11) Publication number:

0 400 412 A2

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 90109409.4

(51) Int. Cl.5: B41J 31/16, B41J 32/02

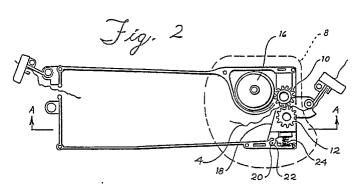
2 Date of filing: 18.05.90

3 Priority: 01.06.89 US 360182

Date of publication of application: 05.12.90 Bulletin 90/49

Designated Contracting States:
DE FR GB IT

Applicant: International Business Machines Corporation Old Orchard Road Armonk, N.Y. 10504(US)


Inventor: Rex, Donald Karl 3805 S. Ocean Blvd. Highland Beech, Florida 33487(US) Inventor: Paterra, Jeffrey Howard 548 Silversmith Lane Charlotte, N.C. 28226(US)

Representative: Kirchhof, Norbert IBM Deutschland GmbH Intellectual Property Department Schönaicher Strasse 220 D-7030 Böblingen(DE)

- ⁶⁴ Ribbon print track reinking with a roll system.
- The specification teaches an apparatus for selectively reinking an endless ribbon in that portion of the ribbon known as the ribbon print track. The ribbon print track is created in an endless ribbon by the repeated striking of the ribbon by a print mechanism thereby deforming the ribbon and depleting it of ink. Reinking the entire ribbon uses more ink than is necessary. Reinking only the print track extends the life of the ribbon by selectively using the available supply of ink. The apparatus described herein achieves this result by use of an ink reservoir (16)

which supplies ink to a drive roller (10), which through a rotating pinching movement in cooperation with another roller (12), advances a ribbon (4) into a stuffing cavity of an ink cartridge (2). The ink reservoir (16) is rotatably mounted and formed to apply ink only to that portion of the drive roller (12) which corresponds to the print track of the ribbon. The drive roller may be a composite of more than one roller in a stack of rollers and a single roller in the stack of rollers may receive the ink from the ink reservoir and transfer it to the ribbon print track.

P 0 400 412 A2

15

35

The invention relates generally to the field of ribbon cartridges for use in computer printers, typewriters and the like, and relates more specifically to a reinking device which reinks the portion of an endless ribbon which is struck by a print mechanism to create characters. Endless ribbons are reinked to extend their life by various techniques. This device provides for extended ribbon life by applying ink only to the area of a ribbon which has had its ink depleted, which is known as the ribbon print track, and not the entire ribbon area

Existing art provides differing solutions to the need to reink endless ribbons to extend their useful life. Generally ribbon is fed from a cartridge to a print mechanism by a guide means and thereafter gathered back into the cartridge. As the ribbon is gathered into the body of the cartridge it is reinked by applying ink to the ribbon by contact applicators. In the present state of the art ink is applied to the entire ribbon surface, even though only the print track of the ribbon is struck by a print mechanism and ink is depleted in this area. The ribbon material is usually made of nylon fabric which is widely known in the art but other suitable fabrics may be employed as well. As the ribbon is impacted by the print mechanism to contact a print medium, usually paper, the fabric becomes distorted and less able to uniformly distribute ink over the entire surface of the ribbon. In the terminology of the trade, the ribbon loses its wicking ability. The result is that as the ribbon nears the end of its useful life, ink tends to congregate in the areas which forms the edges of the print track of the ribbon where character impact occurs and the characters are printed unevenly with their tops and bottoms being darker than their centers.

Earlier solutions to the problem of reinking include the United States Patent No. 4,071,133 which approaches the reinking problem by applying ink to a roller which distributes ink onto a ribbon by passing a ribbon between it and a spring mechanism which urges the ribbon into contact with the ink impregnated roller. Both wicks and felt tips communicate with ink inside a reinking unit and apply ink uniformly to the roller surface. One variation is a fork shaped applicator which distributes ink to the roller in areas adjacent the area of the roller that comes into contact with the print track of the ribbon which is normally the strike zone for print characters.

Another solution is set forth in United States Patent No. 4,747,711 which provides a reinking device which is fitted into a cartridge for holding an endless ribbon. In this instance, toothed wheels are biased into engagement and cooperate to engage a ribbon and advance it into a storage chamber of a ribbon cartridge. A reservoir supplies ink by capil-

lary action to one of the toothed rollers which in turn applies it to the ribbon as it engages it and advances it into the storage chamber of the cartridge.

