11 Numéro de publication:

0 399 907 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 90401378.6

(a) Int. Cl.⁵: F42B 12/44, F42B 12/52, F42B 12/50

22) Date de dépôt: 22.05.90

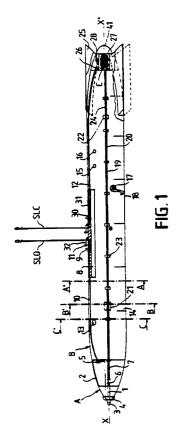
(30) Priorité: 26.05.89 FR 8906924

Date de publication de la demande: 28.11.90 Bulletin 90/48

Etats contractants désignés:
DE ES GR IT

Demandeur: THOMSON-BRANDT ARMEMENTS Tour Chenonceaux 204, rond-point du Pont de Sèvres F-92516 Boulogne-Billancourt(FR)

(72) Inventeur: Fulchiron, Noel


THOMSON-CSF SCPI Cédex 67 F-92045 Paris la Défense(FR) Inventeur: Naillon, Bernard THOMSON-CSF SCPI Cédex 67 F-92045 Paris la Défense(FR) Inventeur: Nadaud, Patrick THOMSON-CSF SCPI Cédex 67 F-92045 Paris la Défense(FR)

Mandataire: Benoit, Monique et al THOMSON-CSF SCPI F-92045 PARIS LA DEFENSE CEDEX 67(FR)

- Munition pour la répartition d'un mélange incendiaire.
- © L'invention concerne le domaine des charges largables, par exemple, à partir d'un aéronef auquel elles sont fixées et en particulier une munition contenant un gel incendiaire constitué à partir d'hydrocarbures et de produits gélifiants et destinés à développer un effet incendiaire sur divers objectifs au sol.

L'invention permet une dislocation de la munition au-dessus du sol grâce à des moyens de répartition constitués d'un cordon pyrotechnique (20), de pains de propergol (21, 22), d'un bouclier (6) et d'une tringle (24). Ces moyens de répartition assurent, avant l'impact au sol, un épandage régulier du gel incendiaire. L'invention permet également un allumage du gel incendiaire dès la dislocation de la munition grâce à des moyens de mise à feu composés de capsules d'allumage (23).

Application aux munitions contenant un gel incendiaire mais également aux munitions contenant un produit à épandre.

EP 0 399

MUNITION POUR LA REPARTITION D'UN MELANGE INCENDIAIRE

L'invention concerne le domaine des charges largables, par exemple, à partir d'un aéronef auquel elles sont fixées et en particulier une munition contenant un gel incendiaire constitué à partir d'hydrocarbures et de produits gélifiants, et, destinée à développer un effet incendiaire sur divers objectifs au sol.

1

Des munitions contenant des gels incendiaires constitués d'un mélange d'hydrocarbures volatiles (Kerosène, essences ...) et de produits gélifiants (dérivé acide gras) permettent après l'impact au sol, une répartition et une adhésion de ces gels sur différents objectifs au sol. Ces munitions n'étant en général pas aérodynamiquement stables ont des précisions médiocres. Lors de l'impact au sol, la répartition du gel incendiaire est aléatoire puisque la munition se disloque sous l'effet du choc, provoquant ainsi une éjection du gel incendiaire par flaques. Cet impact déclence également une fusée de mise à feu qui allume en général du phosphore dont la projection, après l'impact, enflamme une partie seulement des flaques de gel incendiaire. La précision balistique, la dispersion du gel incendiaire et la fiabilité de l'allumage de ce dernier sont les problèmes les plus importants rencontrés sur ce type de munitions.

Le but de l'invention est de remédier à ces inconvénients et de créer une munition dans laquelle un gel incendiaire est réparti, avant l'impact au sol, pour assurer une meilleure dispersion dudit gel incendiaire, ce dernier étant allumé de préférence grâce à des moyens d'allumage fonctionnant dès la dislocation mais aussi après l'impact au sol.

L'invention a pour objet une munition selon la revendication 1.

L'invention sera mieux comprise à l'aide de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les dessins qui représentent

- figure 1, un schéma d'une munition équipée selon l'invention ;
- figure 2, une coupe transversale AA de la munition de la figure 1 ;
- figure 3, une coupe transversale BB de la munition de la figure 1 ;
- figure 4, une coupe transversale CC de la munition de la figure 1 ;
- figure 5, un schéma d'une canne pyrotechnique entourée de ces différents éléments.

