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Cache  memory  management. 

©  Suspensions  of  programs  running  in  a  multi- 
programning  environment  are  made  to  occur  when 
the  footprint  of  a  program  to  be  suspended  is  rela- 
tively  small.  This  occurs  when  a  process  releases 
data  or  instruction  storage  in  the  cache  because  the 
program  has  moved  to  a  different  phase  of  behavior. 
An  interrupt  is  armed  to  occur  at  small-footprint 
points,  and  then  the  point  where  that  occurs  is 
detected. 
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CACHE  MEMORY  MANAGEMENT 

The  present  invention  generally  relates  to 
cache  memory  management  according  to  the  pre- 
amble  of  claim  1  for  a  method  and  claim  7  for  an 
apparatus. 

In  multi-programmed  or  multi-tasking  computer 
systems,  a  processor  is  shared  among  many  dif- 
ferent  programs  by  periodically  changing  the  pro- 
gram  or  task  that  is  running  on  the  processor.  For 
computing  systems  with  cache  memories,  at  the 
point  that  one  program,  or  task,  is  suspended  and 
another  is  begun,  the  cache  contains  many  lines 
that  belong  to  the  suspended  program.  These  lines 
will  tend  to  be  displaced  from  cache  as  subsequent 
programs  run  and  will  have  to  be  reloaded  when 
the  suspended  program  regains  control  of  the  pro- 
cessor.  The  overhead  for  reloading  those  lines  is 
called  the  cache-reload  transient.  D.  F.  Thiebaut 
and  H.  S.  Stone  in  an  article  entitled  "Footprints  in 
the  Cache"  published  in  ACM  Trans,  on  Comput- 
ing,  vol.  5,  no.  4,  Nov.  1987,  at  pages  "305  to  329, 
report  their  studies  of  this  problem  and  propose  a 
model  for  calculating  the  size  of  the  transient  that 
they  validated  by  several  different  case  studies. 
The  size  of  the  transient  is  related  to  the  size  of  the 
footprint  of  the  program,  which  is  the  number  of 
active  lines  that  the  program  has  in  the  cache. 

It  is  known  in  the  prior  art  to  reduce  the  cost  of 
context  swaps  by  changing  as  little  as  possible,  or 
by  other  means  to  reduce  the  overhead  of  the 
context  swap.  However,  the  prior  art  assumes  that 
context  swaps  must  be  taken  when  a  request  for  a 
swap  is  issued. 

U.S.  Patent  No.  4,422,145  to  Sacco  et  al.  de- 
scribes  the  management  of  a  pool  of  pages  in 
buffer  memory  that  takes  advantage  of  knowledge 
of  future  requests  for  data.  It  uses  this  knowledge 
to  hold  the  most  likely  future  requests  in  the  buffer 
pool  where  they  can  be  retrieved  quickly.  It  is 
intended  to  solve  a  problem  of  allocation  of  pages 
to  tasks. 

U.S.  Patent  No.  4,463,424  to  Mattson  et  al. 
describes  an  invention  similar  to  that  of  Sacco  et 
al.,  although  it  differs  in  detail.  Mattson  et  al.  mea- 
sure  task  behavior  to  determine  how  to  allocate 
memory  to  individual  tasks  so  as  to  reduce  the 
number  of  misses  in  cache  memory.  However, 
requests  made  to  cache  memory  are  honored  in 
the  order  received. 

U.S.  Patent  No.  4,484,274  to  Berenbaum  et  al. 
describes  a  procedure  which  identifies  what  part  of 
the  state  of  a  process  actually  needs  to  be  saved 
when  an  interrupt  occurs.  Hence,  given  that  an 
interrupt  is  to  be  honored,  it  attempts  to  save  as 
little  as  possible.  U.S.  Patent  No.  4,382,278  to 
Appelt  teaches  how  to  reduce  context  swap  over- 

head  by  switching  workspaces.  This  reduces  the 
amount  of  work  at  a  context  swap.  T.  G.  Lang  in 
IBM  Technical  Disclosure  Bulletin,  July  1986,  p. 
947,  describes  a  means  for  speeding  the  context 

5  swap  by  reducing  some  overhead  associated  with 
the  process  of  saving  context. 

