(19)
(11) EP 0 406 479 B2

(12) NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mentionof the opposition decision:
04.09.2002 Bulletin 2002/36

(45) Mention of the grant of the patent:
06.04.1994 Bulletin 1994/14

(21) Application number: 89119265.0

(22) Date of filing: 17.10.1989
(51) International Patent Classification (IPC)7C10M 105/38, C10M 105/40, C10M 105/42, C10M 105/44
// C10N20:00, C10N30:00, C10N40:00

(54)

Refrigeration lubricants

Kältemaschinenschmiermittel

Lubrifiants pour la réfrigération


(84) Designated Contracting States:
DE ES FR GB IT SE

(30) Priority: 05.07.1989 JP 17200089
05.07.1989 JP 17200189
05.07.1989 JP 17200289

(43) Date of publication of application:
09.01.1991 Bulletin 1991/02

(60) Divisional application:
91121100.1 / 0480479
91121101.9 / 0479338
92121965.5 / 0536814

(73) Proprietor: JAPAN ENERGY CORPORATION
Tokyo 105-0001 (JP)

(72) Inventors:
  • Kaimai, Takashi c/o Kyodo Oil Technical Research
    Toda City Saitama Pref. (JP)
  • Yano,Hisashi c/o Kyodo Oil Technical Research
    Toda City Saitama Pref. (JP)

(74) Representative: Hansen, Bernd, Dr. Dipl.-Chem. et al
Hoffmann Eitle, Patent- und Rechtsanwälte, Postfach 81 04 20
81904 München
81904 München (DE)


(56) References cited: : 
EP-A- 0 272 575
JP-A- 55 105 644
JP-A- 56 131 548
JP-A- 61 062 596
JP-A- 62 292 895
US-A- 3 878 112
US-A- 4 113 642
US-A- 4 755 316
WO-A-90/12849
JP-A- 55 157 537
JP-A- 56 133 241
JP-A- 61 181 895
US-A- 2 852 470
US-A- 4 053 491
US-A- 4 234 497
US-A- 4 826 633
   
  • CHEMICAL ABSTRACTS, vol. 96, no. 10, March 1982, page 169, Columbus, Ohio, US, abstract 71653h & JP-A-80145638
  • CHEMICAL ABSTRACTS, vol. 102, no. 2, January 1985, page 166, Columbus, Ohio, US, abstract 9492u & JP-A-59164393
  • INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 8, no. 1, March 1969, pages 70, 71 ; H.F. LEDERLE :"Complex esters 0f 2,2-dimethylhydracrylic acid"
  • K. Sanvordenker "Materials Compatibility of R134a in Refrigerant Systems", ASHRAE Winter Meeting, January 1989
  • G. Short "Synthetic Lubricants and Their Refrigeration", 44th Annual Meeting of the ASHRAE in Atlanta, May 1989
  • R. Barnes et al. "Synthetic Ester Lubricants", J. of the Am. Soc. of Lubrification Eng.,pp. 454, 1957
 
Remarks:
Divisional application 91121100.1 filed on 17/10/89.
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 


Description


[0001] This invention relates to lubricants for compressors, and more particularly to lubricants suitable for use in the compression of refrigerants containing no chlorine such as, HFC-134a (1,1,1,2-tetrafluoroethane) and to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine.

[0002] Heretofore, compounds containing fluorine and chlorine as a constituent element such as R-11 (trichloromonofluoromethane), R-12 (dichlorodifluoromethane) as a chlorofluorocarbon (CFC), R-22 (monochlorodifluoromethane) as a hydrochlorofluorocarbon (HCFC) have been used as a refrigerant for freezers, air conditioners, refrigerators and car air conditioners, for example. In connection with recent problem on breakage of ozone layer, new refrigerants containing no chlorine such as HFC-134a and so on are proposed as a possible replacement for R-12, causing no breakage of ozone layer.