La figure 1 représente le schéma de la munition équipé selon l'invention. Cette munition est composée des parties principales suivantes :

- une ogive A avec une fusée et un proximètre ;
- un réservoir B proprement dit avec son équipement ;

- un retreint de culot C avec un empennage fixe et un parachute.

Chacune de ses parties comporte différents éléments qui seront décrits ci-après. L'ogive A, par exemple en matériau composite pour éviter l'action du métal sur un proximètre, comporte :

- une fusée 3 déjà utilisée sur d'autres munitions, montée sur un support entraîné en rotation par une hélice 4 ; cette fusée 3 est constituée principalement d'éléments non représentés sur cette figure :
- . un turbo-alternateur fournissant l'énergie électrique :
- . un module proximétrique, par exemple, à rayonnement électromagnétique permettant de déclencher la dislocation à une hauteur déterminée au dessus du sol :
- . une chaîne pyrotechnique d'initiation ;
- . un barillet de désalignement de chaîne ;
- . un dispositif de sécurité d'éloignement de l'avion ;
- un porte-fusée 1 positionnant la fusée 3 de façon à ce que le rayonnement de l'antenne du proximètre ne soit pas perturbé par la présence de la masse métallique;
- un carénage 2, par exemple, en un matériau plastique à l'intérieur duquel est fixé un dispositif rétracteur 5 d'une sécurité largable d'ogive SLO autorisant après le largage la rotation d'une hélice 4 et du turbo-alternateur, et, au centre de laquelle est positionnée, entre le début d'une canne pyrotechnique d'allumage 7 et le porte-fusée 1, un bouclier 6 qui assure l'interruption de la chaîne pyrotechnique.

Le réservoir B est lié, par exemple, par vissage à l'ogive A. Sa structure est réalisée, par exemple, en alliage d'aluminium et elle comporte des moyens de dislocation, par exemple des parties amincies comme le montre la figure 2 qui représente une coupe transversale AA de la figure 1. Ces parties amincies (29) facilitant la dislocation du réservoir lorsqu'est exercée à l'intérieur de ce dernier une pression générée, par exemple, par une charge de poudre placée dans le réservoir. Le réservoir B représenté à la figure 1 comporte :

- une poutre interne 8, par exemple, en alliage d'aluminium de longueur déterminée ayant, par exemple, la forme du quart d'un tube circulaire; cette poutre reçoit des anneaux 9, par exemple, vissés dans des puits 30 pour permettre l'accrochage de la munition sous un aéronef, des plaques d'appui 31, par exemple, en acier, renforçant le réservoir au droit de l'accrochage sous l'aéronef. Elles sont destinées à supporter les efforts pendant l'emport. A l'endroit de l'accrochage sortent deux câbles de sécurité, un câble de sécurité largable ogive SLO et un câble de sécurité largable culot

SLC, permettant d'une part l'activation de la fusée de mise à feu en ce qui concerne la SLO et d'autre part, le verrouillage du parachute à la structure du réservoir ainsi que le déclenchement du retard de la commande de libération du parachute pour ce qui est de la SLC. Chacun de ces câbles de sécurité n'est opérationnel qu'au cours du largage de la munition. En effet, après accrochage de la munition sous aéronef, la traction de chacun des câbles (SLO, SLC) ne peut déclencher la mise en oeuvre des différentes étapes précitées car chacun de ces câbles est muni d'un dispositif de sécurité positionné à l'endroit où sortent ces câbles de manière à interdire tout mouvement de ces derniers. Ce dispositif de sécurité est muni, par exemple, d'une palette 32 maintenue en position fermée avant accrochage sous aéronef par une épingle de sécurité 11 et une bille non représentée sur cette figure 1 positionnée sur chacun des câbles de façon à pouvoir heurter la palette lorsqu'une action est exercée sur l'un des câbles et ainsi donc l'entraîner afin de libérer le mouvement du câble. Lorsque la munition est positionnée sous l'aéronef, l'épingle de sécurité 11 est retirée, la palette peut donc basculer sous l'action de la bille fixée sur le câble mais son mouvement est bloqué par le pylône de l'aéronef sur lequel s'immobilise la palette ; la course du câble n'est pas suffisante pour déclencher l'une des opérations précitée et son action n'est efficace qu'au cours du largage de la munition, lorsqu'une traction est exercée sur le câble. Les deux câbles de sécurité SLO et SLC coulissent respectivement dans les canaux 10 et 12 jusqu'à des dispositifs rétracteurs 5 et 26 situés dans l'ogive A et le retreint du culot C;

