| (19) |
 |
|
(11) |
EP 0 406 479 B2 |
| (12) |
NEW EUROPEAN PATENT SPECIFICATION |
| (45) |
Date of publication and mentionof the opposition decision: |
|
04.09.2002 Bulletin 2002/36 |
| (45) |
Mention of the grant of the patent: |
|
06.04.1994 Bulletin 1994/14 |
| (22) |
Date of filing: 17.10.1989 |
|
|
| (54) |
Refrigeration lubricants
Kältemaschinenschmiermittel
Lubrifiants pour la réfrigération
|
| (84) |
Designated Contracting States: |
|
DE ES FR GB IT SE |
| (30) |
Priority: |
05.07.1989 JP 17200089 05.07.1989 JP 17200189 05.07.1989 JP 17200289
|
| (43) |
Date of publication of application: |
|
09.01.1991 Bulletin 1991/02 |
| (60) |
Divisional application: |
|
91121100.1 / 0480479 |
|
91121101.9 / 0479338 |
|
92121965.5 / 0536814 |
| (73) |
Proprietor: JAPAN ENERGY CORPORATION |
|
Tokyo 105-0001 (JP) |
|
| (72) |
Inventors: |
|
- Kaimai, Takashi
c/o Kyodo Oil Technical Research
Toda City
Saitama Pref. (JP)
- Yano,Hisashi
c/o Kyodo Oil Technical Research
Toda City
Saitama Pref. (JP)
|
| (74) |
Representative: Hansen, Bernd, Dr. Dipl.-Chem. et al |
|
Hoffmann Eitle,
Patent- und Rechtsanwälte,
Postfach 81 04 20 81904 München 81904 München (DE) |
| (56) |
References cited: :
EP-A- 0 272 575 JP-A- 55 105 644 JP-A- 56 131 548 JP-A- 61 062 596 JP-A- 62 292 895 US-A- 3 878 112 US-A- 4 113 642 US-A- 4 755 316
|
WO-A-90/12849 JP-A- 55 157 537 JP-A- 56 133 241 JP-A- 61 181 895 US-A- 2 852 470 US-A- 4 053 491 US-A- 4 234 497 US-A- 4 826 633
|
|
| |
|
|
- CHEMICAL ABSTRACTS, vol. 96, no. 10, March 1982, page 169, Columbus, Ohio, US, abstract
71653h & JP-A-80145638
- CHEMICAL ABSTRACTS, vol. 102, no. 2, January 1985, page 166, Columbus, Ohio, US, abstract
9492u & JP-A-59164393
- INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 8, no. 1, March 1969, pages 70, 71 ; H.F.
LEDERLE :"Complex esters 0f 2,2-dimethylhydracrylic acid"
- K. Sanvordenker "Materials Compatibility of R134a in Refrigerant Systems", ASHRAE
Winter Meeting, January 1989
- G. Short "Synthetic Lubricants and Their Refrigeration", 44th Annual Meeting of the
ASHRAE in Atlanta, May 1989
- R. Barnes et al. "Synthetic Ester Lubricants", J. of the Am. Soc. of Lubrification
Eng.,pp. 454, 1957
|
|
| |
|
|
|
Remarks: |
|
Divisional application 91121100.1 filed on 17/10/89. |
|
|
|
Remarks: |
|
The file contains technical information submitted after the application was filed
and not included in this specification |
|
[0001] This invention relates to lubricants for compressors, and more particularly to lubricants
suitable for use in the compression of refrigerants containing no chlorine such as,
HFC-134a (1,1,1,2-tetrafluoroethane) and to the use of a lubricant for compressors
using a hydrofluorocarbon refrigerant containing no chlorine.
[0002] Heretofore, compounds containing fluorine and chlorine as a constituent element such
as R-11 (trichloromonofluoromethane), R-12 (dichlorodifluoromethane) as a chlorofluorocarbon
(CFC), R-22 (monochlorodifluoromethane) as a hydrochlorofluorocarbon (HCFC) have been
used as a refrigerant for freezers, air conditioners, refrigerators and car air conditioners,
for example. In connection with recent problem on breakage of ozone layer, new refrigerants
containing no chlorine such as HFC-134a and so on are proposed as a possible replacement
for R-12, causing no breakage of ozone layer.