[0003] As a refrigeration lubricant, there are known many mineral-series and synthetic oils. However, it has been confirmed that these oils are very poor in the compatibility with HFC-134a and cannot be applied thereto. Therefore, it is important to take a countermeasure on this problem at the present. Furthermore, the lubricity, electric insulating property, energy saving property, anti-wear performance, sealability, thermal stability, prevention of sludge formation are mentioned as performances required in the refrigeration lubricant, so that they are required to be considered in the development of the above countermeasure.

[0004] Incidentally, there have hitherto been known polyether series synthetic lubricants as a synthetic oil, which are reported in Journal of the Oil Chemistry, vol. 29, No. 9, pp 336-343 (1980) and Journal of the Petroleum Technology, vol. 8, No. 6, pp 562-566 (1985). Furthermore, Japanese Patent laid open No. 61-281199 describes a mixture of polyglycol represented by a general formula of R1[O-(R2O)m-R3]n, an alkylbenzene, and Japanese Patent laid open No. 57-63395 describes an oil obtained by mixing a polyether such as high molecular weight polyoxypropylene monobutyl ether with an epoxycycloalkyl compound, and Japanese Patent laid open No. 59-117590 describes a high viscosity mixed oil of a polyether compound and a paraffinic or naphthanic mineral oil.

[0005] However, the conventional synthetic lubricants as mentioned above cannot be a refrigeration lubricant using HFC-134a as a refrigerant from a viewpoint of compatibility and the like.

[0006] In US Patent No. 4,755,316, polyoxyalkylene glycol (hereinafter abbreviated as PAG) having hydroxyl groups (-OH) at both terminals is reported as a refrigeration lubricant using HFC-134a. Further, it is described that PAG is dissolved in HFC-134a within a wide temperature range as compared with general PAG containing hydroxyl group and alkyl group at its terminals, whereby the recycle of the lubricant into a compressor is improved in the refrigeration system and the seizuring in the actuation of the compressor at high temperature is prevented. Moreover, the temperature range compatible with HFC-134a is described to be between -40 ° C and + 50 ° C.

[0007] On the contrary, HFC-134a is a replacing refrigerant of R-12 and is mainly expected for use in a car air conditioner or a refrigerator, for example. In case of the refrigerator, it is required to have a good compatibility between lubricant and refrigerant, and further the lubricant itself is necessary to have an electric insulating property because the motor is substantially existent in the refrigeration system. However, the conventional compounds examined as a lubricant for HFC-134a refrigerant inclusive of PAG disclosed in US Patent No. 4,755,316 are remarkably poor in the electric insulating property as compared with the conventional refrigeration mineral oil and high in the hygroscopicity.

[0008] US-patent No. 4,113,642 discloses a complex polyester lubricant reaction product derived from

(a) polyvalent, branched, aliphatic alcohols having 2 to 4 primary hydroxy groups and 4 to 10 carbon atoms,

(b) dimeric and/or trimeric fatty acids produced by polymerization of unsaturated fatty acids having 16 to 18 carbon atoms, and

(c) saturated straight chain or branched chain, aliphatic monocarboxylic acids having 6 to 16 carbon atoms.



[0009] Said reference does not disclose the use of the lubricant in a system using a refrigerant containing no chlorine.

[0010] It is, therefore, an object of the invention to provide a refrigeration lubricant having an excellent compatibility with a new refrigerant containing no chlorine such as HFC-134a within a wide temperature range, a high electric insulating property and a low hygroscopicity.

[0011] At the present, a part of commercially available esters is used in systems using refrigerants R-12 and R-22 for instance, but is incompatible with HFC-134a as a new refrigerant or is very narrow in the compatible range therewith. In this connection, the inventors have aimed at the fact that the ester has a high electric insulating property, a low hygroscopicity, a good lubricity and a high stability as compared with PAG and made various studies with respect to the molecule design of the ester showing a wide range of compatibility with HFC-134a, and found that only esters having a considerably restricted structure can be used in the HFC-134a refrigeration system, and as a result, the invention has been accomplished.

[0012] According to a first aspect the present invention is directed to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used.

[0013] In another aspect the invention refers to the use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.

