| (19) |
 |
|
(11) |
EP 0 408 573 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
05.06.1996 Bulletin 1996/23 |
| (22) |
Date of filing: 09.02.1989 |
|
| (86) |
International application number: |
|
PCT/SE8900/051 |
| (87) |
International publication number: |
|
WO 8907/772 (24.08.1989 Gazette 1989/20) |
|
| (54) |
DEVICE FOR THE IDENTIFICATION OF OBJECTS
ANORDNUNG ZUR IDENTIFIZIERUNG VON GEGENSTÄNDEN
DISPOSITIF D'IDENTIFICATION D'OBJETS
|
| (84) |
Designated Contracting States: |
|
DE GB |
| (30) |
Priority: |
10.02.1988 SE 8800426
|
| (43) |
Date of publication of application: |
|
23.01.1991 Bulletin 1991/04 |
| (73) |
Proprietor: REKONDO TEKNIK AB |
|
183 12 Täby (SE) |
|
| (72) |
Inventor: |
|
- EDVARDSSON, Kurt, Olof
S-582 60 Linköping (SE)
|
| (74) |
Representative: Grennberg, Erik Bertil et al |
|
H. Albihns Patentbyra AB,
Box 3137 S-103 62 Stockholm S-103 62 Stockholm (SE) |
| (56) |
References cited: :
EP-A- 0 186 483 US-A- 3 798 642
|
DE-C- 2 658 669 US-A- 4 356 477
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] Although a wealth of contact-less identifying systems are known to the art, the following
discussion will be limited to such assistance as those with which the label is entirely
passive and incorporates no semiconductors or other surface mounted components. A
principal advantage with such labels is that they can be made highly durable with
regard to environmental influences, that they can be made cheaply, and that they obtain
a smooth, mechanical configuration or contruction. For instance, the label can be
given a sheet form and handled in a manner of a paper sheet (e.g. in a type writer)
and may be used as a one-time use article. With appropriate selection of material,
the labels may be used in extreme environments (e.g. in stoving furnaces) and conceivably
may also be hidden in packages or the like. A principal problem with passive resonators,
however, is that the information content is limited in a completely different manner
to, e.g., an antenna-connected programmable memory. Another principal limitation of
such broadband systems as this is that the range is restricted because government
regulations on limited emssion of radio waves means that the radiated power must be
kept low.
[0002] This invention regards apparatus for identification of objects provided with a multiple
of passive HF resonators, of the type recited in the preamble of claim 1.
[0003] Apparatus of this kind is known from the patent document US-A-4 356 477. This document
discloses such apparatus with a transmitter, comprising means for generating a modulated
signal, wherein the modulating frequency is kept constant, the carrier frequency is
scanned or swept over a frequency interval and the resonators are tuned to frequencies
within the carrier sweep interval. The receiver is provided with an FM or an AM detector
in which the received signal is mixed with a signal dependent on the sweep frequency
and possibly with a signal dependent on the transmitted signal.
[0004] Another apparatus of this kind is disclosed in the patent document DE-C2-26 58 669.
This apparatus uses a constant carrier frequency and a stepped change of the modulation
frequency, which is further pulsed by being sent as damped oscillations, each directed
to finding a resonator having a particular frequency.
[0005] A general problem in this art is to obtain dependable detection, one reason being
that there are limits to the emission power, set by governmental regulations.
[0006] It is a general object of the invention to improve the detection and identification
of labeled objects comprising passive radiation resonators, and a more specific object
to be able to fit in and distinguish between a large number of resonators within a
defined frequency interval. According to the invention, this is obtained by the features
of the characterizing part of claim 1.
