Europäisches Patentamt **European Patent Office** Office européen des brevets

① Veröffentlichungsnummer: 0 407 888 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90112821.5

2 Anmeldetag: 05.07.90

(5) Int. Cl.5: A01N 43/90, C07D 487/04, -//(C07D487/04,253:00,239:00)

3 Priorität: 14.07.89 DE 3923226 27.07.89 DE 3924845

(43) Veröffentlichungstag der Anmeldung: 16.01.91 Patentblatt 91/03

 Benannte Vertragsstaaten: BE CH DE FR GB IT LI NL

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

(72) Erfinder: Meyer, Norbert, Dr. Dossenheimer Weg 22 D-6802 Ladenburg(DE) Erfinder: Schirmer, Ulrich, Dr.

Berghalde 79

D-6900 Heidelberg(DE)

Erfinder: Plath, Peter, Dr. Hans-Baicke-Strasse 13 D-6710 Frankenthal(DE) Erfinder: Wuerzer, Bruno, Dr.

Ruedigerstrasse 13 D-6701 Otterstadt(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 D-6720 Speyer(DE)

Erfinder: Pfleiderer, Wolfgang, Prof. Dr.

Lindauerstrasse 47 D-7750 Konstanz(DE)

Erfinder: Werner-Simon, Susanne

Schwaketenstrasse 104 D-7750 Konstanz(DE)

⁵⁴ Pyrimido(5,4-e)-as-triazin-5,7(6H,8H)-dione.

Fig. Herbizide Mittel, enthaltend ein Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dion la

$$\begin{array}{cccc}
0 & (0)_n \\
\uparrow & & R^3 \\
0 & & N & N
\end{array}$$
(Ia)

品

 $(R^1, R^2 = H, C_1-C_6-Alkyl, C_3-C_6-Cycloalkyl, C_2-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkyl, C_3-C_6-Cycloalkyl, C_2-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkyl, C_3-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkyl, C_3-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkyl, C_3-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Nitro, C_1-C_8-Alkenyl, Phenyl oder Benzyl; R^3 = H, Halogen, Phenyl oder Benzyl, Phe$ Alkyl, das bis zu drei weitere Substituenten tragen kann, C2-C6-Alkenyl, Phenyl-C2-C6-alkenyl, C3-C6-Cycloalkyl, das bis zu 3 C1-C4-Alkylsubstituenten tragen kann, einen 5-oder 6-gliedrigen Heterocyclus mit bis zu 2 der Ringglieder O, S oder NR4; eine Gruppe -CO-R4 oder -CO-O-R4; Phenyl oder Heteroaryl, die bis zu drei weitere Substituenten tragen können; oder eine Gruppe ZR^6 ; R^4 = H, C_1 - C_6 -Alkyl; Z = O, S oder -N(R^7)-; R^6 = H, C_1 - C_6 -Alkyl, Phenyl oder Benzyl, die bis zu drei weitere Substituenten tragen können; R^7 = H, C_1 - C_6 -Alkyl oder R^6 und R⁷ zusammen mit Stickstoff 5- oder 6-gliedriger Ring, der O enthalten kann; n = 0 oder 1) oder ein mineralsaures Salz von la.

PYRIMIDO[5,4-E]-AS-TRIAZIN-5,7(6H,8H)-DIONE

Die vorliegende Erfindung betrifft herbizide Mittel, enthaltend als Wirkstoff ein Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dion der Formel la

$$\begin{array}{cccc}
0 & (0)_n \\
R^1 & N & R^3 \\
0 & N & N
\end{array}$$
(Ia)

10

5

in der die Variablen folgende Bedeutung haben,

 $R^1,\ R^2\ -\ Wasserstoff,\ C_1-C_6-Alkylgruppen,\ C_3-C_6-Cycloalkylgruppen,\ C_2-C_8-Alkenylgruppen,\ die\ Phenyl-Phenylgruppen,\ C_8-C_8-Alkenylgruppen,\ die\ Phenylgruppen,\ C_8-C_8-Alkenylgruppen,\ die\ Phenylgruppen,\ C_8-C_8-Alkenylgruppen,\ die\ Phenylgruppen,\ C_8-C_8-Alkenylgruppen,\ die\ Phenylgruppen,\ Phenylgruppen,\$ oder die Benzylgruppe;

R³ - Wasserstoff, Halogen, die Nitrogruppe, eine C₁-C₈-Alkylgruppe, die bis zu drei der folgenden Substituenten tragen kann:

Halogen, Hydroxyl, C₁-C₆-Alkoxy, C₁-C₆-Alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkoxy, C₂-C₆-Alkenyl, C₁-C₆-Alkylthio, Phenyl, Benzyl;

- eine C₂-C₆-Alkenyl- oder Phenylalkenylgruppe;
- eine C₃-C₆-Cycloalkylgruppe, die bis zu 3 C₁-C₄-Alkylgruppen als Substituenten tragen kann;
- einen 5- oder 6-gliedrigen C-organischen Heterocyclus, bei dem insgesamt bis zu zwei der Ringglieder, die nicht benachbart sein sollen, -O-, -S- oder -N(R4)- sein können, wobei R4 für Wasserstoff oder eine C1-C₆-Alkylgruppe steht;
- eine Gruppe -CO-R4 oder -CO-O-R4;

- die Phenylgruppe oder einen einkernigen Heteroarylrest, wobei diese Gruppen bis zu drei der folgenden Substituenten enthalten können: Halogen, Nitro, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₆-Alkoxy oder eine Aminogruppe -NR⁴R⁵, wobei R⁵ für einen der Reste R⁴ steht;

- eine Gruppe -ZR⁶, wobei
- Z für Sauerstoff, Schwefel oder die Gruppierung -N(R7)-steht und in der R6 Wasserstoff, eine C1-C5-Alkylgruppe oder eine Phenyl- oder Benzylgruppe bedeutet, die bis zu drei der folgenden Substituenten am Kern tragen können:

C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen,

und wobei

R⁷ Wasserstoff oder eine C₁-C₅-Alkylgruppe bedeutet, wobei R⁶ und R⁷ auch mit dem Stickstoffatom einen 5- oder 6-gliedrigen Ring bilden können, der durch Sauerstoff unterbrochen sein kann; n 0 oder 1,

oder ein mineralsaures Salz von la mit Säuren, welche die herbizide Wirkung von la nicht beeinträchtigen. Außerdem betrifft die Erfindung neue Pyrimido[5,4-e]-astriazin-5,7(6H,8H)-dion-Derivate der Formel Ib

40

45

in der

R3' eine der folgenden Bedeutungen hat:

- eine C₁-C₈-Alkylgruppe mit einem bis zwei der folgenden Substituenten: Halogen, Hydroxy, C₁-C₅-Alkoxy, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxy, C_1 - C_6 -Alkylthio,
- eine C₃-C₅-Cycloalkylgruppe, die bis zu 3 C₁-C₄-Alkylgruppen als Substituenten tragen kann;
- einen 5- oder 6-gliedrigen gesättigten Heterocyclus mit der Gruppierung -N(R4)- als Heterogruppierung, wobei R⁴ für eine C₁-C₆-Alkylgruppe steht, oder mit zwei nicht benachbarten Heteroatomen, die Sauerstoff, Schwefel oder die Gruppierung -N(R4)-sein können;

- eine Gruppe -CO-R4 oder -CO-O-R4;
- einen einkernigen Heteroarylrest, der einen bis drei oder folgenden Substituenten enthält, Halogen, Nitro, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₆-Alkoxy oder eine Aminogruppe -NR⁴R⁵, wobei R⁵ für einen der Reste R⁴ steht:
- eine C₂-C₆-Alkoxygruppe;
 - eine Gruppe - ZR^6 , wobei Z für Sauerstoff, Schwefel oder die Gruppierung - $N(R^7)$ steht und in der R^6 Wasserstoff, eine C_2 - C_6 -Alkylgruppe oder eine Phenyl- oder Benzylgruppe bedeutet, die jede bis zu drei der folgenden Substituenten am Kern tragen kann:
 - C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen,
- und wobei R⁷ eine C₁-C₆-Alkylgruppe bedeutet, und
 - R⁶ und R⁷ auch mit dem Stickstoffatom einen 5- oder 6-gliedrigen Ring bilden können, der noch durch Sauerstoff unterbrochen sein kann,
 - sowie die Salze von Ib mit solchen Säuren, welche die herbizide Wirkung von Ib nicht beeinträchtigen.

Aus den Arbeiten von K. Senga et al (Heterocyclus, Band 6, 1977, Seite 1921 f. und J. Heterocycl. Chem., Band 19, 1982, Seite 1309 f.) sind Verbindungen vom Typ la bekannt, die in 6- und 8-Stellung eine Methylgruppe tragen und in 3-Stellung unsubstituiert sind oder eine Anilinogruppe oder eine substituierte Phenylgruppe tragen.

Aus der JA-A 73 25 200 sind Verbindungen vom Typ la bekannt, die in 6- und 8-Stellung Wasserstoff, einen Kohlenwasserstoff-Rest oder einen Aminrest tragen und in 3-Stellung unsubstituiert sind oder eine Kohlenwasserstoffgruppe oder einen aromatischen Rest tragen.

Diesen Verbindungen und ihren Säureadditionssalzen werden in der genannten Literatur anti-microbe, fungizide und antivirale Eigenschaften zugeschrieben. Eine herbizide Wirkung dieser Verbindungen ist jedoch nicht bekannt.

Da die bekannten Herbizide in ihrer Wirkung nicht immer befriedigen, lag der Erfindung die Aufgabe zugrunde, neue herbizide Mittel mit stärkerem herbiziden Effekt zur Verfügung zu stellen. Weiterhin lagen der Erfindung neue herbizid wirkende Verbindungen als Aufgabe zugrunde.

Demgemäß wurden die eingangs definierten herbiziden Mittel mit den Verbindungen la als Wirkstoff, sowie die unter die allgemeine Formel la fallenden neuen Verbindungen lb gefunden.

Bevorzugte Verbindungen la in den erfindungsgemäßen Mitteln sind solche, in denen die Substituenten folgende Bedeutung haben:

- R^1 , R^2 Wasserstoff, unverzweigte oder verzweigte C_1 - C_6 -Alkylgruppen, insbesondere C_1 - C_4 -Alkylgruppen wie Methyl, Ethyl, n-Propyl, iso-Propyl und Butyl, eine C_3 - C_6 -Cycloalkylgruppe, insbesondere Cyclopropyl und Cyclohexyl, C_2 - C_8 -Alkenylgruppen, insbesondere Vinyl und Alkyl, eine Phenyl oder eine Benzylgruppe; R^3 Wasserstoff, Halogen, insbesondere Chlor und Brom, eine Nitrogruppe;
- eine unverzweigte oder verzweigte C₁-C₈-Alkylgruppe, insbesondere eine C₁-C₄-Alkylgruppe, die bis zu 3 der folgenden Substituenten tragen kann: Halogen wie Fluor, Chlor oder Brom, Hydroxyl, C₁-C₆-Alkoxy wie Methoxy und Ethoxy, C₁-C₆-Alkyl wie Methyl, Ethyl, n-Propyl, Isopropyl und tert.-Butyl, C₁-C₄-Alkoxy-C₁-C₄-alkoxy wie Methoxy-methoxy, 2-Methoxy-ethoxy und tert.-Butoxy-methoxy, C₂-C₆-Alkenyl wie Ethenyl, 2-Propenyl, 2-Butenyl und 3-Butenyl, C₁-C₆-Alkylthio wie Methylthio, Ethylthio und tert.-Butylthio, Phenyl und/oder Benzyl; besonders bevorzugt sind Methyl, Ethyl, n-Propyl, iso-Propyl, 1-(2-Methyl)propyl, n-Butyl, tert.-Butyl und 1-(3,3-Dimethyl)butyl, Dibrommethyl, Trichlormethyl, Methoxymethyl, 1-(1-Methoxy)ethyl, 2-Methoxyethyl, 1-(1-Hydroxy)ethyl, 2-(Methylthio)ethyl, 1-Methyl(2,5-dioxa)hexyl, 2-Phenethyl und 1,2-Dibromphenethyl;
 - eine C₂-C₆-Alkenyl- oder Phenylalkenylgruppe, insbesondere Allyl, 2-(2-Butenyl) und Styryl;
- eine C₃-C₆-Cycloalkylgruppe, die bis zu 3 C₁-C₄-Alkylgruppen als Substituenten tragen kann, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, einen 5- oder 6-gliedrigen gesättigten Heterocyclus, insbesondere 4-Tetrahydropyranyl und 3-Tetrahydrothiopyranyl;
 - eine Acetylgruppe, eine Methoxycarbonyl-, Ethoxycarbonyl- oder Butoxycarbonylgruppe;
- die Phenylgruppe oder ein einkerniger Heteroarylrest, wobei diese Gruppen bis zu drei der folgenden Substituenten enthalten können: Halogen wie Fluor, Chlor und Brom, Nitro, C₁-C₆-Alkyl wie Methyl, Ethyl und tert.-Butyl, C₂-C₆-Alkenyl wie Ethenyl, 2-Propenyl und 2-Butenyl, C₁-C₆-Alkoxy wie Methoxy, Ethoxy und tert.-Butoxy, Amino, C₁-C₆-Alkylamino wie Methylamino und Ethylamino oder Di-(C₁-C₆)-alkylamino wie Dimethylamino; besonders bevorzugt sind Phenyl, 4-Chlorphenyl, 4-Nitrophenyl, 4-(Dimethylamino)phenyl, 2-Pyridyl, 3-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Thienyl, 3-Thienyl, 4-(1-Ethyl)pyrazolyl, 5-(3-Methyl)isoxazolyl, 5-(3-(2-Propyl))isoxazolyl, 5-(3-Propyl)isoxazolyl und 5-(3-Butyl)isoxazolyl;
 - einen über Sauerstoff, Schwefel oder Stickstoff verbrückten Rest, insbesondere Methoxy, Ethoxy, Phenoxy, 4-Chlorphenoxy, Benzyloxy, 4-Chlorbenzyloxy, Methylthio, Phenylthio, Isopropylamino, N,N-Diethylamino, Anilino, 4-Chloranilino, N-Methylanilino, Pyrrolidino und N-Morpholino.

Bevorzugte neue Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione der Formel Ib sind in Tabelle 1 unter den Beispielen aufgeführt.

Als Säureadditionssalze eignen sich die Salze von solchen Säuren, welche die herbizide Wirkung der Verbindungen la nicht beeinträchtigen, also z.B. die Hydrochloride und -bromide, Sulfate, Nitrate, Phosphate, Oxalate oder die Dodecylbenzolsulfonate.

Die 3,6,8 substituierten Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione la sind bekannt oder (im Falle Ib) in an sich bekannter Weise erhältlich. In den Fällen, in denen R^3 bzw. $R^{3'}$ nicht - ZR^5 oder Halogen bedeutet und n=0 ist, kann man die Verbindungen nach folgendem Schema herstellen.

10

15

Diese Reaktion ist z.B. aus den Arbeiten von G. Blankenhorn und W. Pfleiderer (Chem. Ber., Band 105, 1972, Seite 3334 f.) und K. Senga et al (Heterocyclus, Band 6, 1977, Seite 1921 f.) bekannt. Die Synthese der Hydrazone wird in bekannter Weise (vgl. Houben-Weyl, Methoden der Organischen Chemie, Band VII.1, S. 461 ff.) durchgeführt.

Vorzugsweise führt man die Herstellung der Hydrazhone und deren Cyclisierung in Alkoholen wie Ethanol mit einer katalytischen Menge einer Mineralsäure wie Salzsäure oder Schwefelsäure bei der Siedetemperatur des Lösungsmittels durch. Bevorzugt werden stöchiometrische Mengen oder ein geringer Überschuß des Aldehyds eingesetzt. Im allgemeinen arbeitet man bei Atmosphärendruck oder unter dem Eigendruck des jeweiligen Lösungsmittels, sofern sich nicht wegen leichtflüchtiger Reaktionspartner ein höherer Druck, etwa bis zu 5 bar, empfiehlt.

Bei der Herstellung von Verbindungen der Formel la können als Nebenprodukte die jeweiligen N-Oxide (n = 1) anfallen. Diese lassen sich auch gezielt nach bekannten Verfahren synthetisieren (z.B. K. Senga et al, J. Org. Chem., Band 43, 1978, Seite 469 ff.).

Die Herstellung der Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione der Formel Ia (n = 0) oder Ib mit Ausnahme von R^3 und $R^{3'} = ZR^6$ oder Halogen kann auch dadurch erfolgen, daß man nach bekannten Verfahren (z.B. W. Pfleiderer und G. Blankenhorn, THL, 1969, S. 4699 ff.) aus 4-Hydrazinuracilen der Formel IIa die entsprechenden Hydrazone IIb synthetisiert und anschließend zwischen 20° C und dem Siedepunkt des Lösungsmittels nitrosiert. Dabei erfolgt eine spontane Cyclisierung zu den Verbindungen Ia-(n = 0) oder Ib.

Hydrazin Va und Aldehyd werden bevorzugt in stöchiometrischen Mengen oder mit einem leichten Überschuß an Aldehyd umgesetzt.

Die Nitrosierung wird vorzugsweise mit einem organischen Nitrit wie Amyl- oder Isoamylnitrit oder mit einem anorganischen Nitrit wie Natrium- oder Kaliumnitrit durchgeführt.

Als Lösungsmittel empfehlen sich polare Solventien wie niedere Alkohole oder Wasser, vorteilhaft mit der katalytischen Menge einer Säure wie Salzsäure oder Schwefelsäure.

Auch bei dieser Umsetzung arbeitet man bevorzugt unter Atmosphärendruck.