Yet another solution is set forth in United States Patent No. 4,653,947, which provides an endless ribbon housed in a cartridge as set out in the previous recited patents. In this instance the endless ribbon is reinked by a pair of pinch rollers in which one is inked by an ink impregnated porous pinch roller. The pinch rollers are spring biased to engage the ribbon and uniformly apply ink as the rollers cooperate to advance the ribbon into a storage chamber in the cartridge.

These solutions to the need to reink endless print ribbons to extend their life, apply ink to the entire ribbon surface. One variation occurs in the teachings of the 4,071,133 patent, where in one embodiment, the ribbon was reinked in a portion of the ribbon adjacent to the character print track. None of these solutions selectively reinked the strike area of the ribbon which had its ink depleted. Reinking the entire ribbon, rather than only the area depleted by printing, uses the available ink more rapidly than only reinking the area of the ribbon which has had ink depleted.

Therefore, an object of this invention is to reink an endless ribbon only in its print track to extend its useful life.

Another object of this invention is to maintain print character quality over the useful life of the ribbon.

And yet another object of this invention is to provide a universal means for applying coating to a select track or tracks of a ribbon.

The invention provides for the selective application of a coating to a ribbon material. In the field of computer printers, typewriters and the like, endless ribbons are used to supply ink to a print mechanism for impregnating an image on a medium, usually paper. A common configuration is to use a cartridge which contains ribbon and a fixed or flexible guide connected to the cartridge which guides the ribbon from the cartridge to the area where the printing occurs and in turn redirects the ribbon back to the cartridge. As the ribbon is reused it loses ink and requires reinking to retain its print quality. The ink loss occurs in a band on the ribbon which is known as the print track. The repetitive impact of a printing mechanism on the print track deforms and compresses the ribbon resulting in a loss of its wicking ability to transfer ink to the print track by migration of ink through the ribbon. The apparatus herein described applies ink only to the print track thereby conserving ink.

A cartridge, also known as a stuffing box, has ribbon stored in it and as described, ribbon is drawn from the stuffing box along guides to a print

area. A combination drive and transfer roller engages the ribbon by having the ribbon compressed against it by another roller. These rollers may be toothed or otherwise have a ridged surface which intermesh to grasp and advance the ribbon as the drive and transfer roller is rotated. In one embodiment, the combination drive and transfer has segments which are stacked in axial alignment. An ink reservoir, constructed as a rotatable porous body, generally cylindrical, has one or more raised surfaces about its exterior circumference and is aligned so that these raised surfaces engage one or more of the segments of the combination drive and transfer cylinder. In turn, one or more segments of the combination drive and transfer roller are inked in the region of the roller that aligns with the print track or tracks of a ribbon advanced between the combination drive and transfer roller and a pinch roller. As a result, ink is applied only to the print tracks of the ribbon. The advantages to this invention are that the ink available in an ink reservoir in a cartridge last longer allowing extended use of the ribbon. The practice of this invention will achieve at least a 15% improvement in ribbon life and a higher quality print character over the useful life of the ribbon.

Figure 1 shows a three dimensional view of an endless ribbon cartridge with the top of the cartridge removed.

Figure 2 shows a plan view of a ribbon cartridge with the reinking mechanism.

Figure 3 shows an elevation of a ribbon cartridge along sectional lines A-A.

Figure 4 shows a three dimensional view of a ribbon reinking mechanism.

Figure 5 shows various configurations of reinking reservoirs.

Figure 6 shows an elevation of a reinking mechanism with a cylindrical reinking reservoir.

Figure 7 shows an elevation of a reinking mechanism with a cylindrical reinking reservoir with a raised portion on its circumference.

Referring to Figure 1, an endless ribbon cartridge 2 is shown with its top removed to show and endless ribbon 4 stuffed into the cartridge 2. The endless ribbon 4 is fed by a ribbon guide 6 to printing mechanism, not shown, for transfer of ink on the endless ribbon 4 to a print medium, normally paper. The ribbon guide 6 is flexible and known in the art. Shown in the endless ribbon cartridge is a roller system 8 (also shown later in detail at Fig. 4) positioned to act upon the endless ribbon 4 to advance it along the ribbon guide 6 and then stuff it into the body of the endless ribbon cartridge 2.