[0007] The label includes a plurality of resonators and is influenced by a magnetic field
whose frequency is scanned continuously while simultaneously modulating frequency
and/or amplitude. This modulation spreads the power over substantially the same frequency
band as that corresponding to the bandwidth of a resonator. During those time intervals
when the carrier wave frequency is close to the resonance frequency of one of the
resonators, a response can be caught by a receiver, via a receiver coil. Because the
resonator has narrow band, the various sidebands of the modulation will be influenced
differently and signal processing by the receiver will induce a response from a resonator
compared with internal and external disturbances. The scan causes each resonator to
engender a pulse and the label as a whole will generate train of pulses during the
scan period. Scan and modulation are controlled in a manner to "normalize" the pulse
train and mutually different labels can be separated, one from the other, by different
patterns taken by the pulse train. The method of applying a continuous scan renders
the system tolerant to uniform displacement of the resonance frequencies of the resonators,
e.g. displacements or shifts caused by variations in the properties of the material
concerned. Because the system is a broadband system (> 1 octave), the configuration
of the transmitter coil is important in achieving a sufficient range, despite the
restrictions placed on current strength in the transmitter coil by government permitted
radiation or emission levels. Various arrangements of contracting loops are employed
for the purpose of providing strong magnetic field in relation to the radiation field.
Description
[0008] The signal processing principle is shown by the example in Figure 1, which illustrates
a high frequency transmitter (e.g. 5-30 MHz) whose frequency is scanned while simultaneously
being modulated sinusoidally with frequency modulation. The breadth of the modulation
(frequency swing) is of the same order of magnitude as the bandwidth of a resonator,
which may be 1%. The transmitter coil will create a magnetic field in its close proximity,
but because of its two counter-directed halves, according to the Figure 1 embodiment,
the radiated power will be relatively weak.
[0009] The label is excited by the magnetic field and the scanning speed is so low as to
enable a resonator to begin to oscillate while the transmitter frequency is still
close to the resonator frequency. When the frequency of the resonator is f
r and its Q-value is Q, this can be expressed such as to take at least Q/4 periods
to change the carrier frequency f
r/Q. For instance, the modulation frequency can be selected so that a number of frequency
periods are able to pass during the same periode. A receiver coil catches a response
from an eventual resonator in the immediate proximity, and the response is mixed with
a small part of the transmitted signal. Naturally, it is also possible to mix the
response with a modified composition of the transmitted signal. Different leakage
signals between transmitter and receiver will mean that quite some signal will be
obtained from the mixer, even without a resonator. Among other things, there is present
a slowly varying "direct current", and a signal which varies in keeping with the modulation
frequency. However, if a resonator is present in the vicinity, higher harmonics can
also be detected and both the second and the third harmonics are typical of a resonator
when pure sinus modulation is employed. The harmonic or harmonics to be used are filtered
out and amplified, and the fundamental harmonic of the modulation is preferably eliminated
with the aid of a suppression filter in order to avoid over-modulation. Subsequent
to passing through a coherent detector (ring modulator) the signal close to the desired
harmonic can be filtered out and amplified. Certain leakage signals still remain in
a form of a relatively slowly varying signal over the scan. It is known on the basis
of the scanning speed and the Q-value of the resonators just how long the response
pulse should be, and consequently a sufficiently wide bandpass filter will markedly
enhance the response of the resonators. In order to improve detection reliability,
several harmonics may be processed in parallel, and it is also possible to use a non-sinusoidal
modulation.
[0010] Figure 2 is a block schematic which illustrates a more practical apparatus, in which,
inter alia, the scan is effected proportionally (a given number of % per unit of time)
so that all of the resonators will give responses of mutually equal time lengths,
even when the scan incorporates a plurality of octaves. The illustrated apparatus
includes a feedback which will ensure that the scan is accurately defined, in order
to facilitate evaluation. Both modulation width and amplification are controlled during
the scan, thereby enabling the pulse train to be normalized subsequent to running
a test label, which is measured now and again. The modulation frequency is, on the
other hand, constant in Figure 2, in order to facilitate filtration of the signals.
An analysis of the responses obtained from the label illustrates that the response
duration is about 2-3 times shorter when viewing the harmonics compared with the duration
of the complete response. Consequently, the resonator frequencies can be packed more
densely, to a corresponding degree, which is significant when resonators having a
relatively low Q-value are used. A Q-value in the range of 50-100 is reasonable for
a printed resonator in the high frequency range. Various filtering and modulating
methods are conceivable for the purpose of optimizing band widths. Signal processing
for converting the analogue pulse train to a binary pulse train is omitted in the
Figure 2 illustration, but will include, inter alia, a sensitivity adaptation for
the purpose of enabling measurement at different distances. It is also suitable to
limit the number of combinations used in order to incorporate an error detection facility.