It  is  therefore  the  object  of  the  present  inven- 
tion  to  provide  a  method  and  an  apparatus  to 
reduce  the  cache-reload  transient  by  carefully  se- 

w  lecting  the  times  at  which  programs  can  be  sus- 
pended,  and  to  accomplish  context  swapping  at  a 
point  when  the  footprint  of  a  current  task  is  small. 

The  solution  of  the  object  for  the  method  and 
for  the  apparatus  is  described  in  the  characterizing 

75  part  of  claim  1  and/or  7  respectively. 
According  to  the  invention,  suspensions  of  pro- 

grams  running  in  a  multi-programming  or  multi- 
tasking  environment  are  made  to  occur  when  the 
footprint  of  a  program  or  task  to  be  suspended  is 

20  relatively  small.  This  occurs  when  a  process  re- 
leases  data  or  instruction  storage  in  the  cache 
because  the  program  has  moved  to  a  different 
phase  of  operation.  More  particularly,  the  invention 
is  an  interrupt  that  is  armed  to  occur  at  small- 

25  footprint  points,  and  a  means  for  detecting  when 
such  a  point  occurs. 

The  invention  can  be  implemented  or  not  with 
other  prior  art  systems,  including  those  described 
above,  to  further  enhance  the  operation  of  a  multi- 

30  programmed  or  multi-tasking  computer  system. 
The  subject  invention  differs  from  the  Sacco  et  al. 
invention  in  that  the  Sacco  et  al.  invention  does  not 
contain  the  idea  that  requests  can  be  deferred  in 
order  to  reduce  the  cost  of  context  swaps.  Re- 

35  quests  are  honored  as  they  are  presented  to  the 
processor,  and  memory  management  is  performed 
as  a  consequence  of  the  requests  received  and 
anticipated  future  requests.  Nor  does  Mattson  et  al. 
attempt  to  defer  or  reorder  such  requests  in  order 

40  to  reduce  the  number  of  misses.  Rather,  the  inven- 
tion  of  Mattson  et  al.  manages  a  memory  resource 
in  response  to  a  sequence  of  requests  for  that 
resource,  whereas  the  subject  invention  defers  a 
request  to  a  time  when  it  can  be  honored  at  a  low 

45  cost.  Also,  none  of  Berenbaum  et  al.,  Appelt  or 
Lang  are  concerned  with  when  to  make  a  context 
swap,  which  is  the  basic  concept  of  the  subject 
invention. 

Thus,  in  the  present  state  of  the  art,  a  context 
so  swap  is  initiated  when  a  program  exceeds  its  al- 

located  time  quantum  or  when  it  reaches  a  pro- 
grammed  wait  or  an  input/output  (I/O)  operation  or 
other  similar  reason.  The  invention  incorporates  a 
context-swap  interrupt  that  is  different  from  the 
usual  quantum-timeout  interrupt  in  that  this  inter- 
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ing  Co.  (1981),  and  in  Chapter  7,  "Real  Storage", 
at  pages  155  to  174  of  An  Introduction  to  Operating 
Systems,  by  Harvey  W.  Deitel,  Addison-Wesley 
Publishing  Co.  (1984).  As  used  herein,  the  terms 

5  multi-programming  and  multi-tasking  are  used  in- 
terchangeably. 

In  the  preferred  embodiment  of  the  invention,  it 
is  assumed  that  the  normal  mode  of  operation  of 
the  multi-programmed  or  multi-tasking  computer 

io  system  operates  under  the  control  of  an  executive 
control  program,  or  operating  system,  which  main- 
tains  a  list  of  executable  tasks.  The  operating  sys- 
tem  selects  a  task  for  immediate  execution  from 
the  list  of  available  tasks,  allocates  a  maximum 

75  execution  time  to  the  task  selected,  setting  an 
interrupt  to  occur  in  the  future  at  that  time.  This 
maximum  time  is  called  a  quantum  of  time.  The 
operating  system  then  initiates  execution  of  the 
task  selected.  The  selected  task  executes  for  the 

20  quantum  of  time  allocated  to  it,  at  which  point  the 
interrupt  occurs  and  the  task  is  suspended.  The 
operating  system  then  selects  a  different  task  from 
the  list  of  executable  tasks  and  repeats  these 
steps. 