[0003] As a refrigeration lubricant, there are known many mineral-series and synthetic oils.
However, it has been confirmed that these oils are very poor in the compatibility
with HFC-134a and cannot be applied thereto. Therefore, it is important to take a
countermeasure on this problem at the present. Furthermore, the lubricity, electric
insulating property, energy saving property, anti-wear performance, sealability, thermal
stability, prevention of sludge formation are mentioned as performances required in
the refrigeration lubricant, so that they are required to be considered in the development
of the above countermeasure.
[0004] Incidentally, there have hitherto been known polyether series synthetic lubricants
as a synthetic oil, which are reported in Journal of the Oil Chemistry, vol. 29, No.
9, pp 336-343 (1980) and Journal of the Petroleum Technology, vol. 8, No. 6, pp 562-566
(1985). Furthermore, Japanese Patent laid open No. 61-281199 describes a mixture of
polyglycol represented by a general formula of R
1[O-(R
2O)
m-R
3]
n, an alkylbenzene, and Japanese Patent laid open No. 57-63395 describes an oil obtained
by mixing a polyether such as high molecular weight polyoxypropylene monobutyl ether
with an epoxycycloalkyl compound, and Japanese Patent laid open No. 59-117590 describes
a high viscosity mixed oil of a polyether compound and a paraffinic or naphthanic
mineral oil.
[0005] However, the conventional synthetic lubricants as mentioned above cannot be a refrigeration
lubricant using HFC-134a as a refrigerant from a viewpoint of compatibility and the
like.
[0006] In US Patent No. 4,755,316, polyoxyalkylene glycol (hereinafter abbreviated as PAG)
having hydroxyl groups (-OH) at both terminals is reported as a refrigeration lubricant
using HFC-134a. Further, it is described that PAG is dissolved in HFC-134a within
a wide temperature range as compared with general PAG containing hydroxyl group and
alkyl group at its terminals, whereby the recycle of the lubricant into a compressor
is improved in the refrigeration system and the seizuring in the actuation of the
compressor at high temperature is prevented. Moreover, the temperature range compatible
with HFC-134a is described to be between -40 ° C and + 50 ° C.
[0007] On the contrary, HFC-134a is a replacing refrigerant of R-12 and is mainly expected
for use in a car air conditioner or a refrigerator, for example. In case of the refrigerator,
it is required to have a good compatibility between lubricant and refrigerant, and
further the lubricant itself is necessary to have an electric insulating property
because the motor is substantially existent in the refrigeration system. However,
the conventional compounds examined as a lubricant for HFC-134a refrigerant inclusive
of PAG disclosed in US Patent No. 4,755,316 are remarkably poor in the electric insulating
property as compared with the conventional refrigeration mineral oil and high in the
hygroscopicity.
[0008] US-patent No. 4,113,642 discloses a complex polyester lubricant reaction product
derived from
(a) polyvalent, branched, aliphatic alcohols having 2 to 4 primary hydroxy groups
and 4 to 10 carbon atoms,
(b) dimeric and/or trimeric fatty acids produced by polymerization of unsaturated
fatty acids having 16 to 18 carbon atoms, and
(c) saturated straight chain or branched chain, aliphatic monocarboxylic acids having
6 to 16 carbon atoms.
[0009] Said reference does not disclose the use of the lubricant in a system using a refrigerant
containing no chlorine.
[0010] It is, therefore, an object of the invention to provide a refrigeration lubricant
having an excellent compatibility with a new refrigerant containing no chlorine such
as HFC-134a within a wide temperature range, a high electric insulating property and
a low hygroscopicity.
[0011] At the present, a part of commercially available esters is used in systems using
refrigerants R-12 and R-22 for instance, but is incompatible with HFC-134a as a new
refrigerant or is very narrow in the compatible range therewith. In this connection,
the inventors have aimed at the fact that the ester has a high electric insulating
property, a low hygroscopicity, a good lubricity and a high stability as compared
with PAG and made various studies with respect to the molecule design of the ester
showing a wide range of compatibility with HFC-134a, and found that only esters having
a considerably restricted structure can be used in the HFC-134a refrigeration system,
and as a result, the invention has been accomplished.