[0014] In a preferred embodiment of the invention, the hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane (HFC-134a).

[0015] Furthermore, the present invention refers to a lubricant for compressors using 1,1,1,2-tetrafluoroethane refrigerant, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.

[0016] As the monovalent fatty acid, mention may be made of, pentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethyl hexanoic acid, nonanoic acid, 3,5,5-trimethyl hexanoic acid and decanoic acid.

[0017] According to the present invention a mixture of at least one of straight-chain monovalent fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic acid is properly mixed and esterified with neopentyl glycol in order to obtain an ester satisfying desirable physical properties required for various refrigerators.

[0018] The amount of the branched-chain fatty acid used is not less than 50 mol% per the total monovalent fatty acid used.

[0019] According to the invention, in order to give a proper viscosity to the resulting ester, at least one polybasic acid having a carbon number of 4-10 may be esterified with neopentyl glycol in an amount of not more than 80 mol% per total fatty acid. Among the polybasic acids, considering the more compatibility with the refrigerant HFC-134a and the like and the physical properties of the resulting ester, a polybasic acid having a carbon number of 4-10 is used.
Concretely, the polybasic acid includes succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, maleic acid, trimellitic acid and so on. Moreover, the polybasic acid having a carbon number of not more than 3 is a special product and is difficult to be cheaply available and is poor in the stability of the ester after the synthesis. While, when the carbon number exceeds 36, the compatibility of the resulting ester with HFC-134a and the like is largely lowered. In the invention, the reason why the amount of the polybasic acid added is limited to not more than 80 mol% per the total fatty acid is due to the fact that when it exceeds 80 mol%, the gelation may be caused and it is difficult to obtain desirable physical properties.

[0020] The ester compounds according to the first invention can be obtained by the esterification reaction through dehydration reaction between the specified polyvalent alcohol and the specified fatty acid as mentioned above, or the general esterification reaction through an acid anhydride, an acid chloride or the like as a derivative of the fatty acid.

[0021] Since the ester according to the invention can be obtained by the above method, the remaining acid value and hydroxyl value are not particularly critical. However, when the acid value exceeds 3 mg KOH/g, there may be caused an unfavorable phenomenon that the metal soap is formed and precipitated by the reaction with a metal used inside the refrigerator, so that the acid value is preferable to be not more than 3 mg KOH/g. Furthermore, when the hydroxyl value exceeds 50 mg KOH/g, there may be caused an unfavorable phenomenon that the resulting ester becomes cloudy, so that the hydroxyl value is preferable to be not more than 50 mg KOH/g.

[0022] The esters according to the invention exhibit a good compatibility with the refrigerant HFC-134a and the like over a wide range of from low temperature to high temperature as a lubricant for use in a refrigerator using HFC-134a as a refrigerant, whereby the lubricity and thermal stability of the refrigeration lubricant can be considerably improved. Furthermore, they are high in the electric insulating property and small in the hygroscopicity as compared with PAG conventionally examined as a refrigeration lubricant for HFC-134a. Therefore, the refrigeration lubricants comprising the ester according to the invention as a main component can solve the problems on the compatibility with HFC-134a and the hygroscopicity, which have never been solved in the conventional technique, and can further enhance the electric insulating property, which comes into problem when HFC-134a is used in a compressor for a refrigerator.

[0023] Moreover, additives usually used in the lubricant such as antioxidant, anti-wear agent, epoxy compound and the like may properly be added to the refrigeration lubricant according to the invention.

[0024] The following examples are given in illustration of the invention and are not intended as limitations thereof.

Examples 1-3, Comparative Examples 1-5



[0025] The performances as a refrigeration lubricant using HFC-134a as a refrigerant were evaluated with respect to eight esters A-1 - A-3 shown in the following Table 1 (all of which esters were not commercially available but were prepared according to the first invention). For the comparison, the same evaluation as mentioned above was made with respect to commercially available PAG (B-1 - B-3, made by Asahi Denka Co., Ltd.) and esters (C-1 - C-2, made by Nippon Oil and Fats Co., Ltd.) as a refrigeration lubricant shown in the following Table 2.