25  In  some  cases,  a  currently  running  program  or 
task  is  not  able  to  complete  its  time  quantum.  This 
can  occur  when  any  of  the  following  cases: 

1  .  The  program  or  task  itself  must  wait  for  an 
external  event  to  occur  such  as  the  completion  of 

30  an  input/output  (I/O)  operation.  The  task  then  must 
be  suspended  immediately  and  removed  from  the 
list  of  executable  tasks.  The  operating  system  must 
initiate  a  different  program  or  task  at  this  point. 

2.  An  external  event  such  as  the  completion 
35  of  an  input/output  (I/O)  operation  is  recognized.  The 

external  event  requires  the  operating  system  to 
initiate  an  input/output  program  and  to  alter  the  lists 
of  tasks  that  are  ready  to  execute  and  that  are 
awaiting  external  events.  The  operating  system  can 

40  return  to  the  task  that  was  interrupted  and  let  it 
complete  its  time  quantum  or  select  a  new  task. 

3.  If  an  external  event  is  recognized,  and  an 
executing  task  is  suspended  temporarily,  during 
the  time  of  suspension  its  cumulative  execution 

45  time  does  not  increase. 
The  description  of  the  foregoing  environment  is 

representative  of  the  possible  environments  that 
support  the  invention,  but  the  invention  is  not  limit- 
ed  to  this  specific  environment.  The  purpose  of  the 

so  invention  is  to  defer  the  interrupt  at  the  end  of  a 
time  quantum  to  occur  when  the  cost  of  a  context 
swap  is  likely  to  be  relatively  low.  The  invention 
modifies  the  normal  operation  described  above  to 
become  the  following. 

55  When  the  operating  system  allocates  a  time 
quantum  to  a  selected  task,  it  expresses  the  time 
quantum  by  two  times,  the  earliest  possible  end  of 
the  time  quantum  and  the  latest  possible  end  of  the 

rupt  has  two  times  associated  with  it.  The  first  time 
is  a  minimum  time  that  tells  when  the  context-swap 
is  to  be  armed.  The  interrupt  cannot  be  posted  until 
the  minimum  time  passes.  After  the  minimum  time, 
the  context-swap  interrupt  is  armed  and  will  be 
posted  when  a  signal  is  received  that  indicates  that 
a  program  footprint  has  decreased  in  size. 

The  second  time  associated  with  a  context- 
swap  interrupt  is  a  maximum  time.  If  no  context- 
swap  interrupt  has  been  posted  by  the  time  the 
maximum  time  is  reached,  the  context-swap  inter- 
rupt  will  be  posted  at  that  point.  Thus,  the  context- 
swap  interrupt  is  similar  to  a  quantum-timeout  inter- 
rupt  in  that  it  assures  that  no  program  can  run  for 
too  long  a  time,  but  it  also  tends  to  swap  a  pro- 
gram  at  a  time  that  will  cause  lower  future  over- 
head. 

The  foregoing  and  other  objects,  aspects  and 
advantages  will  be  better  understood  from  the  fol- 
lowing  detailed  description  of  a  preferred  embodi- 
ment  of  the  invention  with  reference  to  the  draw- 
ings,  in  which: 

Fig.  1  is  a  block  diagram  illustrating  the 
means  for  controlling  a  deferrable  interrupt; 

Fig.  2  is  a  block  diagram  illustrating  the 
means  for  setting  a  deferrable  interrupt; 

Fig.  3  is  a  flow  chart  showing  the  events  that 
occur  when  the  deferrable  interrupt  becomes  ar- 
med; 

Fig.  4  is  a  flow  chart  showing  the  events  that 
occur  when  a  deferrable  interrupt  is  posted  due  to 
the  maximum  quantum  time  being  reached; 

Fig.  5  is  a  flow  chart  showing  how  the  pro- 
gram  triggers  an  armed  deferrable  interrupt  when  it 
reaches  a  point  where  the  interrupt  should  be  rec- 
ognized;  and 

Fig.  6  s  a  flow  chart  showing  the  action  that 
is  taken  to  disable  a  deferrable  interrupt  if  a  task  is 
interrupted  before  its  deferrable  interrupt  is  armed. 