[0012] According to a first aspect the present invention is directed to the use of a lubricant
for compressors using a hydrofluorocarbon refrigerant containing no chlorine, comprising
as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b)
a mixture of at least one of straight chain monovalent saturated fatty acids having
a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty
acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used.
[0013] In another aspect the invention refers to the use of a lubricant for compressors
using a hydrofluorocarbon refrigerant containing no chlorine, comprising as a main
component an ester(s) obtained by reacting (a) neopentyl glycol with (b) a mixture
of at least one of straight chain monovalent saturated fatty acids having a carbon
number of 5-10 and at least one of branched-chain monovalent saturated fatty acids
selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least
one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic
acid is not more than 80 mol% per total monovalent saturated fatty acid used.
[0014] In a preferred embodiment of the invention, the hydrofluorocarbon refrigerant is
1,1,1,2-tetrafluoroethane (HFC-134a).
[0015] Furthermore, the present invention refers to a lubricant for compressors using 1,1,1,2-tetrafluoroethane
refrigerant, comprising as a main component an ester(s) obtained by reacting (a) neopentyl
glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty
acids having a carbon number of 5-10 and at least one of branched-chain monovalent
saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least
one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic
acid is not more than 80 mol% per total monovalent saturated fatty acid used.
[0016] As the monovalent fatty acid, mention may be made of, pentanoic acid, hexanoic acid,
heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethyl hexanoic acid, nonanoic
acid, 3,5,5-trimethyl hexanoic acid and decanoic acid.
[0017] According to the present invention a mixture of at least one of straight-chain monovalent
fatty acids having a carbon number of 5-10 and at least one of branched-chain monovalent
fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid, and 3,5,6-trimethylhexanoic
acid is properly mixed and esterified with neopentyl glycol in order to obtain an
ester satisfying desirable physical properties required for various refrigerators.
[0018] The amount of the branched-chain fatty acid used is not less than 50 mol% per the
total monovalent fatty acid used.
[0019] According to the invention, in order to give a proper viscosity to the resulting
ester, at least one polybasic acid having a carbon number of 4-10 may be esterified
with neopentyl glycol in an amount of not more than 80 mol% per total fatty acid.
Among the polybasic acids, considering the more compatibility with the refrigerant
HFC-134a and the like and the physical properties of the resulting ester, a polybasic
acid having a carbon number of 4-10 is used.
Concretely, the polybasic acid includes succinic acid, glutaric acid, adipic acid,
pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, maleic acid,
trimellitic acid and so on. Moreover, the polybasic acid having a carbon number of
not more than 3 is a special product and is difficult to be cheaply available and
is poor in the stability of the ester after the synthesis. While, when the carbon
number exceeds 36, the compatibility of the resulting ester with HFC-134a and the
like is largely lowered. In the invention, the reason why the amount of the polybasic
acid added is limited to not more than 80 mol% per the total fatty acid is due to
the fact that when it exceeds 80 mol%, the gelation may be caused and it is difficult
to obtain desirable physical properties.
[0020] The ester compounds according to the first invention can be obtained by the esterification
reaction through dehydration reaction between the specified polyvalent alcohol and
the specified fatty acid as mentioned above, or the general esterification reaction
through an acid anhydride, an acid chloride or the like as a derivative of the fatty
acid.
[0021] Since the ester according to the invention can be obtained by the above method, the
remaining acid value and hydroxyl value are not particularly critical. However, when
the acid value exceeds 3 mg KOH/g, there may be caused an unfavorable phenomenon that
the metal soap is formed and precipitated by the reaction with a metal used inside
the refrigerator, so that the acid value is preferable to be not more than 3 mg KOH/g.
Furthermore, when the hydroxyl value exceeds 50 mg KOH/g, there may be caused an unfavorable
phenomenon that the resulting ester becomes cloudy, so that the hydroxyl value is
preferable to be not more than 50 mg KOH/g.
[0022] The esters according to the invention exhibit a good compatibility with the refrigerant
HFC-134a and the like over a wide range of from low temperature to high temperature
as a lubricant for use in a refrigerator using HFC-134a as a refrigerant, whereby
the lubricity and thermal stability of the refrigeration lubricant can be considerably
improved. Furthermore, they are high in the electric insulating property and small
in the hygroscopicity as compared with PAG conventionally examined as a refrigeration
lubricant for HFC-134a. Therefore, the refrigeration lubricants comprising the ester
according to the invention as a main component can solve the problems on the compatibility
with HFC-134a and the hygroscopicity, which have never been solved in the conventional
technique, and can further enhance the electric insulating property, which comes into
problem when HFC-134a is used in a compressor for a refrigerator.