[0011] Figure 3 illustrates a further modulating method in which a combination of frequency
and amplitude modulation is employed to restrict the power transmitted to three frequencies
at a time (carrier frequency plus/minus modulation frequency) in order to minimize
the bandwidth used and also to reduce disturbance from adjacent resonators during
a reading period. In this case, the modulation frequency varies in proportion to the
carrier frequency, so as to optimize the signal in relation to the bandwidth of the
resonators. Figure 4 illustrates this function with the aid of a display diagram in
which second harmonics are emphasized for narrow band resonators.
[0012] The term "frequency modulation" used here and in the aforegoing is meant also to
include phase modulation, which in respect of signals are the same. Both the practical
construction and the choice of parameters can vary, however.
[0013] The range is dependent on a number of parameters, of which some are independent of
the signal processing process. However, in the described method there is used a narrow
bandwidth (for instance compared with pulsated systems) resulting in the suppression
of both external and internal disturbances. It is also important to the function that
the resonators alone have a high Q-value (or have a narrow bandwidth on the high frequency
side), so that both the transmitter coil and the receiver coil must be given a broad
bandwidth and be free from parasite resonances to the greatest possible extent, both
within the transmitter frequency band and the possibly occurring harmonics of the
transmitter frequency. In the case of systems having a small number of resonator frequencies
(type theft alarm), there is often used a tuned receiver coil in order to improve
the sensitivity of the system, although such provision is normally not possible in
the present case. Figures 5-6 illustrate two conceivable coil arrangements with built-in
transmitter and receiver coil. The transmitter coil has two or more counter-directed
parts, so as to enable relatively large current to be used while keeping radiation
down. The magnetic field close to the coil will then cause acceptable excitation of
the label. The size of the transmitter coil is not critical, but the receiver coil
should be approximately the same dimension as the desired range. The orientation or
positioning of the label is also of significance, in addition to the range. In many
applications, the labels will "travel" in mutually the same manner, but it may sometimes
be necessary to eliminate this dependency, however. Greater independency can be obtained
by employing two perpendicular fields with a 90° phase offset, without needing to
measure consecutively in said two directions. Since the geometry of the coils is dependent
on use, this geometry will vary with different applications. One requirement of important
practical significance is that the coils have a wide bandwidth, so as to avoid generating
disturbances. In accordance with the invention, the label resonators will have the
highest Q-value with good margins.
1. Apparatus for identifying objects, each such object being provided with a label (2)
comprising a multiple of passive HF-resonators (4) having resonance frequencies selected
from a group of known frequencies; the apparatus comprising a transmitter (8) for
transmitting, via a transmitter antenna (6), a high frequency magnetic field whose
frequency is continuously scanned over a given bandwidth by means of scan control
signal generating means (22) while by means of modulating control signal generating
means (24) simultaneously modulating the phase or frequency and/or its amplitude with
a breadth of modulation of an order of magnitude equal to that of the bandwith of
said HF-resonators (4), said label (2) to be identified, being detectable when it
is located relatively close to said transmitter antenna (6); the apparatus further
comprising a receiver (10) provided with a receiver antenna (12) and detector means
devised to receive and to detect a signal generated by said HF-resonators (4), the
detector means comprising a first detector (14), coupled to the receiver antenna (6)
and devised to mix the incoming receiver signal with a mixing signal composed of the
transmitted signal, a second detector (16), devised to mix a signal dependent on the
signal obtained from the first detector (14) with one or more harmonics of the modulation
frequency, and a first filter (20) for filtering the signal obtained from the second
detector (14) for the purpose of enhancing essentially pulse-like signal components,
characterized in that the first detector (14) is a linear mixer; an output signal of the first
detector (14) is filtered in a second filter (18) for the purpose of enhancing harmonic
signal components and suppressing disturbances, an output of the second filter (18)
being coupled to the second detector (16); and in that the second detector is a linear
mixer.