Referring to Figure 2, a plan elevation of an endless ribbon cartridge 2 more clearly shows the roller system 8 for advancing the endless ribbon 4,

Figure 3, shows an elevation of the roller system 8 along sectional lines A-A. As shown in this preferred embodiment, roller system 8 has three main components consisting of a pair of toothed rollers 10 and 12, which for purposes of clarity are described as a drive transfer roller 10 and a pinch roller 12. As more clearly shown in Figure 3, drive transfer roller 10 has an extended drive shaft 14 which has a serrated circumferential surface which is engaged and driven by motive means known in the art. The third component of roller system 8 is an inking reservoir 16 which is positioned adjacent to drive transfer roller 10. Inking reservoir 16 is rotatably mounted with its axis of rotation parallel to the axis of rotation of the drive transfer roller 10 and is located in the endless ribbon cartridge in proximity to the drive transfer roller 10 to come in contact with it and thereby apply ink to it.

The operation of roller system 8 is more fully understood by the examination of Figure 4. where roller system 8 is shown in three dimensional view. From this drawing it can be seen that drive transfer roller 10 and pinch roller 12 are toothed wheels in this embodiment of the invention. Other configurations of the circumference of rollers 10 and 12 may be employed as is appropriate for the ribbon material used. For instance, it is envisioned that the rollers 10 and 12 may be cylindrical with various surface configurations such as smooth, knurled, or abrasive, to give the desired friction for engaging a ribbon 4 and advancing it by the cooperative rotation of rollers 10 and 12 with the surfaces as described.

Pinch roller 12 is biased into engagement with endless ribbon 4 which is pressed into contact with drive transfer roller 10 where it is grasped in the interlocking teeth of the drive transfer roller 10 and pinch roller 12. Pinch roller 12 is rotatably mounted on a bracket 18 which has a protruding arm 20 with a rounded bearing surface at its extremity which fits into a socket 22 formed in the body of endless ribbon cartridge 2 to create a point of rotation for the bracket 18 and in turn pinch roller 12 mounted thereon. A spring 24 is interposed between a portion of the body of the endless ribbon cartridge 2 and bracket 18 to urge the pivotal bracket 18 and in turn the pinch roller 12 mounted thereon into engagement with drive transfer roller 10 so that the teeth of said rollers 10 and 12 intermesh and thereby firmly engage endless ribbon 4 interposed therebetween. The rotation of drive shaft 14 rotates drive transfer roller 10 in a clockwise direction thereby advancing the endless ribbon 4 interposed between it and pinch roller 12 into the endless ribbon cartridge 2, and in turn rotating ink reservoir 16 which is in rotational contact with drive transfer roller 10, to ink drive transfer roller 10.

As shown in this embodiment, drive transfer

50

55

roller 10 is formed into a cylindrical body having three separate toothed wheels as shown in Figures 6 and 7. Likewise, pinch roller 12 has three separate toothed wheels as shown in Figure 3 and 4. Each set of toothed wheels corresponds in alignment with one another so that when the rollers 10 and 12 are rotatably mounted within the endless ribbon cartridge 2 they intermesh. Inking reservoir 16 is shown in Figures 2,3 and 7 in rotatable contact with drive transfer roller 10. Figure 7 most clearly shows the invention in this embodiment where drive transfer roller 10 has its central toothed wheel 26 in engagement with the print track 28 of endless ribbon 4 to reink only the print track 28.

As can be seen from Figure 7, inking reservoir 10 has a raised circumferential surface 30 which is in alignment with the central toothed wheel 26 of drive transfer roller 10. The transfer of ink from inking reservoir 16 is accomplished by the contact of its raised circumferential surface 30 and central toothed wheel 20 which in turn is in contact with print track 28 of endless ribbon 4. The significance of this invention is that ink is applied only where it is needed unlike the previous reinking method which is shown for comparison purposes only at Figure 6 where a cylindrical inking reservoir 32 coats all of the toothed wheels of drive transfer roller 10 which in turn coats more of the surface of endless ribbon 4 than is accomplished by this invention.

