
J
Europaisches Patentamt

European Patent Office

Office europeen des brevets

0 3 9 6 8 6 3

A 2
© Publication number:

E U R O P E A N PATENT A P P L I C A T I O N

© int.ci.5:G06F 1 2 / 0 8 © Application number: 90104152.5

© Date of filing: 03.03.90

© Applicant: International Business Machines
Corporation
Old Orchard Road
Armonk, N.Y. 10504(US)

© Inventor: Stone, Harold Stuart
50 Cross Ridge Road
Chappaqua, N.Y. 10514(US)

© Priority: 10.05.89 US 349621

© Date of publication of application:
14.11.90 Bulletin 90/46

© Designated Contracting States:
DE FR GB

© Representative: Rudolph, Wolfgang, Dipl.-lng.
IBM Deutschland GmbH Schonaicher
Strasse 220
D-7030 Boblingen(DE)

Cache memory management.

© Suspensions of programs running in a multi-
programning environment are made to occur when
the footprint of a program to be suspended is rela-
tively small. This occurs when a process releases
data or instruction storage in the cache because the
program has moved to a different phase of behavior.
An interrupt is armed to occur at small-footprint
points, and then the point where that occurs is
detected.

F I G . 1

40 10 \
ELAPSED " I

TIME I

20\
,

± J
MINIMUM I

QUANTUM i

ARM

IF NEGATIVE

CM
<

CO
CO
00

CO
o>
CO

INTERRUPT
30 \ IF NEGATIVE

MAXIMUM
QUANTUM

Q.
UJ

Xerox Copy Centre

EP 0 396 863 A2

CACHE MEMORY MANAGEMENT

The present invention generally relates to
cache memory management according to the pre-
amble of claim 1 for a method and claim 7 for an
apparatus.

In multi-programmed or multi-tasking computer
systems, a processor is shared among many dif-
ferent programs by periodically changing the pro-
gram or task that is running on the processor. For
computing systems with cache memories, at the
point that one program, or task, is suspended and
another is begun, the cache contains many lines
that belong to the suspended program. These lines
will tend to be displaced from cache as subsequent
programs run and will have to be reloaded when
the suspended program regains control of the pro-
cessor. The overhead for reloading those lines is
called the cache-reload transient. D. F. Thiebaut
and H. S. Stone in an article entitled "Footprints in
the Cache" published in ACM Trans, on Comput-
ing, vol. 5, no. 4, Nov. 1987, at pages "305 to 329,
report their studies of this problem and propose a
model for calculating the size of the transient that
they validated by several different case studies.
The size of the transient is related to the size of the
footprint of the program, which is the number of
active lines that the program has in the cache.

It is known in the prior art to reduce the cost of
context swaps by changing as little as possible, or
by other means to reduce the overhead of the
context swap. However, the prior art assumes that
context swaps must be taken when a request for a
swap is issued.

U.S. Patent No. 4,422,145 to Sacco et al. de-
scribes the management of a pool of pages in
buffer memory that takes advantage of knowledge
of future requests for data. It uses this knowledge
to hold the most likely future requests in the buffer
pool where they can be retrieved quickly. It is
intended to solve a problem of allocation of pages
to tasks.

U.S. Patent No. 4,463,424 to Mattson et al.
describes an invention similar to that of Sacco et
al., although it differs in detail. Mattson et al. mea-
sure task behavior to determine how to allocate
memory to individual tasks so as to reduce the
number of misses in cache memory. However,
requests made to cache memory are honored in
the order received.

U.S. Patent No. 4,484,274 to Berenbaum et al.
describes a procedure which identifies what part of
the state of a process actually needs to be saved
when an interrupt occurs. Hence, given that an
interrupt is to be honored, it attempts to save as
little as possible. U.S. Patent No. 4,382,278 to
Appelt teaches how to reduce context swap over-

head by switching workspaces. This reduces the
amount of work at a context swap. T. G. Lang in
IBM Technical Disclosure Bulletin, July 1986, p.
947, describes a means for speeding the context

5 swap by reducing some overhead associated with
the process of saving context.

It is therefore the object of the present inven-
tion to provide a method and an apparatus to
reduce the cache-reload transient by carefully se-

w lecting the times at which programs can be sus-
pended, and to accomplish context swapping at a
point when the footprint of a current task is small.

The solution of the object for the method and
for the apparatus is described in the characterizing

75 part of claim 1 and/or 7 respectively.
According to the invention, suspensions of pro-

grams running in a multi-programming or multi-
tasking environment are made to occur when the
footprint of a program or task to be suspended is

20 relatively small. This occurs when a process re-
leases data or instruction storage in the cache
because the program has moved to a different
phase of operation. More particularly, the invention
is an interrupt that is armed to occur at small-

25 footprint points, and a means for detecting when
such a point occurs.

