleinen Umformgraden gemäß Erfindung.
    Die hinsichtlich hoher Warmkriechfestigkeit lange Zeit führende TZM-Molybdänlegierung konnte gar nicht mehr zum Vergleich angeführt werden, da eine entsprechende Probe unter den genannten Belastungswerten bereits in weniger als einer Minute reißen würde.
    Tabelle
    1. Lineare Kriechgeschwindigkeit bei 1100oC 450 N/mm² in h⁻¹
    Legierung Verfahren
      Anspruch 1 Anspruch 2 Stand der Technik
    ZHM, 1 CeO₂ 3,2 10⁻⁴ < 10⁻⁵  
    ZHM, 1 Y₂O₃ 4,4 10⁻⁴ < 10⁻⁵  
    ZHM, 1 La₂O₃ 8,9 10⁻⁴ < 10⁻⁵  
    ZHM     2.10⁻³
    2. Warmzugfestigkeit bei 1450oC in Vakuum mit Prüfgeschwindigkeit 5 mm/min in N/mm²
    Legierung Verfahren
      Anspruch 1 Anspruch 2 Stand der Technik
    ZHM, 1 CeO₂ 360 490  
    ZHM, 1 Y₂O₃ 350 520  
    ZHM, 1 La₂O₃ 300 495  
    ZHM     210
    TZM     60-80
    ZHM = Mo; 1,2 Hf; 0,4 Zr; 0,15 C

    Beispiel 1



    [0015] Molybdänmetallpulver von ca. 5µm Korngröße wurde mit feinkörnigen Pulverzusätzen, und zwar mit 1,2 Gew.% Hf, 0,4 Gew.% Zr, 0,15 Gew.% C und 1,0 Gew.% CeO₂ der Korngröße von ca. 0,8µm vermischt, die Mischung in einen Gummischlauch gefüllt, dicht gerüttelt und kaltisostatisch mit einem Druck von 2500 bar unter Wasser gepreßt. Der isostatisch gepreßte Stab wurde grün auf einen Durchmesser von 75 mm auf einer Drehbank gedreht und anschließend auf 55 mm Höhe abgelängt. Die Zylinder wurden in trockener H₂-Atmosphäre (TP<- 35oC) 5 Stunden lang bei 2000oC gesintert. Die Sinterdichte betrug 9,50 g/cm³. Der Umformvorgang umfaßte das Aufwärmen des Sinterlings auf 1200oC in einem H₂-gefluteten Ofen während 20 Minuten, weiters das Stauchen auf 43 mm Höhe, das zweiperiodische Glühen zunächst während 1 Stunde bei 2000°C und anschließend während 1 Stunde bei 1500oC. Es folgen das Anwärmen im Schmiedeofen auf 1200°C während 20 Minuten und Schmieden bei ca. 10 Umformgrad auf 39 mm Höhe. Das Glühen und Schmieden wird noch weitere zweimal wiederholt: Glühen bei 2000oC, 1 Stunde sowie 1500oC, 1 Stunde, Einlegen in den Schmiedeofen, Schmieden auf 35 mm Höhe, Glühen bei 2000oC, 1 Stunde sowie 1500oC 1 Stunde, Anwärmen während 20 Minuten auf 1200oC und Fertigschmieden auf eine Höhe von 12 mm.

    [0016] Die derart hergestellten Proben wurden auf ihre Warmfestigkeits-­Eigenschaften hin untersucht. Die Versuchsergebnisse sind in der Tabelle dargestellt.

    Beispiel 2



    [0017] Das Verfahren nach Beispiel 1 wird mit folgender Legierungszusammensetzung wiederholt:
    Mo - 1,2 Gew.% Hf, 0,4 Gew.% Zr, 0,15 Gew. % C und abweichend von oben 1 Gew.% Y₂O₃ der Korngröße 0,25µm.

    Beispiel 3



    [0018] Wolfram-Metallpulver, das durch H₂-Reduktion von blauem Wolframoxid gewonnen wurde und eine Korngröße von 3,80µm aufwies, wurde mit 1,20 Gew.% Hf, 0,40 Gew.% Zr, 0,10 Gew.% C sowie mit 1 Gew.% CeO₂ der Korngröße 0,8µm versetzt, in einem Zwangsmischer gemischt und in einem Matrizenpreßwerkzeug mit 105 mm Durchmesser auf Höhe 55 mm gepreßt. Die Ronden wurden 7 Stunden lang bei 2500oC in trockenem H₂ mit einem Taupunkt -35oC gesintert und erreichten eine Dichte von 17,7 g/cm³. Nach dem Sintern betrugen die Abmessungen der Ronden ca. 90 mm Durchmesser x 48 mm Höhe.