A  general  purpose  computer  is  said  to  run 
under  the  control  of  an  executive  control  program, 
commonly  called  an  operating  system,  which  is  a 
program  which  may  be  implemented  in  software, 
firmware,  microcode  or  a  combination  of  the  three 
which  controls  the  computer's  hardware.  The  op- 
erating  system  responds  to  calls  from  the  applica- 
tion  program  or  task  running  on  the  computer  to 
write  data  to  a  display  screen,  store  and  retrieve 
data  to  or  from  a  disk  storage  and  print  out  a 
report.  The  application  program  or  task  is  said  to 
run  on  the  operating  system.  As  used  herein  pro- 
gram  or  task  are  used  interchangeably  to  mean  an 
application  program. 

The  subject  invention  is  in  the  field  of  multi- 
programming  systems  of  the  type  generally  de- 
scribed  in  Section  3.6,  "Multiprogramming  Sys- 
tems",  at  pages  81  to  88  of  Operating  Systems,  by 
H.  Lorin  and  M.  M.  Deitel,  Addison-Wesley  Publish- 
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function  blocks  60,  70  and  80  is  unimportant.  The 
operating  system  may  do  other  system  dependent 
tasks  interspersed  with  these  tasks.  The  aspect  of 
the  figure  that  is  not  taught  by  the  prior  art  is  the 

5  setting  of  the  minimum  quantum  time  in  block  70. 
Fig.  3  shows  the  logic  required  to  arm  the 

interrupt.  The  elapsed  time  for  the  running  task  is 
indicated  by  the  clock  in  Fig.  3.  The  clock  is 
advanced  as  indicated  in  function  block  100.  The 

w  interval  between  executions  of  block  100  is  system 
dependent,  and  it  need  not  be  done  at  the  rate  of 
the  fastest  clock  in  the  system.  Each  time  the  clock 
advances,  a  test  is  made  in  decision  block  110  to 
determine  if  the  quantum-time  interrupt  is  armed.  If 

75  so,  an  exit  is  taken  to  decision  block  150  in  Fig.  4 
where  further  tests  are  made  as  described  below.  If 
not,  the  current  value  of  the  elapsed  time  is  com- 
pared  to  the  minimum  quantum  time  in  decision 
block  120.  If  the  current  value  exceeds  the  mini- 

20  mum  quantum  time,  the  quantum-time  interrupt  be- 
comes  armed  as  shown  in  function  block  130. 

Fig.  4  shows  how  a  quantum-time  interrupt  is 
posted.  This  figure  reflects  the  prior  art.  In  decision 
block  150,  the  current  elapsed  time  is  compared  to 

25  the  maximum  quantum  time.  If  the  current  value 
exceeds  maximum  quantum  time,  an  interrupt  is 
posted  as  shown  in  function  block  160. 

Fig.  5  illustrates  how  a  program  forces  an 
armed  interrupt  to  occur.  The  program  executes  a 

30  special  instruction  that  is  placed  in  a  program 
where  context  swap  overhead  is  locally  smaller 
than  the  overhead  incurred  at  other  places.  The 
execution  of  this  instruction  is  shown  in  function 
block  200.  The  execution  of  the  instruction  causes 

35  a  test  of  the  state  of  the  interrupt  as  shown  in 
decision  block  210.  If  the  interrupt  is  armed,  then  it 
is  posted  in  function  block  220.  The  posting  of  the 
interrupt  signifies  the  end  of  the  quantum.  The 
operating  system  will  react  to  the  interrupt  by  sus- 

40  pending  the  task  using  techniques  available  in  the 
prior  art  in  response  to  the  end  of  the  time  quan- 
tum.  If  the  interrupt  is  unarmed,  then  the  special 
instruction  has  no  effect  on  program  execution  oth- 
er  than  to  utilize  the  time  required  to  fetch  and 

45  interpret  the  interrupt  instruction. 
Fig.  6  illustrates  how  an  external  event  can 

trigger  an  end-of-quantum  interrupt.  Function  block 
300  shows  an  interrupt  being  posted  by  an  external 
event.  When  this  occurs,  the  quantum-time  inter- 

so  rupt  is  checked  in  decision  block  310.  If  it  is 
armed,  then  in  function  block  320,  it  is  posted  as 
an  interrupt  as  well,  thus  causing  at  least  two 
interrupts  to  be  actively  pending.  If  it  is  not  armed, 
then,  in  function  block  330,  the  advance  of  the 