The invention can be implemented or not with
other prior art systems, including those described
above, to further enhance the operation of a multi-

30 programmed or multi-tasking computer system.
The subject invention differs from the Sacco et al.
invention in that the Sacco et al. invention does not
contain the idea that requests can be deferred in
order to reduce the cost of context swaps. Re-

35 quests are honored as they are presented to the
processor, and memory management is performed
as a consequence of the requests received and
anticipated future requests. Nor does Mattson et al.
attempt to defer or reorder such requests in order

40 to reduce the number of misses. Rather, the inven-
tion of Mattson et al. manages a memory resource
in response to a sequence of requests for that
resource, whereas the subject invention defers a
request to a time when it can be honored at a low

45 cost. Also, none of Berenbaum et al., Appelt or
Lang are concerned with when to make a context
swap, which is the basic concept of the subject
invention.

Thus, in the present state of the art, a context
so swap is initiated when a program exceeds its al-

located time quantum or when it reaches a pro-
grammed wait or an input/output (I/O) operation or
other similar reason. The invention incorporates a
context-swap interrupt that is different from the
usual quantum-timeout interrupt in that this inter-

EP 0 396 863 A2

ing Co. (1981), and in Chapter 7, "Real Storage",
at pages 155 to 174 of An Introduction to Operating
Systems, by Harvey W. Deitel, Addison-Wesley
Publishing Co. (1984). As used herein, the terms

5 multi-programming and multi-tasking are used in-
terchangeably.

In the preferred embodiment of the invention, it
is assumed that the normal mode of operation of
the multi-programmed or multi-tasking computer

io system operates under the control of an executive
control program, or operating system, which main-
tains a list of executable tasks. The operating sys-
tem selects a task for immediate execution from
the list of available tasks, allocates a maximum

75 execution time to the task selected, setting an
interrupt to occur in the future at that time. This
maximum time is called a quantum of time. The
operating system then initiates execution of the
task selected. The selected task executes for the

20 quantum of time allocated to it, at which point the
interrupt occurs and the task is suspended. The
operating system then selects a different task from
the list of executable tasks and repeats these
steps.

25 In some cases, a currently running program or
task is not able to complete its time quantum. This
can occur when any of the following cases:

1 . The program or task itself must wait for an
external event to occur such as the completion of

30 an input/output (I/O) operation. The task then must
be suspended immediately and removed from the
list of executable tasks. The operating system must
initiate a different program or task at this point.

2. An external event such as the completion
35 of an input/output (I/O) operation is recognized. The

external event requires the operating system to
initiate an input/output program and to alter the lists
of tasks that are ready to execute and that are
awaiting external events. The operating system can

40 return to the task that was interrupted and let it
complete its time quantum or select a new task.

3. If an external event is recognized, and an
executing task is suspended temporarily, during
the time of suspension its cumulative execution

45 time does not increase.
The description of the foregoing environment is

representative of the possible environments that
support the invention, but the invention is not limit-
ed to this specific environment. The purpose of the

so invention is to defer the interrupt at the end of a
time quantum to occur when the cost of a context
swap is likely to be relatively low. The invention
modifies the normal operation described above to
become the following.

55 When the operating system allocates a time
quantum to a selected task, it expresses the time
quantum by two times, the earliest possible end of
the time quantum and the latest possible end of the

rupt has two times associated with it. The first time
is a minimum time that tells when the context-swap
is to be armed. The interrupt cannot be posted until
the minimum time passes. After the minimum time,
the context-swap interrupt is armed and will be
posted when a signal is received that indicates that
a program footprint has decreased in size.

The second time associated with a context-
swap interrupt is a maximum time. If no context-
swap interrupt has been posted by the time the
maximum time is reached, the context-swap inter-
rupt will be posted at that point. Thus, the context-
swap interrupt is similar to a quantum-timeout inter-
rupt in that it assures that no program can run for
too long a time, but it also tends to swap a pro-
gram at a time that will cause lower future over-
head.

The foregoing and other objects, aspects and
advantages will be better understood from the fol-
lowing detailed description of a preferred embodi-
ment of the invention with reference to the draw-
ings, in which:

Fig. 1 is a block diagram illustrating the
means for controlling a deferrable interrupt;

Fig. 2 is a block diagram illustrating the
means for setting a deferrable interrupt;

Fig. 3 is a flow chart showing the events that
occur when the deferrable interrupt becomes ar-
med;

Fig. 4 is a flow chart showing the events that
occur when a deferrable interrupt is posted due to
the maximum quantum time being reached;

Fig. 5 is a flow chart showing how the pro-
gram triggers an armed deferrable interrupt when it
reaches a point where the interrupt should be rec-
ognized; and

Fig. 6 s a flow chart showing the action that
is taken to disable a deferrable interrupt if a task is
interrupted before its deferrable interrupt is armed.