- un orifice de remplissage 13 adapté aux moyens d'avitaillement aéronautique en service dans l'OTAN:
- des cadres de renforts 14 dont certains servent de pare-flots ;
- un niveau automatique 15 permettant de stopper le remplissage ;
- une valve de dépressurisation 16;
- une pompe 17 avec tuyauterie de refoulement 18 pouvant être actionnée de l'extérieur, par exemple, par un moteur électrique, destinée à assurer l'agitation du mélange (hydrocarbure + liquide gélifiant) pour permettre une homogénéisation des composants grâce aux tourbillons générés par la turbulure de sortie. En effet, le moteur électrique donne à la pompe un débit et une vitesse créant un tourbillon en hélice qui facilite le mélange de l'hydrocarbure et du produit gélifiant. L'utilisation d'une telle pompe facilite par contre le manipulation de la munition avant son accrochage sous l'aéronef en permettant le chargement de l'hydrocarbure après la fixation de la munition sous l'aéronef en obtenant un mélange d'aussi bonne qualité

qu'un mélange réalisé avant son insertion dans le réservoir de la munition ;

- une canne pyrotechnique 19 qui traverse le réservoir d'un bout à l'autre sur son axe de symétrie XX. Elle reçoit d'une part un cordeau pyrotechnique 20 permettant les mises à feu des pains de propergol 21 et 22 placés à l'avant et à l'arrière de la munition et illustrés sur la figure 3 qui représente une coupe transversale BB de la figure 1 ; ces pains de propergol 21 génèrent la pression interne qui assure la dislocation du réservoir ; la masse et l'emplacement de ces pains sont optimisés de manière à obtenir une ouverture en pétales (masse plus importante à l'avant qu'à l'arrière) ; ces pains 21 sont placés, par exemple, de façon circulaire à l'intérieur d'une enveloppe 33 en liaison avec le cordeau pyrotechnique 20 constitué de trois éléments par l'intermédiaire des trous 34 à l'intérieur de la canne pyrotechnique 19 permettant la transmission des ordres de mise à feu aux différents pains de propergol, et d'autre part aux capsules d'allumage de gel 23 représentées à la figure 4 qui illustre une coupe transversale CC de la figure 1 ; ces capsules d'allumage 23 sont mises à feu par le cordeau pyrotechnique et sont expulsées de la canne pyrotechnique 19 sur laquelle elles étaient fixées, par exemple par vissage ; les capsules d'allumage 23 possèdent des moyens de guidage, par exemple, des ailettes 35 représentées en pointillés sur la figure 4 ; elles contiennent également des éléments de combustion 36 mis à feu par le cordau pyrotechnique et dont la durée de combustion, de quelques secondes, permet d'allumer le mélange pendant la formation du nuage, pendant la chute des particules et après épandage au sol, si nécessaire. Le nombre, la taille et l'emplacement de ces capsules 23 sont définis pour obtenir un allumage parfait du mélange répandu après dislocation du réservoir. Ces capsules sont réalisées, par exemple, en alliage léger. A l'intérieur de la canne pyrotechnique 19 et comme représenté sur les figures 1, 2, 3, 4 et 5 est située une tringle 24 à l'arrière de laquelle est attaché un parachute 27 ; cette tringle 24 est reliée, à l'avant, à la commande d'effacement du bouclier 6 qui interrompt la chaîne pyrotechnique de mise à feu et qui empêche la mise à feu du cordeau pyrotechnique 20. La tringle 24 est immobilisée dans la canne pyrotechnique 19 par une goupille de cisaillement 39 qui interdit tout déplacement du bouclier 6 auquel elle est reliée par un levier 37 avant une traction exercée sur la tringle 24 après le déploiement du parachute 27 ; cette traction permet le coulissement de la tringle 24 à l'intérieur de la canne pyrotechnique 19 et déclenche le pivotement du bouclier 6 autour d'un point 38. A cet instant, la chaîne pyrotechnique de la fusée 40 se trouve alignée avec le cordeau pyrotechnique 20 et les opérations de mise à feu

40

15

35

des différents éléments peuvent se dérouler normalement. Sur la figure 5, le bouclier 6 est représenté en pointillés après le coulissement de la tringle 24. Il n'y a donc plus d'obstacle à la transmission de l'ordre de mise à feu lorsque la chaîne pyrotechnique est initiée.