55  register  devoted  to  recording  the  elapsed  time  for 
the  running  task  is  disabled.  At  this  point,  the 
operating  system  will  suspend  the  running  task  and 
schedule  a  task  associated  with  the  external  event. 

time  quantum.  An  interrupt  for  end  of  quantum 
cannot  occur  before  the  earliest  time  and  is  guar- 
anteed  to  occur  at  the  latest  time  unless  it  is 
triggered  by  the  executing  program  to  occur  before 
that  point.  The  operating  system  initiates  execution 
of  the  task  selected,  and  the  selected  task  ex- 
ecutes  for  the  minimum  quantum  of  time  allocated 
to  it,  at  which  point  the  end-of-quantum  interrupt 
becomes  armed.  While  the  end-of-quantum  inter- 
rupt  is  armed,  the  task  continues  execution.  If  the 
task  executes  an  instruction  that  triggers  the  end- 
of-quantum  interrupt,  the  interrupt  is  honored  im- 
mediately.  If  no  end-of-quantum  interrupt  is  trig- 
gered  before  the  task  executes  for  the  maximum 
alloted  time,  then  the  end-of-quantum  interrupt  is 
triggered.  Regardless  of  how  the  end-of-quantum 
interrupt  is  triggered,  the  operating  system  treats 
the  interrupt  as  a  conventional  end-of-interrupt 
quantum  interrupt.  If  an  external  event  triggers  an 
interrupt  while  an  executing  task  has  an  armed 
end-of-quantum  interrupt,  the  task  is  treated  as 
having  reached  its  end  of  quantum,  and  the  pend- 
ing  interrupt  is  removed. 

Referring  now  to  the  drawings,  and  more  par- 
ticularly  to  Fig.  1,  there  is  shown  the  mechanism 
for  implementing  the  deferrable  interrupt  according 
to  the  invention.  The  mechanism  comprises  three 
registers  and  two  adders.  The  registers  are  an 
elapsed-time  register  10,  a  minimum-quantum  reg- 
ister  20,  and  a  maximum-quantum  register  30.  The 
first  adder  40  forms  the  difference  of  the  value  of 
the  minimum  quantum  and  elapsed  time.  The  sign 
of  the  result  is  negative  if  the  elapsed  time  has 
exceeded  the  minimum  quantum  time.  The  nega- 
tive  sign  causes  the  interrupt  to  be  armed  as 
described  later.  Similarly,  the  second  adder  50 
forms  the  difference  in  the  value  of  the  maximum 
quantum  and  the  elapsed  time.  A  negative  sign  on 
the  result  of  this  addition  causes  the  interrupt  to  be 
posted  as  described  later. 

The  difference  between  Fig.  1  and  the  prior  art 
is  that  the  conventional  implementation  of  an  inter- 
rupt  based  on  elapsed  time  uses  only  the 
maximum-time  register  30,  the  elapsed-time  regis- 
ter  10  and  the  adder  50.  The  interrupt  is  posted  by 
testing  the  sign  of  the  result  of  the  adder.  The  prior 
art  does  not  contain  the  provision  to  arm  an  inter- 
rupt,  and  therefore  the  prior  art  does  not  teach  the 
use  of  the  minimum-time  register  20  and  the  adder 
40  shown  in  Fig.  1  . 

Fig.  2  illustrates  the  steps  taken  by  the  operat- 
ing  system  just  prior  to  initiating  the  running  of  a 
task.  The  operating  system  initializes  the  elapsed 
time  of  the  task  to  zero  in  function  block  60,  and 
initializes  the  minimum  and  maximum  quantum 
times  in  function  blocks  70  and  80  in  Fig.  2.  The 
final  step  in  Fig.  2  is  to  initiate  the  task  as  indicated 
in  90.  The  order  of  the  operations  performed  in 
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When  this  characteristic  is  detected,  the  subroutine 
will  tend  to  occupy  a  large  fraction  of  cache  and 
that  fraction  will  not  be  needed  by  subsequent 
code. 