A general purpose computer is said to run
under the control of an executive control program,
commonly called an operating system, which is a
program which may be implemented in software,
firmware, microcode or a combination of the three
which controls the computer's hardware. The op-
erating system responds to calls from the applica-
tion program or task running on the computer to
write data to a display screen, store and retrieve
data to or from a disk storage and print out a
report. The application program or task is said to
run on the operating system. As used herein pro-
gram or task are used interchangeably to mean an
application program.

The subject invention is in the field of multi-
programming systems of the type generally de-
scribed in Section 3.6, "Multiprogramming Sys-
tems", at pages 81 to 88 of Operating Systems, by
H. Lorin and M. M. Deitel, Addison-Wesley Publish-

EP 0 396 863 A2

function blocks 60, 70 and 80 is unimportant. The
operating system may do other system dependent
tasks interspersed with these tasks. The aspect of
the figure that is not taught by the prior art is the

5 setting of the minimum quantum time in block 70.
Fig. 3 shows the logic required to arm the

interrupt. The elapsed time for the running task is
indicated by the clock in Fig. 3. The clock is
advanced as indicated in function block 100. The

w interval between executions of block 100 is system
dependent, and it need not be done at the rate of
the fastest clock in the system. Each time the clock
advances, a test is made in decision block 110 to
determine if the quantum-time interrupt is armed. If

75 so, an exit is taken to decision block 150 in Fig. 4
where further tests are made as described below. If
not, the current value of the elapsed time is com-
pared to the minimum quantum time in decision
block 120. If the current value exceeds the mini-

20 mum quantum time, the quantum-time interrupt be-
comes armed as shown in function block 130.

Fig. 4 shows how a quantum-time interrupt is
posted. This figure reflects the prior art. In decision
block 150, the current elapsed time is compared to

25 the maximum quantum time. If the current value
exceeds maximum quantum time, an interrupt is
posted as shown in function block 160.

Fig. 5 illustrates how a program forces an
armed interrupt to occur. The program executes a

30 special instruction that is placed in a program
where context swap overhead is locally smaller
than the overhead incurred at other places. The
execution of this instruction is shown in function
block 200. The execution of the instruction causes

35 a test of the state of the interrupt as shown in
decision block 210. If the interrupt is armed, then it
is posted in function block 220. The posting of the
interrupt signifies the end of the quantum. The
operating system will react to the interrupt by sus-

40 pending the task using techniques available in the
prior art in response to the end of the time quan-
tum. If the interrupt is unarmed, then the special
instruction has no effect on program execution oth-
er than to utilize the time required to fetch and

45 interpret the interrupt instruction.
Fig. 6 illustrates how an external event can

trigger an end-of-quantum interrupt. Function block
300 shows an interrupt being posted by an external
event. When this occurs, the quantum-time inter-

so rupt is checked in decision block 310. If it is
armed, then in function block 320, it is posted as
an interrupt as well, thus causing at least two
interrupts to be actively pending. If it is not armed,
then, in function block 330, the advance of the

55 register devoted to recording the elapsed time for
the running task is disabled. At this point, the
operating system will suspend the running task and
schedule a task associated with the external event.

time quantum. An interrupt for end of quantum
cannot occur before the earliest time and is guar-
anteed to occur at the latest time unless it is
triggered by the executing program to occur before
that point. The operating system initiates execution
of the task selected, and the selected task ex-
ecutes for the minimum quantum of time allocated
to it, at which point the end-of-quantum interrupt
becomes armed. While the end-of-quantum inter-
rupt is armed, the task continues execution. If the
task executes an instruction that triggers the end-
of-quantum interrupt, the interrupt is honored im-
mediately. If no end-of-quantum interrupt is trig-
gered before the task executes for the maximum
alloted time, then the end-of-quantum interrupt is
triggered. Regardless of how the end-of-quantum
interrupt is triggered, the operating system treats
the interrupt as a conventional end-of-interrupt
quantum interrupt. If an external event triggers an
interrupt while an executing task has an armed
end-of-quantum interrupt, the task is treated as
having reached its end of quantum, and the pend-
ing interrupt is removed.