    [0019] Die Ronden wurden zunächst 20 Minuten lang bei 1550oC angewärmt und dann durch Warmschmieden auf 43 mm Höhe gestaucht. Es folgte eine Zwischenglühung der Ronden für 2 Stunden bei 1550oC in H₂-Atmosphäre. Dann wurden die Ronden wiederum bei 1550oC 20 Minuten lang angewärmt und bei dieser Temperatur in einem zweiten Schmiededurchgang um ca. 10 % auf 39 mm Höhe verformt. Die anschließende Glühung erfolgte wiederum bei 1550oC 2 Stunden lang in H₂-Atmosphäre. Für den dritten Schmiededurchgang wurde abermals bei 1550°C 20 Minuten lang angewärmt und dann auf 35 mm Höhe geschmiedet. Schließlich wurden die Ronden ein viertes Mal 2 Stunden lang bei 1550oC geglüht und nach einem letzen Anwärmen über 20 Minuten auf 1550oC auf 17 mm Höhe fertiggeschmiedet und von der Schmiedehitze im Ofen über Nacht auf Raumtemperatur abgekühlt.

    [0020] Die so gefertigten Proben wurden untersucht und ergaben ein Kriechverhalten bei 1600oC, welches dasjenige von in einem einzigen Schmiedevorgang hergestellten W-Legierungen um ca. eine Zehnerpotenz übertraf.


    Ansprüche

    1. Verfahren zur Herstellung von Halbfabrikaten oder Formteilen hoher Warmkriechfestigkeit aus gesinterten oder erschmolzenen Vorprodukten aus dispersionsverfestigten Legierungen der hochschmelzenden Metalle Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, einzeln, zu mehreren oder als Hauptbestandteil mit anderen Metallanteilen,
    dadurch gekennzeichnet,
    daß die Vorprodukte zwei- bis viermal bei für den jeweiligen metallischen Hauptbestandteil gebräuchlichen Warmumformungstemperaturen im Bereich von 900oC und 1600oC um jeweils 3 - 25 %, insgesamt jedoch maximal um 75 % thermomechanisch verformt werden und indem die Vorprodukte zwischen den einzelnen Umformschritten bei Temperaturen im Bereich von etwa der jeweiligen Warmumformungstemperatur bis zur jeweiligen Rekristallisationstemperatur zwischen 1 und 6 Stunden lang zwischengeglüht werden.
     
    2. Verfahren zur Herstellung von Halbfabrikaten nach Anspruch 1, dadurch gekennzeichnet, daß einzelne oder alle Zwischenglühungen jeweils in zwei Teilschritten vorgenommen werden, wobei der erste Teilschritt während etwa halber Zwischenglühzeit bei Temperaturen oberhalb der Rekristallisationstemperatur, d. h. bei 1300oC bis 2100oC, und wobei der zweite Teilschritt während etwa halber nach dem Grundverfahren angewandter Zeit bei der gewählten Warmumformungstemperatur erfolgt.
     
    3. Verfahren zur Herstellung von Halbfabrikaten nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Warmumformung durch Warmschmieden erfolgt.
     
    4. Verfahren zur Herstellung von Halbfabrikaten nach den Ansprüchen 1 - 3, dadurch gekennzeichnet, daß der Behandlung Legierungen unterworfen werden, die Dispersoide auf der Basis von Oxiden und/oder Karbiden enthalten.
     
    5. Verfahren zur Herstellung von Halbfabrikaten nach Anspruch 4, dadurch gekennzeichnet, daß als Dispersoide CeO₂, Y₂O₃, La₂O₃ und/oder ThO₂ verwendet werden.
     
    6. Verfahren zur Herstellung von Halbfabrikaten nach den Ansprüchen 1 - 5, dadurch gekennzeichnet, daß als das hochschmelzende Metall eine Molybdänlegierung mit Zusätzen von Zirkonium und Hafnium sowie mit Oxiden und Karbiden als feinverteilte Dispersoide verwendet wird.
     
    7. Verfahren zur Herstellung von Halbfabrikaten nach Anspruch 6, dadurch gekennzeichnet, daß die Warmumformung bei Temperaturen zwischen 1250°C bis 1350oC erfolgt.
     
    8. Verwendung dispersionsverfestigter Legierungen hergestellt nach einem der Ansprüche 1- 7 in Schmiede- oder Preßwerkzeugen für die Hochtemperatur-Umformung metallischer Formstücke.
     
    9. Verwendung dispersionsverfestigter Legierungen hergestellt nach einem der Ansprüche 1 - 7 in Drehanoden für Röntgenröhren.
     





    Recherchenbericht