By way of illustration only, and for a further understanding of the significance of this invention, the reinking apparatus shown in Figure 6 inks all three toothed wheels of drive transfer roller 10 which in turn inks the endless ribbon 4 in the print track 28 and adjoining areas of the ribbon as well. This apparatus relies upon the wicking effect of the fabric to migrate ink toward the print track 28. It is this migration of ink to print track 28 that in time cause a gradient in print quality across the print track as the wicking ability of the endless ribbon 4 decrease with use and there occurs a build-up of ink at the edges of the print track. As this condition matures, printed characters have darker tops and bottoms and lighter centers with a resulting unacceptable print quality bringing the endless ribbon 4 to the end of its useful life.

Shown in Figure 5 is a series of ink transfer rollers. Typically these ink reservoirs are made of porous material for storing and dispensing ink as the body of the ink reservoir is rotated by engagement with the drive transfer roller. A known suitable material for these ink reservoirs is made of Polyolefin, a proprietary product manufactured by Porelon, Inc. Other suitable porous materials may be used to meet the requirements of ink storage and distribution.

Turning again to Figure 5, shown there is the

ink reservoir 16 that has been described in the apparatus as set forth above. This ink reservoir 16 has one raised surface on its circumference which aligns with the central toothed wheel 26 of drive transfer roller 10 which by contact receives ink and then transfers ink to the print track 28 of endless ribbon 4. Another configuration of an ink reservoir has a barrel shape 34 with a raised circumferential surface 36 which when placed in the roller system 8 has its raised circumferential surface 36 align in contact with the central toothed wheel 26 of drive transfer roller 10 for inking print track 28. A second barrel shaped ink reservoir 38 is shown to demonstrate that it too when placed in the roller system 8 may ink a central toothed wheel 26 of drive transfer roller 10 by having the widest portion of its circumference come into contact with the central toothed wheel.

Yet another variation of ink reservoirs is shown in Figure 5 where a cylindrical ink reservoir 40 and a barrel shaped ink reservoir each has two raised circumferential surfaces. These configurations of an ink reservoir illustrate an application of this invention where two toothed wheels of a drive transfer roller 10 are inked for subsequent inking of two print tracks 28 of and endless ribbon 4. Multiple print tracks can thus be inked by providing the required number of toothed wheels on a drive transfer roller 10 and a corresponding number of raised circumferential surfaces on a rotating ink reservoir for contact transfer of ink to the toothed wheels and thence to the print tracks of an endless ribbon.

Likewise, a single raised circumferential surface on an ink reservoir 16 can ink multiple toothed wheels on a drive transfer roller 10 to thereby ink a print track 28 of a ribbon.

Another embodiment, not shown in the drawings, has separate drive and transfer rollers in which the drive roller is engaged with a pinch roller to advance a ribbon and a transfer roller is spaced separately from the drive roller to receive ink from a generally cylindrical ink reservoir and by contact ink the print track of a ribbon. Various configurations of transfer roller can be envisioned, each with raised circumferences to correspond to a print track or tracks of an endless ribbon or single pass ribbon.

This invention has wider application to coating a ribbon in general. Use of a roller system, as described, with one or more segments of a drive transfer roller receiving a coating material from a reservoir will act to apply a coating selectively to a track or tracks of a ribbon that corresponds to the segments of a drive transfer roller that receives the coating material from the coating reservoir.

From the forgoing description, it will be understood by those having skill in the art that according

to the present invention that an apparatus for reinking an endless ribbon print track is provided by a roller system mounted in a ribbon cartridge. While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various other changes in form and detail may be made without departing from the spirit and scope of the invention.

Claims

1. A ribbon reinking apparatus for use in a ribbon cartridge for computer printers, typewriters. and the like for selectively reinking a ribbon print track of an endless ribbon comprising: a housing having openings for receiving and feeding said endless ribbon. said housing having a cavity therein for storing said endless ribbon: guide means for advancing said endless ribbon from said housing; means for receiving said endless ribbon-into the

cavity of said housing; and means for selectively

reinking said print track of said endless ribbon.