[0026] The lubricity, compatibility, thermal stability, electric insulating property and hygroscopicity as performances of the refrigeration lubricant for the compressor shown in Tables 1 and 2 were evaluated under the following conditions.

Lubricity



[0027] Seizuring load (Falex load-carrying capacity) was measured according to ASTM D-3233-73 under a controlled atmosphere of HFC-134a blown.

Compatibility



[0028] After 0.6 g of the test lubricant and 2.4 g of the refrigerant (HFC-134a) were sealed in a glass tube, the cooling at 1° C/min and the heating were carried out, during which a temperature causing two-phase separation was measured.

Thermal stability



[0029] After 1 g of the test lubricant, 1 g of the refrigerant (HFC-134a or R-12) and a catalyst (wire of iron, copper or aluminum) were sealed in a glass tube, the mixture was heated to 175°C, and a color of the lubricant after 10 days was judged by ASTM color system according to ANSI/ASHRAE 97-1983.

Electric insulating property



[0030] It was evaluated by a dielectric constant at 80 ° C according to JIS C-2101.

Hygroscopicity



[0031] Into a beaker of 100 mℓ was charged 60 g of the test lubricant, which was left to stand at a temperature of 25 ° C and a humidity of 70% for 3 hours and then the water concentration was measured.

[0032] The evaluation results are shown in the following Table 3.

Table 2
  Type Trade name Color (ASTM) Dynamic viscosity at 40 ° C (cSt)
B-1 PAG 1 Adekapol M-30 1) L 0.5 32.8
B-2 PAG 1 Adekapol M-110 2) L 0.5 105.2
B-3 PAG 1 Adekapol MH-50 3) L 0.5 54.6
C-1 ester dioctyl sebacate L 0.5 11.4
C-2 ester Unistar MB-8164) L 0.5 8.1
1) polyoxypropylene glycol monoalkyl ether
2) polyoxypropylene glycol monoalkyl ether
3) polyoxyethylene propylene glycol monoalkyl ether
4) monoester of 2-ethylhexanol and palmitic acid




[0033] As seen from Table 3, when the esters according to the invention are compared with the conventional PGA (B-1 - B-3), the electric insulating property represented by the dielectric constant is 100,000 times or more and the two-phase separation at a high temperature is not caused. Furthermore, the seizuring load is excellent and the hygroscopicity is low. The thermal stability is equal in case of the HFC-134a system, but is considerably excellent in case of the R-12 system. This is very advantageous in practical use because the mixing of HFC-134a and R-12 is not avoided at a stage of replacing the refrigerant from R-12 to HFC-134a.

[0034] On the other hand, when the esters according to the invention are compared with the commercially available esters (C-1 - C-2), the two-phase separation temperature is extremely different and the conventional esters are insoluble in HFC-134a. In this point, the molecule designed esters according to the invention have a great merit.

[0035] As seen from the above, the esters according to the invention are fairly excellent in the performances as a lubricant as compared with Comparative Examples.

[0036] The HFC-134a has been mentioned as a possible replacement for R-12 and is used for car air conditioner, refrigerator and the like. Particularly, in case of the car air conditioner, the compressor is driven in summer season, so that the compatibility between oil and refrigerant at high temperature becomes important. When the two-phase separation between oil and refrigerant is caused in the compressor during the driving, the refrigerant having a larger specific gravity remains in the lower portion of the compressor, resulting in the occurrence of compressor seizuring.

[0037] In case of the refrigerator, the motor is included in the compressor, so that leakage of electricity comes into problem. In this connection, the esters according to the invention have a dielectric constant higher by 100,000 times or more than that of the conventional PAG and are excellent in the electric insulating property, so that they can be said to be a refrigeration lubricant for the refrigerator.