2. Apparatus according to claim 1, characterized in that said modulation control signal generating means (24) is devised to generate
a sinusoidal modulation signal.
3. Apparatus according to claim 1, characterized in that said modulation control generating means is devised to generate a triangular
modulation signal.
4. Apparatus according to claim 1, characterized in that the modulation control signal generating means (24) is devised to generate
a combination of frequency and amplitude modulation signals, achieving a modulation
such that only two or more carrier wave sidebands are present.
5. Apparatus according to any one of claims 1-4, characterized in that more than one channel is filtered out downstream of the first mixer; and
in that said channels are detected a second time each with a respective harmonic of
the modulation frequency, or each with a respective combination of harmonics of said
modulation frequency, said channels then being reliably detected separately against
disturbancies and other imperfections.
6. Apparatus according to claim 1 in combination with any one of claims 2-5, characterized in that the frequency scan is controlled proportionally with a given percentage of
frequency per unit of time.
7. Apparatus according to claim 1 in combination with any one of claims 2-6, characterized in that amplification is controlled during the frequency scan, such that all resonators
will produce nominally the same amplitude, said apparatus including a test resonator
for periodic and automatic calibration.
8. Apparatus according to claim 1 in combination with any one of claims 2-7, characterized in that at least one of the label resonators (4) has a fixed nominal frequency and
is used for calibration purposes, such as to enable a uniform change in resonator
frequency to be compensated for, the highest and the lowest frequency being preferably
used.
9. Apparatus according to claim 1 in combination with any one of claims 2-8, characterized in that one of the calibrating resonators is much greater than the remainder and
is used to initiate the sequence.
10. Apparatus according to claim 1 in combination with any one of claims 2-9, characterized in that the number of resonators (4) is the same on all labels (2), so as to reduce
the risk of reading errors and to adjust amplification such as to include all of the
resonators (4).
11. Apparatus according to claim 1 in combination with any one of claims 2-10, characterized in that the transmitter antenna (6) is counter-connected and in that current is restricted
to comply with permitted radiation levels.
12. Apparatus according to claim 1 in combination with any one of claims 2-11, characterized in that two transmitter antennas (6) are rotated through 90° in relation to one another
and are also supplied 90° out of phase, whereby the field becomes more directional
independent and tolerant to different directional positions of the label.
1. Vorrichtung zum Identifizieren von Gegenständen, von denen ein jeder mit einem Aufkleber
(2) versehen ist, welcher eine Vielzahl passiver HF-Resonatoren (4) aufweist, die
aus einer Gruppe bekannter Frequenzen ausgewählte Resonanzfrequenzen aufweisen, wobei
die Vorrichtung einen Sender (8) zur Übertragung eines hochfrequenten Magnetfeldes
mittels einer Sendeantenne (6) umfaßt, dessen Frequenz ständig eine gegebene Bandbreite
mittels eines Abtastregelsignalgenerators (22) abtastet, während gleichzeitig mittels
eines Modulationsregelsignalgenerators (24) die Phase oder Frequenz und/oder Amplitude
des Magnetfeldes mit einer Modulationsbreite in der Größenordnung der Bandbreite der
HF-Resonatoren (4) moduliert wird, wobei der zu identifizierende Aufkleber (2) detektierbar
ist, wenn er sich relativ nah zu der Sendeantenne (6) befindet, wobei die Vorrichtung