[0023] Moreover, additives usually used in the lubricant such as antioxidant, anti-wear
agent, epoxy compound and the like may properly be added to the refrigeration lubricant
according to the invention.
[0024] The following examples are given in illustration of the invention and are not intended
as limitations thereof.
Examples 1-3, Comparative Examples 1-5
[0025] The performances as a refrigeration lubricant using HFC-134a as a refrigerant were
evaluated with respect to eight esters A-1 - A-3 shown in the following Table 1 (all
of which esters were not commercially available but were prepared according to the
first invention). For the comparison, the same evaluation as mentioned above was made
with respect to commercially available PAG (B-1 - B-3, made by Asahi Denka Co., Ltd.)
and esters (C-1 - C-2, made by Nippon Oil and Fats Co., Ltd.) as a refrigeration lubricant
shown in the following Table 2.
[0026] The lubricity, compatibility, thermal stability, electric insulating property and
hygroscopicity as performances of the refrigeration lubricant for the compressor shown
in Tables 1 and 2 were evaluated under the following conditions.
Lubricity
[0027] Seizuring load (Falex load-carrying capacity) was measured according to ASTM D-3233-73
under a controlled atmosphere of HFC-134a blown.
Compatibility
[0028] After 0.6 g of the test lubricant and 2.4 g of the refrigerant (HFC-134a) were sealed
in a glass tube, the cooling at 1° C/min and the heating were carried out, during
which a temperature causing two-phase separation was measured.
Thermal stability
[0029] After 1 g of the test lubricant, 1 g of the refrigerant (HFC-134a or R-12) and a
catalyst (wire of iron, copper or aluminum) were sealed in a glass tube, the mixture
was heated to 175°C, and a color of the lubricant after 10 days was judged by ASTM
color system according to ANSI/ASHRAE 97-1983.
Electric insulating property
[0030] It was evaluated by a dielectric constant at 80 ° C according to JIS C-2101.
Hygroscopicity
[0031] Into a beaker of 100 mℓ was charged 60 g of the test lubricant, which was left to
stand at a temperature of 25 ° C and a humidity of 70% for 3 hours and then the water
concentration was measured.
[0032] The evaluation results are shown in the following Table 3.
Table 2
| |
Type |
Trade name |
Color (ASTM) |
Dynamic viscosity at 40 ° C (cSt) |
| B-1 |
PAG 1 |
Adekapol M-30 1) |
L 0.5 |
32.8 |
| B-2 |
PAG 1 |
Adekapol M-110 2) |
L 0.5 |
105.2 |
| B-3 |
PAG 1 |
Adekapol MH-50 3) |
L 0.5 |
54.6 |
| C-1 |
ester |
dioctyl sebacate |
L 0.5 |
11.4 |
| C-2 |
ester |
Unistar MB-8164) |
L 0.5 |
8.1 |
| 1) polyoxypropylene glycol monoalkyl ether |
| 2) polyoxypropylene glycol monoalkyl ether |
| 3) polyoxyethylene propylene glycol monoalkyl ether |
| 4) monoester of 2-ethylhexanol and palmitic acid |

[0033] As seen from Table 3, when the esters according to the invention are compared with
the conventional PGA (B-1 - B-3), the electric insulating property represented by
the dielectric constant is 100,000 times or more and the two-phase separation at a
high temperature is not caused. Furthermore, the seizuring load is excellent and the
hygroscopicity is low. The thermal stability is equal in case of the HFC-134a system,
but is considerably excellent in case of the R-12 system. This is very advantageous
in practical use because the mixing of HFC-134a and R-12 is not avoided at a stage
of replacing the refrigerant from R-12 to HFC-134a.
[0034] On the other hand, when the esters according to the invention are compared with the
commercially available esters (C-1 - C-2), the two-phase separation temperature is
extremely different and the conventional esters are insoluble in HFC-134a. In this
point, the molecule designed esters according to the invention have a great merit.