[0038] Recently, HFC-134a causing substantially no breakage of ozone layer is closed up instead of R-12 widely used as a refrigerant in order to cope with the breakage of ozone layer through chlorofluorocarbon and hydrochlorofluorocarbon being a greatest problem in world-wide scale, but is poor in the compatibility with the conventional refrigeration lubricant, which is a bar for the development of replacement system. However, the refrigeration lubricants according to the invention have a sufficient compatibility with HFC-134a as a refrigerant and a high electric insulating property and also are excellent in the total performances, so that they have an effect that the conventional systems can be used as they are even when HFC-134a is used instead of the conventional R-12 and R-22 as a refrigerant.


Claims

Claims for the following Contracting State(s): DE, FR, GB, IT, SE

1. Use of a lubricant for compressors using a hydrofluorcarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used.
 
2. Use of a lubricant according to claim 1, wherein said ester has a total acid value of not more than 3 mg KOH/g and a hydroxyl value of not more than 50 mg KOH/g.
 
3. Use of a lubricant according to claim 1 or 2, wherein said hydrofluorcarbon refrigerant is 1,1,1,2-tetrafluoroethane.
 
4. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.
 
5. Use of a lubricant according to claim 4, wherein said polybasic acid is selected from the group consisting of succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
 
6. Use of a lubricant according to any one of claims 4 or 5, wherein said ester has a total acid value of not more than 3 mg KOH/g and a hydroxyl value of not more than 50 mg KOH/g.
 
7. Use of a lubricant according to any one of claims 4 to 6, wherein said hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane.
 
8. A lubricant for compressors using 1,1,1,2-tetrafluoroethane refrigerant, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.
 


Claims

Claims for the following Contracting State(s): ES

1. Use of a lubricant for compressors using a hydrofluorcarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used.
 
2. Use of a lubricant according to claim 1, wherein said ester has a total acid value of not more than 3 mg KOH/g and a hydroxyl value of not more than 50 mg KOH/g.
 
3. Use of a lubricant according to claim 1 or 2, wherein said hydrofluorcarbon refrigerant is 1,1,1,2-tetrafluoroethane.
 
4. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.
 
5. Use of a lubricant according to claim 4, wherein said polybasic acid is selected from the group consisting of succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
 
6. Use of a lubricant according to any one of claims 4 or 5, wherein said ester has a total acid value of not more than 3 mg KOH/g and a hydroxyl value of not more than 50 mg KOH/g.
 
7. Use of a lubricant according to any one of claims 4 to 6, wherein said hydrofluorocarbon refrigerant is 1,1,1,2-tetrafluoroethane.
 
8. A method for preparing a lubricant for compressors using 1,1,1,2-tetrafluoroethane refrigerant by preparing a lubricant, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.
 
9. A lubricant for compressors using 1,1,1,2-tetrafluoroethane refrigerant, comprising as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated fatty acid used.
 


Ansprüche

Patentansprüche für folgende(n) Vertragsstaat(en): DE, FR, GB, IT, SE

1. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 
2. Verwendung eines Schmierstoffs gemäß Anspruch 1, worin der genannte Ester einen Gesamtsäurewert von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von nicht mehr als 50 mg KOH/g hat.
 
3. Verwendung eines Schmierstoffs gemäß Anspruch 1 oder 2, worin das Fluorkohlenwasserstoff-Kältemittel 1,1,1,2-Tetrafluorethan ist.
 
4. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 
5. Verwendung eines Schmierstoffs gemäß Anspruch 4, wobei. die mehrbasige Säure aus der Gruppe bestehend aus Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure ausgewählt ist.
 
6. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 oder 5, wobei der genannte Ester einen Gesamtsäurewert von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von nicht mehr als 50 mg KOH/g hat.
 
7. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 bis 6, wobei das genannte Fluorkohlenwasserstoff-Kältemittel 1,1,1,2-Tetrafluorethan ist.
 
8. Schmierstoff für Kompressoren, die 1,1,1,2-Tetrafluorethan-Kältemittel verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 


Ansprüche

Patentansprüche für folgende(n) Vertragsstaat(en): ES

1. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 
2. Verwendung eines Schmierstoffs gemäß Anspruch 1, worin der genannte Ester einen Gesamtsäurewert von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von nicht mehr als 50 mg KOH/g hat.
 