- 2. A ribbon reinking apparatus according to claim 1, wherein said means for selectively reinking said print track of said endless ribbon further comprises a drive transfer roller rotatably mounted in said housing, said drive transfer roller having a circumference, a pinch roller rotatably mounted in said housing having its axis of rotation in parallel alignment with the axis of rotation of said drive transfer roller and biased toward said drive transfer roller for cooperation therewith to engage said endless ribbon there between, means for advancing said drive transfer roller thereby advancing said endless ribbon, and an ink reservoir rotatably mounted within said housing having its axis of rotation in parallel alignment with said drive transfer roller to engage a segment of the circumference of said drive transfer roller and thereby apply ink thereto for inking said endless ribbon.
- 3. A ribbon reinking apparatus according to claim 2, wherein said ink reservoir has a raised circumferential surface which is in alignment with a circumference of said drive transfer roller for applying ink thereto, and said drive transfer roller circumference segment is in turn in alignment with said print track of said endless ribbon.
- 4. A ribbon reinking apparatus according to claim 3, wherein said drive transfer roller is further comprised of a stack of rollers in axial alignment, and one of said rollers in said stack of drive transfer rollers is in alignment with said ink reservoir raised circumferential surface.
- 5. A ribbon reinking apparatus according to claims 2, 3 and 4 wherein said ink reservoir is

made of porous material.

- 6. A ribbon reinking apparatus for use in a ribbon cartridge for computer printers, typewriters, and the like for selectively reinking a ribbon print track of an endless ribbon comprising: a housing having openings for receiving and feeding said endless ribbon, said housing having a
- cavity therein for storing said endless ribbon; guide means for feeding said endless ribbon from said housing and returning said endless ribbon to said housing:
- a drive transfer roller rotatably mounted within said housing in proximity to said opening in said housing for receiving said endless ribbon;
- means for advancing said drive transfer roller; a pinch roller rotatably mounted within said housing having its axis of rotation in parallel alignment with the axis of rotation of said drive transfer roller, said pinch roller spaced in proximity to said drive transfer roller and biased toward said drive transfer roller to engage said endless ribbon passed there between to advance said endless ribbon into said housing cavity; and
- an inking means mounted within said housing to engage said drive transfer roller and apply ink to a segment of the surface circumference of said drive transfer roller in alignment with said print track of said endless ribbon and thence to the print track of said endless ribbon.
- 7. A ribbon reinking apparatus according to claim 6, wherein said inking means further comprises a rotatable body having an exterior surface defined by radii perpendicular its axis of rotation, said rotatable body having a raised circumferential surface in alignment with a segment of said drive transfer roller that aligns with said print track of said endless ribbon.
- 8. A ribbon reinking apparatus according to claim 6, wherein said inking means further comprises a rotatable body having an exterior surface defined by radii perpendicular to its axis of rotation, said rotatable body having raised circumferential surfaces in alignment with segments of said drive transfer roller circumference for applying ink thereto, and segments of said drive transfer roller circumference are in turn in alignment with said print tracks of said endless ribbon.
- 9. A ribbon reinking apparatus according to claim 8, wherein said drive transfer roller is further comprised of a stack of rollers in axial alignment, said rollers are in alignment with said raised circumferential surfaces of said inking means rotatable body for receiving ink and thence applying it to said print tracks of said endless ribbon.
- 10. A ribbon reinking apparatus according to claims 1 through 10, wherein said drive transfer rollers and said pinch rollers are toothed wheels.
 - 11. An ink applicator for coating tracks of a

55

fabric ribbon, comprising:

a housing;

a drive transfer roller rotatably mounted upon said housing;

a pinch roller rotatably mounted upon said housing having its axis of rotation in parallel alignment with said axis of rotation of said drive transfer roller and spaced in proximity to said drive transfer roller and biased toward said drive transfer roller to engage said fabric ribbon passed there between to advance said fabric ribbon; and

an inking means mounted on said housing to engage said drive transfer roller and apply ink to a segment of the surface circumference of said drive roller that is in alignment with a track of said fabric ribbon and thence to to apply ink to said track of said fabric ribbon.

12. An ink applicator according to claim 12, wherein said inking means further comprises a rotatable body having an exterior surface defined by radii perpendicular to its axis of rotation, said rotatable body having a raised circumferential surface in alignment with said surface of said drive transfer roller that is in alignment with said track of said fabric ribbon for applying ink thereto.

13. An ink applicator according claim 12, wherein said drive transfer roller is further comprised of a stack of rollers in axial alignment, and one of said rollers is in alignment with said raised circumferential surface of said ink reservoir for applying ink to said roller in said stack of rollers, and in turn applying ink to said track of said fabric ribbon.