5  If  a  context-swap  interrupt  occurs  before  ex- 
ecution  of  a  subroutine  is  ended,  the  subroutine  will 
have  to  be  reloaded  in  cache  before  the  exit  oc- 
curs.  If  the  context-swap  interrupt  waits  for  the  exit 
of  the  subroutine,  the  cache-reload  transient  is 

w  avoided.  By  identifying  a  subroutine  with  the  prop- 
erty  above,  a  compiler  can  insert  a  context-swap 
interrupt  trigger  just  before  the  exit  of  each  such 
routine.  This  invention  offers  performance  improve- 
ments  whichever  means  is  used  for  triggering  inter- 

75  rupts.  The  performance  improvement  tends  to  be 
greater  if  the  interrupts  can  be  associated  with  the 
greatest  reductions  in  footprint  sizes. 

While  the  invention  has  been  described  in 
terms  of  a  single  preferred  embodiment,  those 

20  skilled  in  the  art  will  recognize  that  the  invention 
can  be  practiced  with  modification  within  the  spirit 
and  scope  of  the  appended  claims. 

The  important  new  idea  of  Fig.  6  that  is  not 
taught  by  the  prior  art  is  that  an  external  event  is 
an  opportune  time  to  force  a  context  swap  that 
otherwise  may  not  be  taken  until  later.  Because  the 
original  task  will  be  suspended  briefly  to  permit  a 
second  task  to  run,  the  second  task  will  load  itself 
into  cache  memory  and  thereby  remove  part  of  the 
state  associated  with  the  first  task.  This  will  pro- 
duce  a  local  reduction  in  the  size  of  the  state 
associated  with  the  first  task.  At  the  completion  of 
running  the  second  task,  the  operating  system 
would  normally  return  to  the  first  task  because  its 
time  quantum  has  not  run  out.  However,  if  the 
quantum  interrupt  is  armed,  then  an  interrupt  can 
be  taken  at  any  point  where  the  size  of  the  state  to 
be  swapped  is  relatively  small.  This  occurs  at  the 
end  of  processing  the  interrupting  task.  By  posting 
the  quantum-time  interrupt  as  indicated  in  function 
block  320  of  Fig.  6,  the  operating  system  will  not 
return  to  the  original  task  after  processing  the  inter- 
rupting  task,  thereby  causing  the  context  swap  to 
occur  at  a  locally  good  point  in  time. 

Thus,  an  armed  quantum-time  interrupt  can  be 
posted  by  either  the  execution  of  an  instruction  or 
by  the  posting  of  an  external-event  interrupt.  In 
general,  an  armed  interrupt  should  be  posted  under 
any  condition  that  is  recognized  to  produce  a  lo- 
cally  small  context.  The  conditions  under  which  this 
it  the  case  depend  on  the  characteristics  of  the 
computer  system. 

Broadly  described,  the  invention  consists  of  (1) 
an  interrupt  for  context  swapping  that  tends  to 
occur  when  program  footprints  are  small  and  (2)  a 
means  for  triggering  the  interrupt  at  the  point  that  a 
footprint  decreases  in  size.  Context-swap  interrupts 
are  triggered  on  the  following  events: 

1  .  Exit  from  a  basic  block; 
2.  Closing  a  file  (when  buffer  storage  is 

returned);  and 
3.  Other  similar  detectable  events  when  stor- 

age  is  returned  for  use  for  other  purposes. 
These  events  can  be  signaled  by  a  special 

interrupt  instruction  placed  in  the  code  by  the  com- 
piler.  The  action  of  the  special  instruction  is  to 
cause  an  interrupt  if  the  context-swap  interrupt  has 
been  armed,  and  to  have  no  effect  otherwise.  A 
simple  and  expedient  way  of  generating  the  inter- 
rupts  is  to  force  the  interrupts  to  occur  when  sub- 
routine  returns  and  interrupt  returns  are  executed. 
In  each  case,  a  program  or  process  is  being  exited, 
and  its  state  is  unlikely  to  be  needed  in  the  near 
future.  A  more  effective  method  is  to  use  algorith- 
mic  analysis  to  determine  when  a  subroutine  exit 
occurs  that  has  the  characteristic  that  the  subrou- 
tine  is  a  large  straight-line  code  or  has  one  or  more 
nesting  levels  of  loops,  and  the  total  number  of 
data  and  instruction  cells  likely  to  be  touched  by 
the  subroutine  is  on  the  order  of  the  cache  size. 