Verbindungen der Formel la und lb, in der R¹ oder R² Wasserstoff bedeutet und R³ bzw. R³ nicht ZR⁶ oder Halogen bedeutet, sind auch durch Debenzylierung der entsprechenden Verbindungen la bzw. lb (R¹ oder R² = Benzyl) mit Wasserstoff in Anwesenheit eines Hydrierkatalysators, wie Palladium/Kohle, erhältlich.

Verbindungen der Formel la oder lb mit R3 bzw. R3' = Halogen können durch Umsetzung von

Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dionen mit z.B. POCl₃ und Diethylanilin als Hilfsbase erhalten werden (z.B. E.C. Taylor and F. Sowinski, JOC, Band 40, 1975, S. 2321 ff.).

Die Synthese der Verbindungen Ia oder Ib mit R^3 und $R^{3'} = -ZR^6$ erfolgt durch Umsetzung des entsprechenden Chlorderivates (R^3 und $R^{3'} = Chlor$) mit Nukleophilen der Formel H-ZR⁶ oder H-N(R^6R^7) in einem inertem Lösungsmittel (z.B. K. Senga, J. Heterocycl. Chem., Band 19, 1982, S. 1309 ff.).

Als Solventien eignen sich Ether wie Dioxan oder Tetrahydrofuran oder vorteilhaft der entsprechende Alkohol HO-R⁶ im Überschuß. Wenn Z Schwefel oder -NR⁷ bedeutet, können Ether oder niedere Alkohole wie Methanol oder i-Propanol, Ester wie Acetonitril oder Amide wie Dimethylformamid verwendet werden. Bevorzugt arbeitet man in Tetrahydrofuran.

Als Hilfsbase dient entweder das Salz des Alkohols bzw. Thiols H-Z-R⁵ oder überschüssiges Amin H-NR⁶R⁷ oder ein tertiäres Amin wie Triethylamin, N-Methylpiperidin oder N-Methylmorpholin.

Die Verbindung H-ZR⁶ und die Hilfsbase werden vorteilhaft in einer mindestens äquimolaren Menge, bevorzugt in ca. 10 %igem Überschuß, bezogen auf das Chlorderivat (R³ bzw. R³ $^{'}$ = Cl), eingesetzt. Die Umsetzung erfolgt vorteilhaft bei Temperaturen von 0 bis 100 $^{\circ}$ C, bevorzugt im Bereich zwischen 40 und 80 $^{\circ}$ C.

Bezüglich des Druckes gelten die obigen Angaben für die Herstellung der Verbindung la bzw. Ib, bei denen R^3 bzw. $R^{3'}$ nicht - ZR^6 oder Halogen bedeutet und n=0 ist.

Die Verbindungen la und Ib sowie ihre definitionsgemäßen Salze eignen sich als Herbizide.

20

10

Herstellungsbeispiele

Beispiel 1

25

3-(3-Tetrahydrothiopyranyl)-6,8-dimethyl-pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dion

30

35

3 g (0,015 mol) 5-Nitroso-4-hydrazino-1,3-dimethyluracil in 100 ml Ethanol wurden mit 2,6 g (0,02 mol) Tetrahydrothiopyran-3-aldehyd und 2 Tropfen konz. Salzsäure versetzt. Nach 3-stündigem Erhitzen bei Rückflußtemperatur wurde das Lösungsmittel entfernt und der Rückstand in Ethylacetat aufgenommen. Diese Lösung wurde über Kieselgel filtriert und wieder eingeengt. Das so erhaltene Produkt wurde sodann aus Diethylether umkristallisiert.

Ausbeute: 66 %; FP.: 134 - 138° C.

45

Beispiel 2

50

3-(4-Morpholino)-6,8-dimethyl-pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione

Zu einer Suspension von 2,3 g (0,01 mol) 3-Chlor-6,8-dimethylpyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dion (3-Chlorfervenulin) in 70 ml Tetrahydrofuran wurden 1,75 g (0,02 mol) Morpholin gegeben. Nach 30-minütigem Erhitzen auf 70°C wurde die Mischung im Vakuum eingeengt und der Rückstand mit Wasser verrührt, abfiltriert und aus Isopropanol umkristallisiert.

Ausbeute:70 %; Fp.: 180 - 182° C

Analog den Beispielen 1 und 2 wurden die in Tabelle 1 aufgeführten neuen Verbindungen hergestellt. In Tabelle 2 sind die bekannten Verbindungen vom Typ la zusammengestellt, die zusätzlich zu den Verbindungen Ib als herbizide Wirkstoffe bevorzugt werden.

.-

Tabelle 1

10

Neue Pyrimido[5, 4-e]-as-triazin-5,7(6H,8H)-dione Ib

Bsp. R¹ R² R³

Fp./NMR-Daten (ð[ppm], Multiplizität, Integral)

-			_	2	134-138°C
	1	Methyl	Methyl	Tetrahydrothiopyran-3-yl	
	2	н	H	N-Morpholinyl	180-182°C
	3	Ħ	II.	Dibrommethyl	198-200°C (Zers.)
	4	u	n	Acetyl	152-153°C (Zers.)
	5	н	II	1-(1-Hydroxy)ethyl	154-157°C
	6	ŧi	at .	1,2-Dibromphenethyl	- 201°C
	7	11	u	4-Tetrahydropyranyl	155-158°C
	8	н	ıı	Cyclohexyl	183-187°C
	9	H	Ħ	Cyclopentyl	156-157°C
1	10	11	11	2-(2-Butenyl)	181-184°C
•	11	H	11	1-(1-Methoxyethyl)	125-128°C
	12	н	**	Methoxymethyl	3,5(s,3H); 3,55(s,3H);
					3,9(s,3H); 5,0(s,2H)
	13	u	н	Methoxyethyl	3,4(s,3H); 3,6(s,3H);
					3,9(s,3H); 4,05(t,2H);
	14	н	ii	Methylthioethyl	86-90°C
	15	**	n	1-Methyl-(2,5-dioxa)hexyl	59-62°C
	16	**	11	5-(3-Butyl)isoxazolyl	123-126°C
	17	11	**	4-(1-Ethyl)pyrazolyl '	215-217°C
	18	N	н	5-(3-Propyl)isoxazolyl	159-161°C
	19	#1	¥4	5-(3-(2-Propyl)isoxazolyl	123-126°C
	20	11	•	5-(3-Methyl)isoxazolyl	>200°C (Zers.)
	21		Allyl	3-Tetrahydrothiopyranyl	105-109°C
	4.1		U + 1 1 4		