weiterhin einen mit einer Empfangsantenne (12) versehenen Empfänger (10) und einer
Detektoreinrichtung zum Empfangen und Detektieren eines von den HF-Resoratoren erzeugten
Signals versehen ist, wobei die Detektoreinrichtung einen ersten Detektor (14), welcher
mit der Empfangsantenne (6) verbunden ist und zum Mischen des eingehenden Empfangssignals
mit einem aus dem Sendesignal bestehenden Mischsignal dient, einen zweiten Detektor
(16), welcher zum Mischen eines von dem ersten Detektor (14) erhaltenen Singals mit
einer oder mehreren Harmonischen der Modulationsfrequenz dient, und einen ersten Filter
(20) zum Filtern des von dem zweiten Detektor (16) erhaltenen Signals zum Zwecke der
Verstärkung im wesentlichen impulsartiger Singalbestandteile aufweist, dadurch gekennzeichnet, daß der erste Detektor (14) eine lineare Mischstufe ist, daß ein Ausgangssignal des
ersten Detektors (14) von einem zweiten Filter (18) zur Verstärkung von harmonischen
Signalkomponenten und zur Unterdrückung von Störungen gefiltert wird, wobei ein Ausgang
des zweiten Filters (18) mit dem zweiten Detektor (16) verbunden ist, und daß der
zweite Detektor eine lineare Mischstufe ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Modulationsregelsignalgenerator ein sinusförmiges Modulationssignal erzeugt.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Modulationsregelsignalgenerator ein Dreiecksmodulationssignal erzeugt.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Modulationsregelsignalgenerator eine Kombination von Frequenz- und Amplitudenmodulationssignalen
erzeugt, so daß in der Modulation nur zwei oder mehr Trägerwellen-Seitenbänder vorhanden
sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mehr als ein Kanal nach der ersten Mischstufe herausgefiltert wird, und daß diese
Kanäle ein zweites Mal jeweils zusammen mit einer entsprechenden Harmonischen, der
Modulationsfrequenz oder jeweils mit einer entsprechenden Kombination von Harmonischen
der Modulationsfrequenz detektiert werden, wobei diese Kanäle dann verläßlich gegenüber
Störungen und anderen Unvollkommenheiten getrennt detektierbar sind.
6. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Frequenzabtastung proportional mit einen bestimmten Prozentteil der Frequenz
pro Zeiteinheit geregelt ist.
7. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß die Verstärkung während der Frequenzabtastung derart geregelt wird, daß alle
Resonatoren nominell die gleiche Amplitude erzeugen, wobei die Vorrichtung einen Testresonator
zur periodischen und automatischen Kalibrierung aufweist.
8. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß mindestens einer der Aufkleber-Resonatoren (4) eine feste Nennfrequenz aufweist
und zur Kalibrierung benutzt wird, so daß eine gleichmäßige Veränderung der Resonatorfrequenz
kompensierbar ist, wobei vorzugsweise die höchste und die niedrigste Frequenz verwendet
wird.
9. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß einer der Kalibrier-Resonatoren sehr viel größer als die übrigen ist und zur
Auslösung der Sequenz verwendet wird.
10. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Anzahl der Resonatoren (4) auf allen Aufklebern (2) gleich ist, so daß das
Risiko von Lesefehlern vermindert wird und daß die Verstärkung alle Resonatoren (4)
umfassend eingestellt wird.
11. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß die Sendeantenne (6) gegengeschaltet ist und daß der Strom zur Einhaltung der
erlaubten Strahlungsmenge begrenzt ist.
12. Vorrichtung nach Anspruch 1 in Verbindung mit einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß zwei Sendeantennen (6) gegeneinander um 90° verdreht sind und um 90° phasenverschoben
versorgt werden, wodurch das Feld richtungsunabhängiger und tolerant in Bezug auf
in unterschiedlichen Richtungen angeordneten Aufklebern ist.