25  Claims 

1  .  Cache  memory  management  method  for  re- 
ducing  cache-reload  transient  in  a  context  swap  in 
a  multi-programmed  computer  system  for  reducing 

30  the  cost  of  cache  misses  at  context  swap  points  by 
choosing  points  in  time  for  swapping  contexts 
when  a  program's  footprint  tends  to  be  small,  char- 
acterized  by 
computer  operating  system  performed  steps  of 

35  generating  an  interrupt  for  context  swapping  that 
tends  to  occur  when  program  footprints  are  small; 
and 
triggering  the  interrupt  at  a  point  that  a  program 
footprint  decreases  in  size. 

40  2.  Method  for  reducing  cache-reload  transient 
in  a  context  swap  as  recited  in  claim  1,  character- 
ized  by 
computer  operating  system  steps  of 
maintaining  a  list  of  tasks  to  be  performed;  calling 

45  a  task  from  said  list  of  tasks;  setting  an  elapsed 
time  for  said  task  to  zero;  setting  minimum  and 
maximum  quantum  times  for  said  task;  and  initiat- 
ing  said  task. 

3.  Method  for  reducing  cache-reload  transient 
so  in  a  context  swap  as  recited  in  claim  2,  character- 

ized  in 
that  the  step  of  generating  an  interrupt  comprises 
computer  operating  system  steps  of 
advancing  said  elapsed  time  for  said  task  while 

55  said  task  is  running; 
comparing  said  elapsed  time  with  said  minimum 
quantum  time;  and 
if  said  elapsed  time  exceeds  said  minimum  quan- 
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turn  time,  arming  an  interrupt. 
4.  Method  for  reducing  cache-reload  transient 

in  a  context  swap  as  recited  in  claim  3,  character- 
ized  by 
computer  operating  system  steps  of  5 
checking  to  determine  if  an  interrupt  is  armed; 
if  an  interrupt  is  armed,  comparing  elapsed  time 
with  said  maximum  quantum  time;  and 
if  said  elapsed  time  exceeds  said  maximum  time, 
posting  said  armed  interrupt  for  execution.  w 

5.  Method  for  reducing  cache-reload  transient 
in  a  context  swap  as  recited  in  claim  4,  character- 
ized 
by  computer  operating  system  step  of  posting  said 
armed  interrupt  for  execution  when  a  predeter-  75 
mined  programmed  instruction  is  executed. 

6.  Method  for  reducing  cache-reload  transient 
in  a  context  swap  as  recited  in  claim  4,  character- 
ized 
by  computer  operating  system  step  of  posting  said  20 
armed  interrupt  for  execution  when  cache  storage 
is  returned  for  other  purposes,  such  as  by  the 
initiation  of  interrupt  routines  when  the  processor  is 
preempted  to  respond  to  external  interrupts. 

7.  Apparatus  for  reducing  cache-reload  tran-  25 
sient  in  a  context  swap  in  a  multi-programmed 
computer  system,  characterized  by 
elapsed  time  register  means  (60)  for  storing  a 
value  corresponding  to  a  time  of  running  a  task  on 
said  multi-programmed  computer  system;  30 
minimum  quantum  time  register  means  (70)  for 
storing  a  value  corresponding  to  a  minimum  quan- 
tum  time'  assigned  to  said  task; 
maximum  quantum  time  register  means  (80)  for 
storing  a  value  corresponding  to  a  maximum  quan-  35 
turn  assigned  to  said  task;  and 
comparison  logic  means  (120;  150)  connected  to 
said  elapsed  time  register  means  and  said  mini- 
mum  and  maximum  quantum  time  register  means- 
for  comparing  elapsed  time  to  minimum  quantum  40 
time  and  elapsed  time  to  maximum  quantum  time. 

8.  Apparatus  recited  in  claim  7,  characterized 
in 
that  said  comparison  logic  means  comprises 
first  known  adder  means  (40)  for  computing  a  dif-  45- 
ference  between  a  value  in  said  elapsed  time  regis- 
ter  means  (10)  and  a  value  in  said  minimum  quan- 
tum  register  means  (30),  a  negative  output  of  said 
first  adder  means  (40)  serving  to  arm  an  interrupt; 
and  50 
second  known  adder  means  (50)  for  computing  a 
difference  between  a  value  in  said  elapsed  time 
register  means  (10)  and  a  value  in  said  maximum 
quantum  register  means  (30),  a  negative  output  of 
said  second  adder  means  (50)  causing  said  inter-  55 
rupt  to  be  executed. 
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