Le retreint de culot C comporte :

- un empennage fixe (25) fixé sur la structure du réservoir B et est constitué par exemple de quatre ailes dont l'envergure correspond aux diagonales du carré exinscrit au corps du réservoir;
- . un parachute 27 contenu dans une coupelle 41 lié à la structure du réservoir B par un dispositif de verrouillage et de libération 28 du parachute qui est initialisé par une traction suffisante sur la sécurité largable du culot SLC ;
- . un dispositif rétracteur de la SLC 26 qui permet, après cisaillement de la goupille assurant le maintien de la SLC à l'aéronef grâce à un effort de traction suffisant, de ravaler toute partie de la SLC dépassant l'extérieur de la munition et pouvant gêner le bon déroulement des opérations.

L'assemblage de ces différentes parties principales est réalisé d'une manière simple, par exemple, par vissage, pour permettre lors de contrôles particuliers, l'inspection et le remplacement éventuel de certains éléments.

Après avoir décrit la munition, nous allons maintenant expliquer son fonctionnement. Après avoir pris soin de remplir la munition du mélange avant ou après accrochage de la munition comme cela a été décrit précédemment et après l'accrochage de cette dernière sous l'aéronef, il suffit d'accrocher les anneaux des câbles de sécurité largable SLO et SLC aux dispositifs correspondants de l'aéronef ainsi que d'ôter les épingles de sécurité 11 pour que la munition soit prête à fonctionner. Lors du largage de la munition, les palettes de présence 32 pivotent et les câbles des SLO et SLC sont tractionnés. La munition se sépare de l'aéronef. La SLO déverrouille le turbo alternateur et le support tournant de la fusée. La rotation de celle-ci permet d'obtenir une proximétrie indépendante du roulis du réservoir. Le turbo-alternateur alimente le proximètre qui ne détecte pas encore le sol. Le dispositif d'éloignement couplé au turbo alternateur commence à faire tourner le barillet de désalignement de la chaîne. La SLC autorise pendant ce temps le verrouillage du parachute à la structure de la munition et déclenche le retard de la commande de libération du parachute. A l'issue du retard, le déploiement du parachute est commandé ; il permet le freinage de la munition pour l'éloigner de l'aéronef. Lorsque l'effort fournie par le parachute est suffisant, il tire la tringle 24. Celle-ci cisaille sa goupille 39 et coulisse dans la canne pyrotechnique et, à l'ayant, déplace le bouclier 6 qui interrompait la chaîne pyrotechnique à la sortie de la fusée. Quelques secondes après le largage, le dispositif d'éloignement achève le déplacement du barillet de la fusée et aligne la chaîne pyrotechnique. A quelques mètres de hauteur, par exemple, la proximètre détecte le sol et déclenche l'initiation de la chaîne pyrotechnique. Le cordeau pyrotechnique de transmission de la mise à feu brûle à l'intérieur de la canne pyrotechnique et, au bout de quelques millisecondes, met à feu les pains de propergol et les capsules d'allumage du gel. La pression générée par les pains de propergol disloque la munition. Le mélange est soumis à la pression aérodynamique qui le disperse en gouttelettes. Les capsules d'allumage enflammées sont expulsées dans ce nuage et poursuivent leur trajectoire jusqu'au sol et brûlent encore pendant plusieurs secondes. Les gouttelettes du mélange sont enflammées en continu pendant la chute et après épandage au sol. Si d'aventure le proximètre était défaillant, un dispositif de sauvegarde, incorporé à la fusée, commande le fonctionnement de la chaîne pyrotechnique à l'impact au sol.

Lors d'un largage sans traction des sécurités SLO et SLC, la fusée n'est pas activée. la chaîne pyrotechnique est désalignée (barillet) et interrompue (bouclier). D'autre part, le parachute n'est pas verrouillé à la structure et sa libération n'est pas commandée.

La munition, selon l'invention s'applique plus particulièrement aux charges largables destinées à développer un effet incendiaire sur divers objectifs au sol mais elle peut s'appliquer pour tout épandage régulier d'un produit quelconque dans un endroit déterminé.

Revendications

- 1. Munition comportant réservoir (B) à l'intérieur duquel est placé un mélange incendiaire constitué à partir d'hydrocarbures et produits gélifiants, caractérisée en ce qu'elle comporte des moyens de répartition déclenchés avant l'impact au sol de la munition pour provoquer un épandage régulier du mélange incendiaire au sol et des moyens de mise à feu du mélange afin de développer un effet incendiaire important sur les divers objectifs placés au sol.
- 2. Munition selon la revendication 1, caractérisée en ce que le réservoir (B) comporte des moyens de dislocation pour disloquer ledit réservoir (B) de la munition avant l'impact.
- 3. Munition selon la revendication 1, caractérisée en ce que les moyens de mise à feu fonctionnent dès la dislocation du réservoir.
- 4. Munition selon la revendication 1, caractérisée en ce que les moyens de répartition du mélange et les moyens de mise à feu de ce dit mélange

55

sont des moyens pyrotechnique.