1. Dispositif pour identifier des objets, chacun de ces objets étant muni d'une étiquette
(2) comprenant plusieurs résonateurs (4) HF passifs qui ont des fréquences de résonnance
choisies parmi un groupe de fréquences connues ; le dispositif comprenant un émetteur
(8) destiné à émettre, par l'intermédiaire d'une antenne (6) d'émission, un champ
magnétique haute fréquence dont la fréquence est balayée de manière continue sur une
largeur de bande donnée par des moyens (22) de production de signal de commande de
balayage tout en modulant simultanément, par des moyens (24) de production de signal
de commande de modulation, la phase ou la fréquence et/ou son amplitude avec une largeur
de modulation d'un ordre de grandeur égal à celui de la largeur de bande des résonateurs
(4) HF, l'étiquette (2) à identifier pouvant être détectée lorsqu'elle se trouve relativement
proche de l'antenne (6) d'émission ; le dispositif comprenant en outre un récepteur
(10) muni d'une antenne (12) de réception et de moyens de détection conçus pour recevoir
et détecter un signal produit par les résonateurs (4) HF, les moyens de détection
comprenant un premier capteur (14), couplé à l'antenne (6) de réception et conçu pour
mélanger le signal de réception entrant à un signal de mixage composé du signal émis,
un second capteur (16), conçu pour mélanger un signal qui est fonction du signal obtenu
du premier capteur (14) à un ou à plusieurs signal(aux) harmonique(s) de la fréquence
de modulation, et un premier filtre (20) destiné à filtrer le signal obtenu du second
capteur (14) dans le but d'améliorer sensiblement des composants de signaux du genre
impulsions, caractérisé en ce que le premier capteur (14) est un mélangeur linéaire
; un signal de sortie du premier capteur (14) est filtré dans un second filtre (18)
dans le but d'améliorer des composants de signal harmoniques et de supprimer des perturbations,
un signal de sortie du second filtre (18) étant couplé au second capteur (16) et en
ce que le second capteur est un mélangeur linéaire.
2. Dispositif suivant la revendication 1, caractérisé en ce que les moyens (24) de production
de signal de commande de modulation sont conçus pour produire un signal de modulation
sinusoïdal.
3. Dispositif suivant la revendication 1, caractérisé en ce que les moyens de production
de commande de modulation sont conçus pour produire un signal de modulation triangulaire.
4. Dispositif suivant la revendication 1, caractérisé en ce que les moyens (24) de production
de signal de commande de modulation sont conçus pour produire une combinaison de signaux
de modulation de fréquence et d'amplitude, en obtenant une modulation telle que seulement
deux ou plusieurs bandes latérales de porteuse sont présentes.
5. Dispositif suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que
plus d'un canal est filtré en aval du premier mélangeur ; et en ce que ces canaux
sont détectés une seconde fois, chacun à une fréquence harmonique respective de la
fréquence de modulation, ou chacun à une combinaison respective des fréquences harmoniques
de la fréquence de modulation, ces canaux étant détectés de manière fiable séparément
contre les perturbations et autres imperfections.
6. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 5, caractérisé en ce que le balayage de fréquence est commandé proportionnellement
à un pourcentage donné de fréquence par unité de temps.
7. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 6, caractérisé en ce que une amplification est commandée pendant le balayage de
fréquence, de sorte que tous les résonateurs produisent nominalement la même amplitude,
ce dispositif comportant un résonateur d'essai pour un étalonnage périodique et automatique.
8. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 7, caractérisé en ce que au moins un des résonateurs (4) d'étiquette a une fréquence
nominale fixe et est utilisé dans un but d'étalonnage, de manière à permettre de compenser
une variation uniforme de la fréquence de résonateur, la fréquence la plus haute et
la plus basse étant utilisées de préférence.
9. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 8, caractérisé en ce que l'un des résonateurs d'étalonnage est beaucoup plus grand
que les autres et est utilisé pour initialiser la séquence.
10. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 9, caractérisé en ce que le nombre de résonateurs (4) est le même sur toutes les
étiquettes (2), de manière à réduire le risque de lire des erreurs et à ajuster une
amplification pour inclure tous les résonateurs (4).
11. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 10, caractérisé en ce que l'antenne (6) émettrice est couplée anti-parallèle et
en ce que du courant est restreint à des valeurs qui respectent des niveaux de rayonnement
permis.
12. Dispositif suivant la revendication 1 en combinaison avec l'une quelconque des revendications
2 à 11, caractérisé en ce que deux antennes (6) émettrices sont tournées l'une par
rapport à l'autre de 90° et sont également déphasées l'une par rapport à l'autre de
90°, le champ devenant ainsi plus indépendant en terme de direction et acceptant alors
différentes positions d'orientation de l'étiquette.