50

5	Bsp.	, R1	R ²	R 3	Fp./NMR-Daten (δ[ppm], Multiplizität, Integral)
	23	Methyl	Allyl	4-Tetrahydropyranyl	3,4-3,7(m,1H,2H,mit s,3H); 4,1-4,2 (m,2H);
10	24	ŧı	D===1	/. Takmahudmanumanu1	5,1 (d,2H) 90-93°С
			Propyl	4-Tetrahydropyranyl	68-71°C
	25 26	tı	Allyl	Cyclohexyl	
	26		Propyl	,	1,0(t,3H); 1,1-2,1(m,1OH);
	27	"	4111	Mathulthianthul	2,2(s,3H); 3,1(t,3H);
15			Allyl	Methylthioethyl	
	20	а	D	***************************************	3,6(s,3H); 5,1(d,2H)
	28	"	Propyl	Methylthioethyl	1,0(t,3H); 2,2(s,3H);
					3,1(t,2H); 3,6(s,3H);
20	••				4,5(t,2H)
20	29	"	Methyl	Methoxycarbonyl	151-155°C
	30	н	ti	Ethoxycarbonyl	1,5(t,3H); 3,6(s,3H);
				-	4,0(s,3H); 4,6(q,2H)
	31	II .	tt	Butoxycarbonyl	1,0(t,3H); 1,4-1,6
25	32	Propyl	Propyl	Cyclohexyl	3,3(m,1H); 4,1(t,2H);
					4,5(t,2H)
	33	2-Propyl	2-Propy1	ห	3,3(m,1H); 5,3(m,1H);
					5,8(m,1H)
-	34	Ethyl	Ethyl	**	3,3(m,1H); 4,2(m,2H);
30					4,6(m,2H)
	35	Methy1	Methyl	Cyclopropyl	131-133°C
	36	u	Propy1	u	54-57°C
	37	u	Allyl	11	1,2-1,4(m,4H); 2,6(m,1H);
			-		3,5(s,3H); 5,1(d,2H)
35	38	Ethyl	Ethyl	и	137-139
	39	Methyl	Methyl	Pyrrolidino	
		•	•	-	

Tabelle 2

5 Herbizide Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione Ia

10

Bsp. R1 R2 R3 n Fp./NMR-Daten (δ [ppm], Multiplizität, Integral)

			A	0	181-182°C
40	Methyl	Methyl	Methyl	0	178-179°C
41	11	11	H	-	
42	H	fi .	Phenyl	0	270°C
43	ti	t!	4-Chlorphenyl	0	275°C
44	Ħ	11	4-Nitrophenyl	0	323°C
ິ 45	H	ar .	2-Propyl	0	158-159°C
46	н	lı	4-(Dimethylamino)phenyl	Ó	340°C (Zers.)
47	"	#1	Trichlormethyl	0	194°C
48	11	11	Ethyl	0	95°C
49	ıı	H .	tertButyl	0	198-199°C
50	н	H	Chlor	0	147°C
51	n	11	Н	1	179-180°C
52	Methyl	Ethyl	Methyl	0	132-133°C
53	Methyl	Ethyl	2-Propyl	0	107-109°C
54	Ethyl	Methyl	Methyl	0	115-117°C
55	Ethyl	Methyl	2-Propyl	0	76-78°C
56	Benzyl	Methyl	Methyl	0	>177°C (Zers.)
57	Benzyl	Methyl	2-Propyl	0	135-137°C
58	Methy1	Benzyl	Methyl	0	213-217°C
59	Methyl	Benzyl	2-Propyl	0	198-200°C
60	Allyl	Methyl	Methyl	0	3,0(s,3H); 3,9(s,3H);
	ŭ	•	-		4,7(d,2H)
61	Allyl	Methy1	2-Propyl	0	1,5(d,6H); 3,6(q,1H);
-		• • • •	. 0		3,9(s,3H); 4,7(d,2H)
62	Methyl	Allyl	Methyl	0	125-127°C
63	Methyl	Allyl	2-Propyl	0	93-95°C
64	Methyl	Propyl	2-Propyl	0	52-53°C
65	Methyl	Propyl	Methyl	0	104-106°C

50

5	Bsp.	R1	R ²	R3	n	Fp./NMR-Daten (ð[ppm], Multiplizität, Integral)
	66		2-Propyl		0	112-114°C
	67	2-Propyl	-	Methyl	0	135-137°C
10	68	Methyl	Methyl	8enzy l	0	180-182°C
	69	Methyl	Methyl	- -	0	263°C
	70	Methyl	_	1-(3,3-Dimethyl)butyl	0	134-136°C
	71	Methyl	Methyl	1-(2-Methyl)propyl	0	86-90°C
	72	Cyclo-	Methyl	Methyl	0	135-138°C
15		hexyl		-		
	73	11	Methyl	2-Propyl	0	103-106°C
	74	Methyl	Н	Methyl ·	0	168-174°C
	75	Methyl	Methyl	2-Pyridyl	0	266-269°C
	76	Methy1	Methyl	3-Pyridyl	0	121-125°C
20	77	Methyl	Methyl	4-Pyridyl	0	269-271°C
	78	Methyl	Methyl	2-Thienyl	0	285-288°C
	79	Methyl	Methyl	3-Thienyl	0	311-325°C
	80	Methyl	Н	2-Propyl	0	185-188°C
05	81	Methyl	Methyl	2-Propy1	1	172-174°C
25	82	Methyl	Allyl	Ethyl	0	70-73°C
	83	Methyl	Propyl	Ethyl	0	79-82°C
	84	Methyl	Allyl	1-(2-Methyl)propyl	0	76-79°C
	85	Methyl	Propyl	1-(2-Methyl)propyl	0	35°C
30	86	Methyl	Allyl	3-Pyridyl	0	154-156°C
	87	Methyl	Propyl	3-Pyridyl	0	159-162°C
	88	Propyl	Propyl	н	0	77-80°C
	89	Propyl	Propyl	Methyl	0	3,0(s,3H); 4,1(t,2H);
						4,5(t,2H)
35	90	Propyl	Propyl	2-Propyl	0	3,6(m,1H); 4,1(t,2H);
						4,5(t,2H)
	91	Propyl	Propy1	3-Pyridyl·HCl	0	199-203°C
	92	2-Propyl		н	0	5,3(m,1H); 5,9(m,1H);
40				•		9,9(2,1H)
40	93	**	II .	Methyl	0	3,0(s,3H); 5,3(m,1H);
				-		5,8(m,1H)
	94	11	#1	2-Propyl	0	3,6(m,1H); 5,3(m,1H);
				, ,		5,8(m,1H)
45	95	н	11	3-Pyridyl	0	191-194°C
	96	Ethyl	Ethyl	Methyl	0	100-103°C
	97	Ethyl	Ethyl	2-Propy1	0	107-109°C
	98	Ethyl	Ethyl	3-Pyridyl·HCl	0	239-240°C
		- · · · · j -	= :-3 -	•		