[0035] As seen from the above, the esters according to the invention are fairly excellent
in the performances as a lubricant as compared with Comparative Examples.
[0036] The HFC-134a has been mentioned as a possible replacement for R-12 and is used for
car air conditioner, refrigerator and the like. Particularly, in case of the car air
conditioner, the compressor is driven in summer season, so that the compatibility
between oil and refrigerant at high temperature becomes important. When the two-phase
separation between oil and refrigerant is caused in the compressor during the driving,
the refrigerant having a larger specific gravity remains in the lower portion of the
compressor, resulting in the occurrence of compressor seizuring.
[0037] In case of the refrigerator, the motor is included in the compressor, so that leakage
of electricity comes into problem. In this connection, the esters according to the
invention have a dielectric constant higher by 100,000 times or more than that of
the conventional PAG and are excellent in the electric insulating property, so that
they can be said to be a refrigeration lubricant for the refrigerator.
[0038] Recently, HFC-134a causing substantially no breakage of ozone layer is closed up
instead of R-12 widely used as a refrigerant in order to cope with the breakage of
ozone layer through chlorofluorocarbon and hydrochlorofluorocarbon being a greatest
problem in world-wide scale, but is poor in the compatibility with the conventional
refrigeration lubricant, which is a bar for the development of replacement system.
However, the refrigeration lubricants according to the invention have a sufficient
compatibility with HFC-134a as a refrigerant and a high electric insulating property
and also are excellent in the total performances, so that they have an effect that
the conventional systems can be used as they are even when HFC-134a is used instead
of the conventional R-12 and R-22 as a refrigerant.
Claims for the following Contracting State(s): DE, FR, GB, IT, SE
1. Use of a lubricant for compressors using a hydrofluorcarbon refrigerant containing
no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl
glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty
acids having a carbon number of 5-10 and at least one of branched-chain monovalent
saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used.
2. Use of a lubricant according to claim 1, wherein said ester has a total acid value
of not more than 3 mg KOH/g and a hydroxyl value of not more than 50 mg KOH/g.
3. Use of a lubricant according to claim 1 or 2, wherein said hydrofluorcarbon refrigerant
is 1,1,1,2-tetrafluoroethane.
4. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing
no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl
glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty
acids having a carbon number of 5-10 and at least one of branched-chain monovalent
saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least
one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic
acid is not more than 80 mol% per total monovalent saturated fatty acid used.
5. Use of a lubricant according to claim 4, wherein said polybasic acid is selected from
the group consisting of succinic acid, glutaric acid, adipic acid, pimelic acid, suberic
acid, azelaic acid and sebacic acid.
6. Use of a lubricant according to any one of claims 4 or 5, wherein said ester has a
total acid value of not more than 3 mg KOH/g and a hydroxyl value of not more than
50 mg KOH/g.
7. Use of a lubricant according to any one of claims 4 to 6, wherein said hydrofluorocarbon
refrigerant is 1,1,1,2-tetrafluoroethane.
8. A lubricant for compressors using 1,1,1,2-tetrafluoroethane refrigerant, comprising
as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b)
a mixture of at least one of straight chain monovalent saturated fatty acids having
a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty
acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least
one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic
acid is not more than 80 mol% per total monovalent saturated fatty acid used.
Claims for the following Contracting State(s): ES
1. Use of a lubricant for compressors using a hydrofluorcarbon refrigerant containing
no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl
glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty
acids having a carbon number of 5-10 and at least one of branched-chain monovalent
saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used.
2. Use of a lubricant according to claim 1, wherein said ester has a total acid value
of not more than 3 mg KOH/g and a hydroxyl value of not more than 50 mg KOH/g.
3. Use of a lubricant according to claim 1 or 2, wherein said hydrofluorcarbon refrigerant
is 1,1,1,2-tetrafluoroethane.
4. Use of a lubricant for compressors using a hydrofluorocarbon refrigerant containing
no chlorine, comprising as a main component an ester(s) obtained by reacting (a) neopentyl
glycol with (b) a mixture of at least one of straight chain monovalent saturated fatty
acids having a carbon number of 5-10 and at least one of branched-chain monovalent
saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least
one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic
acid is not more than 80 mol% per total monovalent saturated fatty acid used.