Referring now to the drawings, and more par-
ticularly to Fig. 1, there is shown the mechanism
for implementing the deferrable interrupt according
to the invention. The mechanism comprises three
registers and two adders. The registers are an
elapsed-time register 10, a minimum-quantum reg-
ister 20, and a maximum-quantum register 30. The
first adder 40 forms the difference of the value of
the minimum quantum and elapsed time. The sign
of the result is negative if the elapsed time has
exceeded the minimum quantum time. The nega-
tive sign causes the interrupt to be armed as
described later. Similarly, the second adder 50
forms the difference in the value of the maximum
quantum and the elapsed time. A negative sign on
the result of this addition causes the interrupt to be
posted as described later.

The difference between Fig. 1 and the prior art
is that the conventional implementation of an inter-
rupt based on elapsed time uses only the
maximum-time register 30, the elapsed-time regis-
ter 10 and the adder 50. The interrupt is posted by
testing the sign of the result of the adder. The prior
art does not contain the provision to arm an inter-
rupt, and therefore the prior art does not teach the
use of the minimum-time register 20 and the adder
40 shown in Fig. 1 .

Fig. 2 illustrates the steps taken by the operat-
ing system just prior to initiating the running of a
task. The operating system initializes the elapsed
time of the task to zero in function block 60, and
initializes the minimum and maximum quantum
times in function blocks 70 and 80 in Fig. 2. The
final step in Fig. 2 is to initiate the task as indicated
in 90. The order of the operations performed in

EP 0 396 863 A2

When this characteristic is detected, the subroutine
will tend to occupy a large fraction of cache and
that fraction will not be needed by subsequent
code.

5 If a context-swap interrupt occurs before ex-
ecution of a subroutine is ended, the subroutine will
have to be reloaded in cache before the exit oc-
curs. If the context-swap interrupt waits for the exit
of the subroutine, the cache-reload transient is

w avoided. By identifying a subroutine with the prop-
erty above, a compiler can insert a context-swap
interrupt trigger just before the exit of each such
routine. This invention offers performance improve-
ments whichever means is used for triggering inter-

75 rupts. The performance improvement tends to be
greater if the interrupts can be associated with the
greatest reductions in footprint sizes.

While the invention has been described in
terms of a single preferred embodiment, those

20 skilled in the art will recognize that the invention
can be practiced with modification within the spirit
and scope of the appended claims.

The important new idea of Fig. 6 that is not
taught by the prior art is that an external event is
an opportune time to force a context swap that
otherwise may not be taken until later. Because the
original task will be suspended briefly to permit a
second task to run, the second task will load itself
into cache memory and thereby remove part of the
state associated with the first task. This will pro-
duce a local reduction in the size of the state
associated with the first task. At the completion of
running the second task, the operating system
would normally return to the first task because its
time quantum has not run out. However, if the
quantum interrupt is armed, then an interrupt can
be taken at any point where the size of the state to
be swapped is relatively small. This occurs at the
end of processing the interrupting task. By posting
the quantum-time interrupt as indicated in function
block 320 of Fig. 6, the operating system will not
return to the original task after processing the inter-
rupting task, thereby causing the context swap to
occur at a locally good point in time.

Thus, an armed quantum-time interrupt can be
posted by either the execution of an instruction or
by the posting of an external-event interrupt. In
general, an armed interrupt should be posted under
any condition that is recognized to produce a lo-
cally small context. The conditions under which this
it the case depend on the characteristics of the
computer system.

Broadly described, the invention consists of (1)
an interrupt for context swapping that tends to
occur when program footprints are small and (2) a
means for triggering the interrupt at the point that a
footprint decreases in size. Context-swap interrupts
are triggered on the following events:

1 . Exit from a basic block;
2. Closing a file (when buffer storage is

returned); and
3. Other similar detectable events when stor-

age is returned for use for other purposes.
These events can be signaled by a special

interrupt instruction placed in the code by the com-
piler. The action of the special instruction is to
cause an interrupt if the context-swap interrupt has
been armed, and to have no effect otherwise. A
simple and expedient way of generating the inter-
rupts is to force the interrupts to occur when sub-
routine returns and interrupt returns are executed.
In each case, a program or process is being exited,
and its state is unlikely to be needed in the near
future. A more effective method is to use algorith-
mic analysis to determine when a subroutine exit
occurs that has the characteristic that the subrou-
tine is a large straight-line code or has one or more
nesting levels of loops, and the total number of
data and instruction cells likely to be touched by
the subroutine is on the order of the cache size.

25 Claims

1 . Cache memory management method for re-
ducing cache-reload transient in a context swap in
a multi-programmed computer system for reducing

30 the cost of cache misses at context swap points by
choosing points in time for swapping contexts
when a program's footprint tends to be small, char-
acterized by
computer operating system performed steps of

35 generating an interrupt for context swapping that
tends to occur when program footprints are small;
and
triggering the interrupt at a point that a program
footprint decreases in size.