- 5. Munition selon la revendication 1, caractérisée en ce que les moyens de répartition du mélange comportent un cordon pyrotechnique (20) placé à l'intérieur d'une canne pyrotechnique (19) positionnée dans l'axe XX de la munition, des pains de propergol (21, 22) placés autour de la canne pyrotechnique, un bouclier (6) placé entre la sortie d'une fusée (3) et le cordon pyrotechnique (20) pour interrompre la chaîne pyrotechnique et une tringle (24) fixée au bouclier (6) par un levier (37) pour déplacer le bouclier (6).
- 6. Munition selon la revendication 5, caractérisée en ce que la tringle (24) coulisse à l'intérieur de la canne pyrotechnique (19), sous l'action du déplacement d'un parachute (27) placé à l'arrière de la munition.
- 7. Munition selon la revendication 6, caractérisée en ce que le coulissement de la tringle (24) est autorisé par le cisaillement d'une goupille (39) sous l'action du déploiement du parachute.
- 8. Munition selon la revendication 4, caractérisée en ce que les moyens pyrotechniques de mise à feu du mélange sont des capsules d'allumage (23) positionnées autour de la canne pyrotechnique (19) contenant le cordon pyrotechnique (20) de mise à feu.
- 9. Munition selon la revendication 8, caractérisée en ce que les capsules d'allumage (23) sont constituées par des tubes munis de petits empennages pour augmenter leur stabilité.
- 10. Munition selon la revendication 1 destinée à être accrochée sous un aéronef, caractérisée en ce qu'une pompe (17) est positionnée à l'intérieur du réservoir (B) de manière à réaliser le mélange lorsque l'hydrocarbure est ajouté après l'accrochage de la munition sous l'aéronef.
- 11. Munition selon la revendication 10, caractérisée en ce que la pompe (17) est activée par un moteur électrique placé à l'extérieur de la munition pour permettre l'homogénéisation du mélange.
- 12. Munition selon la revendication 5, caractérisée en ce que la fusée (3) contenue à l'intérieur d'une ogive (A) comporte un proximètre pour déclencher, avant l'impact au sol de la munition, les moyens de répartition de la munition et ces moyens de mise à feu.
- 13. Munition selon la revendication 1 destinée à être accrochée sous un aéronef, caractérisée en ce qu'elle comporte une sécurité largable d'ogive (SLO) et une sécurité largable culot (SLC) permettant, lors du largage de la munition, grâce à une traction sur ces deux sécurités, de déclencher les moyens de répartition et de mise à feu.