5. Use of a lubricant according to claim 4, wherein said polybasic acid is selected from
the group consisting of succinic acid, glutaric acid, adipic acid, pimelic acid, suberic
acid, azelaic acid and sebacic acid.
6. Use of a lubricant according to any one of claims 4 or 5, wherein said ester has a
total acid value of not more than 3 mg KOH/g and a hydroxyl value of not more than
50 mg KOH/g.
7. Use of a lubricant according to any one of claims 4 to 6, wherein said hydrofluorocarbon
refrigerant is 1,1,1,2-tetrafluoroethane.
8. A method for preparing a lubricant for compressors using 1,1,1,2-tetrafluoroethane
refrigerant by preparing a lubricant, comprising as a main component an ester(s) obtained
by reacting (a) neopentyl glycol with (b) a mixture of at least one of straight chain
monovalent saturated fatty acids having a carbon number of 5-10 and at least one of
branched-chain monovalent saturated fatty acids selected from isoheptanoic acid, 2-ethylhexanoic
acid and 3,5,5-trimethylhexanoic acid, wherein the amount of the branched-chain monovalent
saturated fatty acid is not less than 50 mol% per total monovalent saturated fatty
acid used, and (c) at least one polybasic acid having a carbon number of 4-10, wherein
the amount of the polybasic acid is not more than 80 mol% per total monovalent saturated
fatty acid used.
9. A lubricant for compressors using 1,1,1,2-tetrafluoroethane refrigerant, comprising
as a main component an ester(s) obtained by reacting (a) neopentyl glycol with (b)
a mixture of at least one of straight chain monovalent saturated fatty acids having
a carbon number of 5-10 and at least one of branched-chain monovalent saturated fatty
acids selected from isoheptanoic acid, 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic
acid, wherein the amount of the branched-chain monovalent saturated fatty acid is
not less than 50 mol% per total monovalent saturated fatty acid used, and (c) at least
one polybasic acid having a carbon number of 4-10, wherein the amount of the polybasic
acid is not more than 80 mol% per total monovalent saturated fatty acid used.
Patentansprüche für folgende(n) Vertragsstaat(en): DE, FR, GB, IT, SE
1. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel
verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren
von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen,
einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens
einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure,
2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen,
einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter
einwertiger, gesättigter Fettsäure beträgt.
2. Verwendung eines Schmierstoffs gemäß Anspruch 1, worin der genannte Ester einen Gesamtsäurewert
von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von nicht mehr als 50 mg KOH/g
hat.
3. Verwendung eines Schmierstoffs gemäß Anspruch 1 oder 2, worin das Fluorkohlenwasserstoff-Kältemittel
1,1,1,2-Tetrafluorethan ist.
4. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel
verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren
von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen,
einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens
einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure,
2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen,
einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter
einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure
mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht
mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure
beträgt.
5. Verwendung eines Schmierstoffs gemäß Anspruch 4, wobei. die mehrbasige Säure aus der
Gruppe bestehend aus Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure,
Azelainsäure und Sebacinsäure ausgewählt ist.
6. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 oder 5, wobei der genannte
Ester einen Gesamtsäurewert von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von
nicht mehr als 50 mg KOH/g hat.
7. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 bis 6, wobei das genannte
Fluorkohlenwasserstoff-Kältemittel 1,1,1,2-Tetrafluorethan ist.
8. Schmierstoff für Kompressoren, die 1,1,1,2-Tetrafluorethan-Kältemittel verwenden,
umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von
(a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen,
gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer
verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure,
2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen,
einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter
einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure
mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht
mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure
beträgt.
Patentansprüche für folgende(n) Vertragsstaat(en): ES
1. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel
verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren
von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen,
einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens
einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure,
2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen,
einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter
einwertiger, gesättigter Fettsäure beträgt.
2. Verwendung eines Schmierstoffs gemäß Anspruch 1, worin der genannte Ester einen Gesamtsäurewert
von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von nicht mehr als 50 mg KOH/g
hat.
3. Verwendung eines Schmierstoffs gemäß Anspruch 1 oder 2, worin das Fluorkohlenwasserstoff-Kältemittel
1,1,1,2-Tetrafluorethan ist.