14. An ink applicator according to claim 14, wherein said inking means rotatable body has more than one raised circumferential surfaces in alignment with said stack of rollers of said drive transfer roller for applying ink to a track of said fabric ribbon.

15. An ink applicator according to claim 15, wherein said drive transfer roller has more than one of its stacked rollers of said drive transfer rollers in alignment with said raised circumferential surfaces of said ink reservoir for inking more than one track of said fabric ribbon.

16. An improved ribbon reinking cartridge for use in computer printers, typewriters, and the like, for reinking a print track of an endless ribbon having a housing with openings for receiving and feeding said endless ribbon, said housing having a cavity therein for storing said endless ribbon, a guide means for advancing said endless ribbon from and into said cavity of said housing, the improvements therein comprising:

a roller system means for reinking said print track of said endless ribbon.

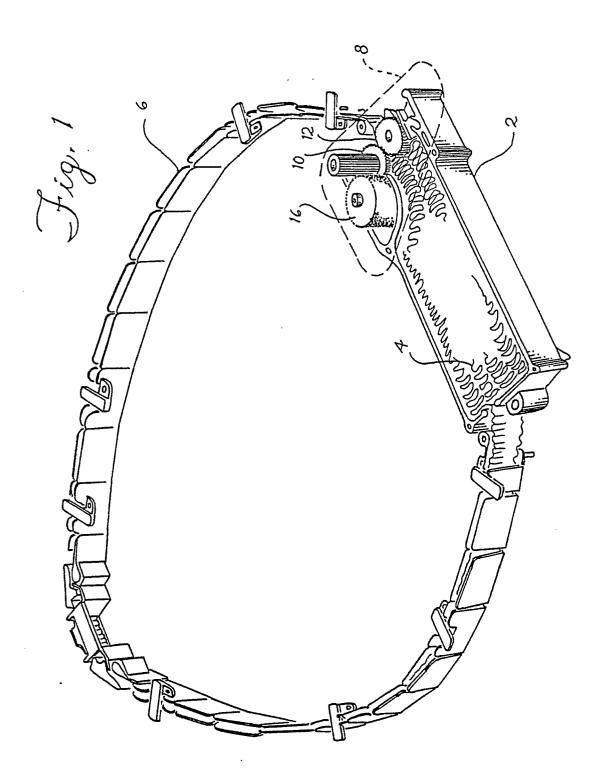
5

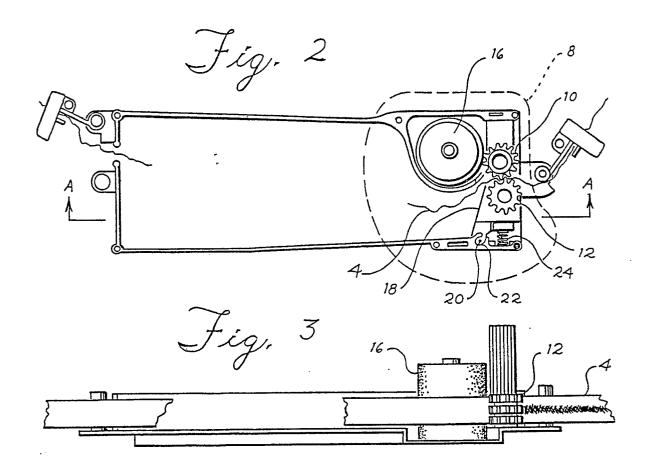
10

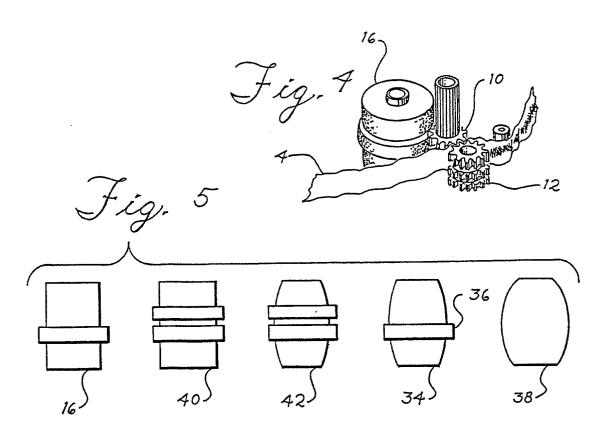
15

20

25


30


35


70

45

50