40 2. Method for reducing cache-reload transient
in a context swap as recited in claim 1, character-
ized by
computer operating system steps of
maintaining a list of tasks to be performed; calling

45 a task from said list of tasks; setting an elapsed
time for said task to zero; setting minimum and
maximum quantum times for said task; and initiat-
ing said task.

3. Method for reducing cache-reload transient
so in a context swap as recited in claim 2, character-

ized in
that the step of generating an interrupt comprises
computer operating system steps of
advancing said elapsed time for said task while

55 said task is running;
comparing said elapsed time with said minimum
quantum time; and
if said elapsed time exceeds said minimum quan-

EP 0 396 863 A2 10

turn time, arming an interrupt.
4. Method for reducing cache-reload transient

in a context swap as recited in claim 3, character-
ized by
computer operating system steps of 5
checking to determine if an interrupt is armed;
if an interrupt is armed, comparing elapsed time
with said maximum quantum time; and
if said elapsed time exceeds said maximum time,
posting said armed interrupt for execution. w

5. Method for reducing cache-reload transient
in a context swap as recited in claim 4, character-
ized
by computer operating system step of posting said
armed interrupt for execution when a predeter- 75
mined programmed instruction is executed.

6. Method for reducing cache-reload transient
in a context swap as recited in claim 4, character-
ized
by computer operating system step of posting said 20
armed interrupt for execution when cache storage
is returned for other purposes, such as by the
initiation of interrupt routines when the processor is
preempted to respond to external interrupts.

7. Apparatus for reducing cache-reload tran- 25
sient in a context swap in a multi-programmed
computer system, characterized by
elapsed time register means (60) for storing a
value corresponding to a time of running a task on
said multi-programmed computer system; 30
minimum quantum time register means (70) for
storing a value corresponding to a minimum quan-
tum time' assigned to said task;
maximum quantum time register means (80) for
storing a value corresponding to a maximum quan- 35
turn assigned to said task; and
comparison logic means (120; 150) connected to
said elapsed time register means and said mini-
mum and maximum quantum time register means-
for comparing elapsed time to minimum quantum 40
time and elapsed time to maximum quantum time.

8. Apparatus recited in claim 7, characterized
in
that said comparison logic means comprises
first known adder means (40) for computing a dif- 45-
ference between a value in said elapsed time regis-
ter means (10) and a value in said minimum quan-
tum register means (30), a negative output of said
first adder means (40) serving to arm an interrupt;
and 50
second known adder means (50) for computing a
difference between a value in said elapsed time
register means (10) and a value in said maximum
quantum register means (30), a negative output of
said second adder means (50) causing said inter- 55
rupt to be executed.

EP 0 396 863 A2

F I G . 1

1 0 4 0
\

E L A P S E D - X

™ E I
] A R M

) IF N E G A T I V E

2 0 \ * ()

M I N I M U M [S

Q U A N T U M
_ | s ^

I
| I N T E R R U P T

M A X I M U M +

} J IF N E G A T 1 V E

Q U A N T U M y C

5 0

iniv/i vn opq nn4

EP 0 396 863 A2

F I G . 2

SET E L A P S E D 6 0
► /

TIME TO 0

\

SET MINIMUM 7 0

Q U A N T U M TIME
y

\

S E T MAXIMUM q q

Q U A N T U M TIME '

I N I T I A T E 5 ^

T A S K

EP 0 396 863 A2

F I G . 3

A D V A N C E

C L O C K

1 0 0

E X I T T O

L O G I C B L O C K 1 5 0

E X I T

1 3 0 /

A R M

I N T E R R U P T E X I T

EP 0 396 863 A2

F I G . 4

E X I T

N O
1 6 0 / :

P O S T

I N T E R R U P T E X I T

EP 0 396 863 A2

F I G . 5

E X E C U T E

I N T E R R U P T

2 0 0

E X I T

/ X ^ I O

I N T E R R U P T ^ N O

A R M E D ? /

Y E S
^ 2 2 0

P O S T
^ *

I N T E R R U P T E X I T

EP 0 396 863 A2

F I G . 6

P O S T E X T E R N A L

I N T E R R U P T

3 0 0

3 1 0

N O

1
3 3 0 r

D I S A B L E

L O C A L C L O C K E X I T

/ - 3 2 O

P O S T Q U A N T U M

I N T E R R U P T E X I T

IRM _ YD 989 004

	bibliography
	description
	claims
	drawings