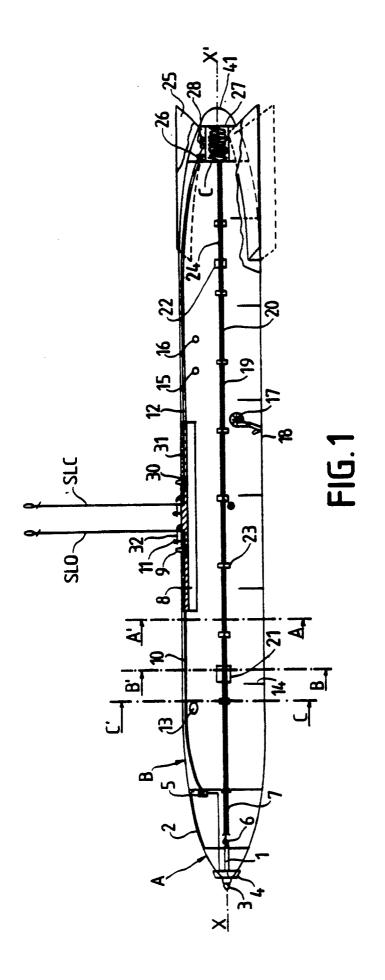
5

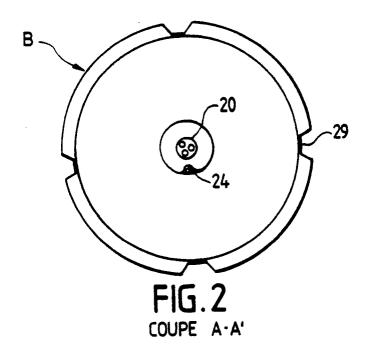
10

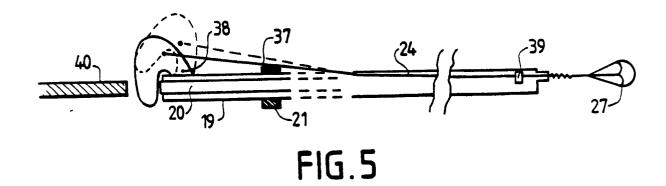
15

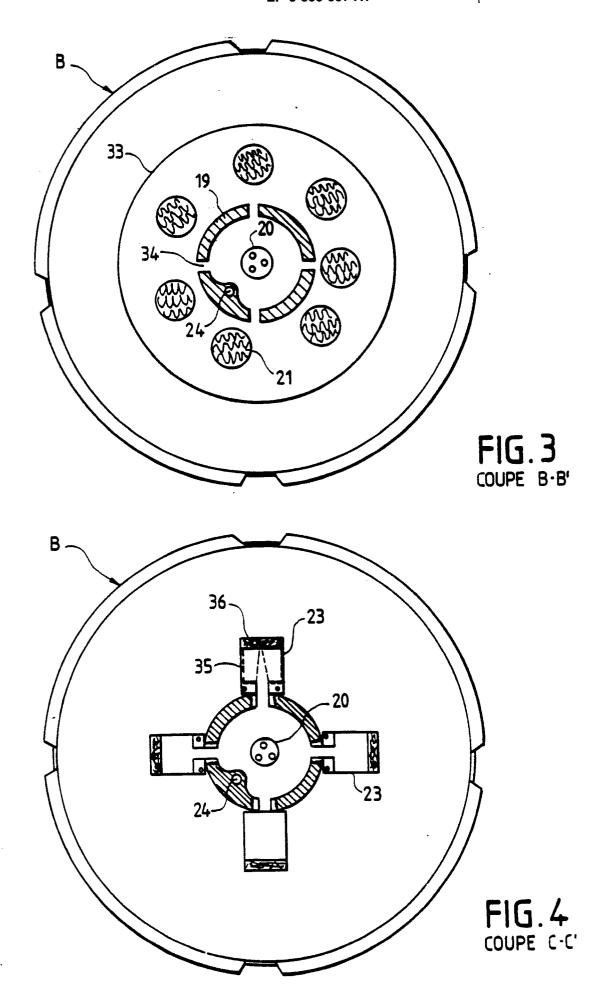
20

25


30


35


40


45

50

RAPPORT DE RECHERCHE EUROPEENNE

EP 90 40 1378

atégorie	Citation du document avec ind des parties pertin	lication, en cas de besoin, ientes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
A		-4 141 294 (ZAHARIA) régé; colonne 4; colonne 5, lignes ; figure 1 *		F 42 B 12/44 F 42 B 12/52 F 42 B 12/50
A	US-A-3 636 874 (GEY) * Abrégé; colonne 2, paragraphe; figures	dernier	1,4	
A	US-A-3 955 509 (CARI * Abrégé; figures 1-: lignes 10-68; colonne lignes 1-43 *	3; colonne 3,	1,4	
A	US-A-3 888 179 (NORI * Abrégé; colonne 3, figures 1,2 *		1,4	
A	US-A-3 296 967 (BOUI * Colonne 2, lignes ! lignes 1-46; figures	52-72; colonne 3,	5,9	DOMAINING TOTALIOLIES
A	US-A-3 712 217 (LIT * Figure 1 *	TLE)	9	POMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
A	US-A-3 433 437 (BAT	ES)		
A	US-A-3 905 297 (BAR	R)		
A	REVUE INTERNATIONALE DE DEFENSE, vol. 20, no. 10, 1987, pages 1405-1407, Cointrin-Geneva, CH; K.S. BROWER: "Les explosifs gazeux, une grave menace pour les fantassins à pied" * Figures et légende *		r	
Le p	résent rapport a été établi pour tout			
	Lien de la recherche	Date d'achèvement de la recharci		Examinates LAUSSE P.E.C.C.

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divuigation non-écrite P : document intercalaire

- T: théorie ou principe à la base de l'invention E: éocument de brevet antérieur, mais publié à la date de dépôt ou après cette date D: cité dans la démande L: cité pour d'autres raisons
- & : membre de la même famille, document correspondant