3. Verwendung eines Schmierstoffs gemäß Anspruch 1 oder 2, worin das Fluorkohlenwasserstoff-Kältemittel 1,1,1,2-Tetrafluorethan ist.
 
4. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 
5. Verwendung eines Schmierstoffs gemäß Anspruch 4, wobei die mehrbasige Säure aus der Gruppe bestehend aus Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure ausgewählt ist.
 
6. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 oder 5, wobei der genannte Ester einen Gesamtsäurewert von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von nicht mehr als 50 mg KOH/g hat.
 
7. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 bis 6, wobei das genannte Fluorkohlenwasserstoff-Kältemittel 1,1,1,2-Tetrafluorethan ist.
 
8. Verfahren zum Herstellen eines Schmierstoffs für Kompressoren, die 1,1,1,2-Tetrafluorethan-Kältemittel verwenden, durch Herstellen eines Schmierstoffs umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 
9. Schmierstoff für Kompressoren, die 1,1,1,2-Tetrafluorethan-Kältemittel verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt.
 


Revendications

Revendications pour l'(les) Etat(s) contractant(s) suivant(s): DE, FR, GB, IT, SE

1. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné ne contenant pas de chlore, comprenant comme composant principal un ou des esters obtenus par la réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
 
2. Utilisation d'un lubrifiant selon la revendication 1 où ledit ester a un indice d'acide total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle non supérieur à 50 mg de KOH/g.
 
3. Utilisation d'un lubrifiant selon la revendication 1 ou 2 où ledit réfrigérant hydrofluorocarboné est le 1,1,1,2-tétrafluoroéthane.
 
4. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné ne contenant pas de chlore, comprenant comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où la quantité d'acide polybasique n'est pas supérieure à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
 
5. Utilisation d'un lubrifiant selon la revendication 4, où ledit acide polybasique est choisi dans le groupe consistant en l'acide succinique, l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque et l'acide sébacique.
 
6. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 ou 5, où ledit ester a un indice d'acide total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle non supérieur à 50 mg de KOH/g.
 
7. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 à 6, où ledit réfrigérant hydrofluorocarboné est le 1,1,1,2-tétrafluoroéthane.
 
8. Lubrifiant pour compresseurs utilisant le réfrigérant 1,1,1,2-tétrafluoroéthane, comprenant comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où la quantité de l'acide polybasique n'est pas supérieure à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
 


Revendications

Revendications pour l'(les) Etat(s) contractant(s) suivant(s): ES

1. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné ne contenant pas de chlore, comprenant comme composant principal un ou des esters obtenus par la réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
 
2. Utilisation d'un lubrifiant selon la revendication 1 où ledit ester a un indice d'acide total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle non supérieur à 50 mg de KOH/g.
 
3. Utilisation d'un lubrifiant selon la revendication 1 ou 2 où ledit réfrigérant hydrofluorocarboné est le 1,1,1,2-tétrafluoroéthane.
 
4. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné ne contenant pas de chlore, comprenant comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où la quantité d'acide polybasique n'est pas supérieure à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
 
5. Utilisation d'un lubrifiant selon la revendication 4, où ledit acide polybasique est choisi dans le groupe consistant en l'acide succinique, l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque et l'acide sébacique.
 
6. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 ou 5, où ledit ester a un indice d'acide total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle non supérieur à 50 mg de KOH/g.
 
7. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 à 6, où ledit réfrigérant hydrofluorocarboné est le 1,1,1,2-tétrafluoroéthane.
 
8. Procédé pour préparer un lubrifiant pour compresseurs utilisant le réfrigérant 1,1,1,2-tétrafluoroéthane par préparation d'un lubrifiant, comprenant comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où la quantité de l'acide polybasique n'est pas supérieure à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
 
9. Lubrifiant pour compresseurs utilisant le réfrigérant 1,1,1,2-tétrafluoroéthane, comprenant comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où la quantité de l'acide polybasique n'est pas supérieure à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.