	Bsp.	R1	R ²	R 3	n	Fp./NMR-Daten (δ[ppm], Multiplizität, Integral)
5			····			
	99	Ethyl	Ethyl	H	0	168-170°C
	100	Methyl	Methyl	Methoxy	0	144-145°C
	101	Methyl	Methyl	Benzyloxy	0	185-187°C
10	102	Methyl	Methyl	Phenoxy	0	
	103	Methyl	Methyl	4-Cl-phenoxy	0	
	104	Methyl	Methyl	4-C1-benzyloxy	0	190-192°C
	105	Methyl	Methyl	Methylthio	0	157-160°C
15	106	Methyl	Methyl	Anilino	0	245-248°C
	107	Methyl	Methyl	4-Chlor-anilino	0	248-250°C
	108	Methyl	Methyl	N-Methylanilino	0	
	109	Methyl	Methyl	Isopropylamino	0	
	110	Methyl	Methyl	N, N-Diethylamino	0	
20	111	Ethyl	Ethy l	н	1	165-168°C

Die Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione la bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen la bzw. Ib eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin-und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Trlbutylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreide-

mehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die Verbindungen la bzw. Ib können beispielsweise wie folgt formuliert werden:

- I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- II. 20 Gewichtsteile der Verbindung Nr. 28 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- III. 20 Gewichtsteile der Verbindung Nr. 3 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile des Wirkstoffs Nr. 4 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- V. 20 Gewichtsteile des Wirkstoffs Nr. 5 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.
 - VI. 3 Gewichtsteile des Wirkstoffs Nr. 86 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.
 - VII. 30 Gewichtsteile des Wirkstoffs Nr. 7 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kiesel säuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.
- VIII. 20 Gewichtsteile des Wirkstoffs Nr. 86 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
 - Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).
- Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 5,0, vorzugsweise 0,01 bis 2,0 kg/ha aktive Substanz (a.S.).
 - In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturplfanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

50

5

10

15

20

25

	Botanischer Name	Deutscher Name
	Allium cepa	Küchenzwiebel
	Ananas comosus	Ananas
5	Arachis hypogaea	Erdnuβ
	Asparagus officinalis	Spargel
	Avena sativa	Hafer
	Beta vulgaris spp. altissima	Zuckerrübe
10	Beta vulgaris spp. rapa	Futterrübe
	Beta vulgaris spp. esculenta	Rote Rübe
	Brassica napus var. napus	Raps
	Brassica napus var. napobrassica	Kohlrübe
15	Brassica napus var. rapa	Weiße Rübe
•	Brassica rapa var. silvestris	Rüben
	Camellia sinensis	Teestrauch
	Carthamus tinctorius	Saflor - Färberdistel
20	Carya illinoinensis	Pekannuβbaum

5	Botanischer Name	Deutscher Name
	Citrus limon	Zitrone
	Citrus maxima	Pampelmuse
	Citrus reticulata	Mandarine
10	Citrus sinensis	Apfelsine, Orange
	Coffea arabica (Coffea canephora,	Kaffee
	•	Karree
	Coffea liberica) Cucumis melo	Melone
	Cucumis sativus	Gurke
15		
	Cynodon dactylon Daucus carota	Bermudagras Möhre
	Elaeis guineensis	Ölpalme
20	Fragaria vesca	Erdbeere
	Glycine max	Sojabohne
	Gossypium hirsutum (Gossypium arboreum,	Baumwólle
	Gossypium herbaceum, Gossypium vitifolium	
	Helianthus annuus	Sonnenblume
25	Helianthus tuberosus	Topinambur
	Hevea brasiliensis	Parakautschukbaum
	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
30	Ipomoea batatas	Süßkartoffeln
	Juglans regia	Walnußbaum
	Lactuca sativa	Kopfsalat
	Lens culinaris	Linse
	Linum usitatissimum	Faserlein
35	Lycopersicon lycopersicum	Tomate
	Malus spp.	Apfel
÷	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
40	Mentha piperita	Pfefferminze
	Musa spp.	Obst- und Mehlbanane
	Nicotiana tabacum (N. rustica)	Tabak
	Olea europaea	ölbaum
45	Oryza sativa	Reis
70	Panicum miliaceum	Rispenhirse
	Phaseolus lunatus	Mondbohne
	Phaseolus mungo	Erdbohne
	Phaseolus vulgaris	Buschbohnen
50	Pennisetum glaucum	Perl- oder Rohrkolbenhirse
	Petroselinum crispum spp. tuberosum	Wurzelpetersilie
	Picea abies	Rotfichte
	Abies alba	Weißtanne
55	Pinus spp.	Kiefer