4. Verwendung eines Schmierstoffs für Kompressoren, die ein chlorfreies Fluorkohlenwasserstoff-Kältemittel
verwenden, umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren
von (a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen,
einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens
einer verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure,
2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen,
einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter
einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure
mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht
mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure
beträgt.
5. Verwendung eines Schmierstoffs gemäß Anspruch 4, wobei die mehrbasige Säure aus der
Gruppe bestehend aus Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure,
Azelainsäure und Sebacinsäure ausgewählt ist.
6. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 oder 5, wobei der genannte
Ester einen Gesamtsäurewert von nicht mehr als 3 mg KOH/g und einen Hydroxylwert von
nicht mehr als 50 mg KOH/g hat.
7. Verwendung eines Schmierstoffs gemäß einem der Ansprüche 4 bis 6, wobei das genannte
Fluorkohlenwasserstoff-Kältemittel 1,1,1,2-Tetrafluorethan ist.
8. Verfahren zum Herstellen eines Schmierstoffs für Kompressoren, die 1,1,1,2-Tetrafluorethan-Kältemittel
verwenden, durch Herstellen eines Schmierstoffs umfassend als Hauptbestandteil einen
Ester oder Ester erhalten durch Reagieren von (a) Neopentylglykol mit (b) einer Mischung
von mindestens einer geradkettigen, einwertigen, gesättigten Fettsäure mit einer Kohlenstoffanzahl
von 5 bis 10 und mindestens einer verzweigtkettigen, einwertigen, gesättigten Fettsäure,
ausgewählt aus Isoheptansäure, 2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei
der Anteil der verzweigtkettigen, einwertigen, gesättigten Fettsäure nicht weniger
als 50 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure beträgt,
und (c) mindestens einer mehrbasigen Säure mit einer Kohlenstoffanzahl von 4 bis 10,
wobei der Anteil der mehrbasigen Säure nicht mehr als 80 Mol-% der Gesamtmenge an
verwendeter einwertiger, gesättigter Fettsäure beträgt.
9. Schmierstoff für Kompressoren, die 1,1,1,2-Tetrafluorethan-Kältemittel verwenden,
umfassend als Hauptbestandteil einen Ester oder Ester erhalten durch Reagieren von
(a) Neopentylglykol mit (b) einer Mischung von mindestens einer geradkettigen, einwertigen,
gesättigten Fettsäure mit einer Kohlenstoffanzahl von 5 bis 10 und mindestens einer
verzweigtkettigen, einwertigen, gesättigten Fettsäure, ausgewählt aus Isoheptansäure,
2-Ethylhexansäure und 3,5,5-Trimethylhexansäure, wobei der Anteil der verzweigtkettigen,
einwertigen, gesättigten Fettsäure nicht weniger als 50 Mol-% der Gesamtmenge an verwendeter
einwertiger, gesättigter Fettsäure beträgt, und (c) mindestens einer mehrbasigen Säure
mit einer Kohlenstoffanzahl von 4 bis 10, wobei der Anteil der mehrbasigen Säure nicht
mehr als 80 Mol-% der Gesamtmenge an verwendeter einwertiger, gesättigter Fettsäure
beträgt.
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): DE, FR, GB, IT, SE
1. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné
ne contenant pas de chlore, comprenant comme composant principal un ou des esters
obtenus par la réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un
acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone
de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi
l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque
où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure
à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
2. Utilisation d'un lubrifiant selon la revendication 1 où ledit ester a un indice d'acide
total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle non supérieur à 50 mg
de KOH/g.
3. Utilisation d'un lubrifiant selon la revendication 1 ou 2 où ledit réfrigérant hydrofluorocarboné
est le 1,1,1,2-tétrafluoroéthane.
4. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné
ne contenant pas de chlore, comprenant comme composant principal un ou des esters
obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide
gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10
et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide
isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où
la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure
à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et
(c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où
la quantité d'acide polybasique n'est pas supérieure à 80 % molaire par rapport au
total de l'acide gras saturé monovalent utilisé.
5. Utilisation d'un lubrifiant selon la revendication 4, où ledit acide polybasique est
choisi dans le groupe consistant en l'acide succinique, l'acide glutarique, l'acide
adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque et l'acide sébacique.
6. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 ou 5, où ledit
ester a un indice d'acide total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle
non supérieur à 50 mg de KOH/g.
7. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 à 6, où ledit
réfrigérant hydrofluorocarboné est le 1,1,1,2-tétrafluoroéthane.
8. Lubrifiant pour compresseurs utilisant le réfrigérant 1,1,1,2-tétrafluoroéthane, comprenant
comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol
avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant
un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent
à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et
l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à
chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide
gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre
d'atomes de carbone de 4-10, où la quantité de l'acide polybasique n'est pas supérieure
à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): ES
1. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné
ne contenant pas de chlore, comprenant comme composant principal un ou des esters
obtenus par la réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un
acide gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone
de 5-10 et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi
l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque
où la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure
à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.
2. Utilisation d'un lubrifiant selon la revendication 1 où ledit ester a un indice d'acide
total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle non supérieur à 50 mg
de KOH/g.
3. Utilisation d'un lubrifiant selon la revendication 1 ou 2 où ledit réfrigérant hydrofluorocarboné
est le 1,1,1,2-tétrafluoroéthane.
4. Utilisation d'un lubrifiant pour compresseurs utilisant un réfrigérant hydrofluorocarboné
ne contenant pas de chlore, comprenant comme composant principal un ou des esters
obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide
gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10
et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide
isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où
la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure
à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et
(c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où
la quantité d'acide polybasique n'est pas supérieure à 80 % molaire par rapport au
total de l'acide gras saturé monovalent utilisé.
5. Utilisation d'un lubrifiant selon la revendication 4, où ledit acide polybasique est
choisi dans le groupe consistant en l'acide succinique, l'acide glutarique, l'acide
adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque et l'acide sébacique.
6. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 ou 5, où ledit
ester a un indice d'acide total non supérieur à 3 mg de KOH/g et un indice d'hydroxyle
non supérieur à 50 mg de KOH/g.
7. Utilisation d'un lubrifiant selon l'une quelconque des revendications 4 à 6, où ledit
réfrigérant hydrofluorocarboné est le 1,1,1,2-tétrafluoroéthane.
8. Procédé pour préparer un lubrifiant pour compresseurs utilisant le réfrigérant 1,1,1,2-tétrafluoroéthane
par préparation d'un lubrifiant, comprenant comme composant principal un ou des esters
obtenus par réaction de (a) du néopentylglycol avec (b) un mélange d'au moins un acide
gras saturé monovalent à chaîne linéaire ayant un nombre d'atomes de carbone de 5-10
et d'au moins un acide gras saturé monovalent à chaîne ramifiée choisi parmi l'acide
isoheptanoïque, l'acide 2-éthylhexanoïque et l'acide 3,5,5-triméthylhexanoïque où
la quantité d'acide gras saturé monovalent à chaîne ramifiée n'est pas inférieure
à 50 % molaire par rapport au total de l'acide gras saturé monovalent utilisé, et
(c) au moins un acide polybasique ayant un nombre d'atomes de carbone de 4-10, où
la quantité de l'acide polybasique n'est pas supérieure à 80 % molaire par rapport
au total de l'acide gras saturé monovalent utilisé.
9. Lubrifiant pour compresseurs utilisant le réfrigérant 1,1,1,2-tétrafluoroéthane, comprenant
comme composant principal un ou des esters obtenus par réaction de (a) du néopentylglycol
avec (b) un mélange d'au moins un acide gras saturé monovalent à chaîne linéaire ayant
un nombre d'atomes de carbone de 5-10 et d'au moins un acide gras saturé monovalent
à chaîne ramifiée choisi parmi l'acide isoheptanoïque, l'acide 2-éthylhexanoïque et
l'acide 3,5,5-triméthylhexanoïque où la quantité d'acide gras saturé monovalent à
chaîne ramifiée n'est pas inférieure à 50 % molaire par rapport au total de l'acide
gras saturé monovalent utilisé, et (c) au moins un acide polybasique ayant un nombre
d'atomes de carbone de 4-10, où la quantité de l'acide polybasique n'est pas supérieure
à 80 % molaire par rapport au total de l'acide gras saturé monovalent utilisé.