5	Botanischer Name	Deutscher Name
	Pisum sativum	Gartenerbse
	Prunus avium	Süßkirsche
	Prunus domestica	Pflaume
10	Prunus dulcis	Mandelbaum
	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
15	Ribes uva-crispa	Stachelbeere
	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
20	Sesamum indicum	Sesam
	Solanum tuberosum	Kartoffel
	Sorghum bicolor (s. vulgare)	Mohrenhirse
	Sorghum dochna	Zuckerhirse
25	Spinacia oleracea	Spinat
	Theobroma cacao	Kakaobaum
	Trifolium pratense	Rotklee
	Triticum aestivum	Weizen
30	Triticum durum	Hartweizen
	Vaccinium corymbosum	Kulturheidelbeere
•	Vaccinium vitis-idaea	Preißelbeere
	Vicia faba	Pferdebohnen
35	Vigna sinensis (V. unguiculata)	Kuhbohne
-	Vitis vinifera	Weinrebe
	Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione la bzw. Ib mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Aryloxy-, Heteroaryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen la bzw. Ib allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien.

Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs-und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

⁵⁵ Anwendungsbeispiele

'Die herbizide Wirkung der Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione der Formel la bzw. Ib ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe (300 cm³ Inhalt) mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25°C bzw. 20-35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Botanischer Nam	е	Deutscher Name
Amaranthus retro Chrysanthemum Setaria italica Triticum aestivum	coronarium	Zurückgekrümmter Fuchsschwanz Kronenwucherblume Ital. Raygras Sommerweizen

Im Nachauflaufverfahren ließen sich mit den Verbindungen 28, 82 und 86 die breitblättrigen Pflanzen sehr gut bekämpfen. Für die Kultur Weizen zeigten die Verbindungen dagegen eine sehr gute Verträglichkeit.

Ansprüche

20

25

30

40

1. Herbizide Mittel, enthaltend als Wirkstoff ein Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dion der allgemeinen Formel la

$$\begin{array}{cccc}
0 & (0) & n \\
R^1 & N & N & R^3 \\
0 & N & N & N
\end{array}$$
(Ia) ,

- in der die Variablen folgende Bedeutung haben:
 - R^1 , R^2 Wasserstoff, C_1 - C_6 -Alkylgruppen, C_3 - C_6 -Cycloalkylgruppen, C_2 - C_8 -Alkenylgruppen, die Phenyloder die Benzylgruppe;
 - R³ Wasserstoff, Halogen, die Nitrogruppe, eine C₁-C₈-Alkylgruppe, die bis zu drei der folgenden Substituenten tragen kann:
 - Halogen, Hydroxyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxy, C_2 - C_6 -Alkenyl, C_1 - C_6 -Alkylthio, Phenyl, Benzyl;
 - eine C₂-C₆-Alkenyl- oder Phenylalkenylgruppe;
 - eine C₃-C₅-Cycloalkylgruppe, die bis zu 3 C₁-C₄-Alkylgruppen als Substituenten tragen kann;
 - einen 5- oder 6-gliedrigen C-organischen Heterocyclus, bei dem insgesamt bis zu zwei der Ringglieder, die nicht benachbart sein sollen, -O-, -S- oder -N(R⁴)-sein können, wobei R⁴ für Wasserstoff oder eine C₁- C₅-Alkylgruppe steht;
 - eine Gruppe -CO-R4 oder -CO-O-R4;
 - die Phenylgruppe oder einen einkernigen Heteroarylrest, wobei diese Gruppen bis zu drei der folgenden

Substituenten enthalten können: Halogen, Nitro, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₆-Alkoxy oder eine Aminogruppe -NR⁴R⁵, wobei R⁵ für einen der Reste R⁴ steht;

- eine Gruppe -ZR⁶, wobei

Z für Sauerstoff, Schwefel oder die Gruppierung -N(R⁷)- steht und in der R⁶ Wasserstoff, eine C₁-C₆- Alkylgruppe oder eine Phenyl- oder Benzylgruppe bedeutet, die bis zu drei der folgenden Substituenten am Kern tragen können:

C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen,

und wobei

R⁷ Wasserstoff oder eine C₁-C₆-Alkylgruppe bedeutet, wobei R⁶ und R⁷ auch mit dem Stickstoffatom einen 5-oder 6-gliedrigen Ring bilden können, der durch Sauerstoff unterbrochen sein kann; n 0 oder 1,

oder ein mineralsaures Salz von la.

2. Pyrimido[5,4-e]-as-triazin-5,7(6H,8H)-dione der allgemeinen Formel lb

15

20

in de

R3' eine der folgenden Bedeutungen hat,

- eine C₁-C₈-Alkylgruppe mit einem bis zwei der folgenden Substituenten: Halogen, Hydroxyl, C₁-C₆-Alkoxy, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy, C₁-C₆-Alkylthio,
 - eine C_3 - C_6 -Cycloalkylgruppe, die bis zu 3 C_1 - C_4 -Alkylgruppen als Substituenten tragen kann;
 - einen 5- oder 6-gliedrigen gesättigten Heterocyclus mit der Gruppierung -N(R^4)- als Heterogruppierung, wobei R^4 für eine C_1 - C_6 -Alkylgruppe steht, oder mit zwei nicht benachbarten Heteroatomen, die Sauerstoff, Schwefel oder die Gruppierung -N(R^4)- sein können;
 - eine Gruppe -CO-R⁴ oder -CO-O-R⁴;
 - einen einkernigen Heteroarylrest, der einen bis drei oder folgenden Substituenten enthält: Halogen, Nitro, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₆-Alkoxy oder eine Aminogruppe -NR⁴R⁵, wobei R⁵ für einen der Reste R⁴ steht;
- eine C₂-C₆-Alkoxygruppe;
 - eine Gruppe - ZR^6 , wobei Z für Schwefel oder die Gruppierung - $N(R^7)$ steht und in der R^6 Wasserstoff, eine C_2 - C_6 -Alkylgruppe oder eine Phenyl- oder Benzylgruppe bedeutet, die jede bis zu drei der folgenden Substituenten am Kern tragen kann: C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder Halogen,
- und wobei R⁷ eine C₁-C₅-Alkylgruppe bedeutet, und

 R⁶ und R⁷ auch mit dem Stickstoffatom einen 5- oder 6-gliedrigen Ring bilden können, der noch durch Sauerstoff unterbrochen sein kann,

sowie die mineralsauren Salze von Ib.

3. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man ein herbizides Mittel gemäß Anspruch 1 auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.

45

50

EUROPÄISCHER RECHERCHENBERICHT

EP 90112821.5

		EP 90112821.5		
 	EINSCHLÄGI	KLASSIFIKATION DER		
Kategorie		mit Angabe, soweit erforderlich. blichen Teile	Betrifft Anspruch	ANMELDUNG (Int. CI.')
D,A	CHEMISCHE BERIC 105. Jahrgang, G. BLANKENHORN "Untersuchungen Pyrimidinreihe these und Eigen substituierter Seiten 3334-334 * Seite 3336	1972 et al. in der XXVIII Syn- schaften 3- Ferrenuline"	1-3	A 01 N 43/90 C 07 D 487/04/ (C 07 D 487/04 C 07 D 253:00 C 07 D 239:00)
D,A	THE JOURNAL OF CHEMISTRY, Band E.C. TAYLOR et thesis of the F e)-as-triazine Ferrenulin and ferrenulone" Seiten 2321-232 * Seite 2323	1 40, 1975 al. "Syn- Pyrimido (5,4- Antibiotics 2-Methyl	1-3	
D,A	JOURNAL OF HETE CHEMISTRY, Band S. NISHIGAKI et synthesis of Py-as-triazine 4-their ring tran Pyrrolo (3,2-d) Seiten 1309-131	1 19, 1982 t al. "A new rimido(5,4-e) oxides and asformation to pyrimidines"	1-3	RECHERCHIERTE SACHGEBIETE (Int CI') A 01 N 43/00 C 07 D 487/00
A	US - A - 4 494 (T.A. ANDREA et * Anspruch	al.)	1-3	
A	DE - A1 - 2 90: (VSESOJUZNYJ NA ISSLEDOVATELSK: ANTIBIOTIKOV et * Anspruch	AUTSCHNO- IJ INSTITUT t al.)	1-3	
Der	vorliegende Recherchenbericht wurd	e fur alle Patentanspruche erstellt.		
	WIEN	Abschlußdatunger Recherche	F	PETROÜĞEK

EPA Form 1503 03 82

KATEGORIE DER GENANNTEN DOKUMENTEN E von besonderer Bedeutung allein betrachtet von besonderer Bedeutung in Verbindung mit einer anderen Veroffentlichung derselben Kategorie L technologischer Hintergrund nichtschriftliche Offenbarung Zwischenliteratur der Erfindung zugrunde liegende Theorien oder Grundsatze

A O P

E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D. in der Anmeldung angeführtes Dokument L.: aus andern Grunden angeführtes Dokument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EUROPÄISCHER RECHERCHENBERICHT

-2-EP 90112821.5

Kennzeichnung des Dokument der maßge	s mit Angabe, soweit erforderlich.	Betrifft	WI ACCIEWATION DED
	blichen Teile	Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.')
zines" Seite 331, Spal sammenfassung-I	er 24, 1973 L. "7-Azaluma- Lte 1, Zu- Nr. 146 559s	1-3	
TECHNISCHEN CHI lage, Band 12, Verlag Chemie V "Herbizide" Seiten 612,613	EMIE, 4. Auf- 1976 Weinheim	1-3	
		·	RECHERCHIERTE SACHGEBIETE (Int. Cf.')
vorliegende Recherchenbericht wur	de fur alle Patentanspruche erstellt.		
Hecherchenort WIEN	Abschlußdatum der Recherch	ne .	PETROUSEK
n besonderer Bedeutung allein b n besonderer Bedeutung in Verb deren Veroffentlichung derselbe	OKUMENTEN E altre etrachtet na	der Anmeldung a	ment, das jedoch erst am ode datum veröffentlicht worden is angeführtes Dokument en angeführtes Dokument
	F. YONEDA et al zines" Seite 331, Spal sammenfassung-I & Japan. ULLMANNS ENCYKI TECHNISCHEN CHI lage, Band 12, Verlag Chemie W "Herbizide" Seiten 612,613 * Seite 612 TEGORIE DER GENANNTEN DO IN DESONDERER BEDEUTUNG IN VERLEN BEDEUTUNG IN VERLE	F. YONEDA et al. "7-Azaluma- zines" Seite 331, Spalte 1, Zu- sammenfassung-Nr. 146 559s & Japan. 73 25200 ULLMANNS ENCYKLOPÄDIE DER TECHNISCHEN CHEMIE, 4. Auf- lage, Band 12, 1976 Verlag Chemie Weinheim "Herbizide" Seiten 612,613 * Seite 612 * vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt. #### ###############################	F. YONEDA et al. "7-Azaluma- zines" Seite 331, Spalte 1, Zu- sammenfassung-Nr. 146 559s & Japan. 73 25200 ULLMANNS ENCYKLOPĀDIE DER TECHNISCHEN CHEMIE, 4. Auf- lage, Band 12, 1976 Verlag Chemie Weinheim "Herbizide" Seiten 612,613 * Seite 612 * vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt. War Seite 612 * Verlag Chemie Willen einer Seiten 612,613 * Seite 612 * TEGORIE DER GENANNTEN DOKUMENTEN besonderer Bedeutung allen betrachtet besonderer Bedeutung in Verbindung mit einer deren Veroffentlichung derselben Kategorie hinologischer Hintergrund hischniftliche Offenbarung ischenliteratur der Patentansprüche erstellt. E. alteres Patentdokunach der Anmelden in der Anmeldung in der Anmeldung in der Anmeldung in der Anmeldung in Stehnliteratur in der Anmeldung i. aus andern Grunde hischniftliche Offenbarung ischenliteratur. & : Mittglied der gleich