[0001] Multi stage axial flow compressors are used to effect the compression of large air
mass flows to high pressures. Each individual stage comprising of a ring of rotor
blades followed with running clearance between by a ring of stator blades. The rotor
blade ring is required to add kinetic energy alone or kinetic and heat energy to the
air while the stator ring of blades change the surplus whirl velocity kinetic energy
into heat energy. The blade shape and speed of rotation being arranged also to maintain
a constant value axial air velocity along all streamlines but not necessarily all
of the same value.
[0002] Thus the difference between each stage inlet and outlet plane is that at the outlet
plane of a stage the area of flow is reduced relative to the reduced specific volume
of the air and the temperature increased relative to the energy added. A truly designed
rotor blade is thus only required to add two forms of energy to the air thus:-
Kinetic: - (va42. - val2.)/2.g. & Heat: - C.(T4. - T1.)-/(y-1.).
Where va4. & va1. = Outlet and Inlet Air Whirl Velocities.
Where T4. & T1. = Outlet and Inlet Air Temperatures.
Where g. = Acceleration Rate due to Gravity.
Where y. = Ratio of the two Specific Heats of Air.
Where C. = The Gas Constant for Air.
[0003] However the use of circular arc cambered aerofoil sections for the rotor blades in
engines to obtain higher output has resulted in the blades allowing a third form of
energy intermingled with the heat energy to pass the rotor outlet plane. This third
form of energy for which I have used the definition letters Esp. (Air Spring Energy)
is generated together with the heat energy between the Inlet Plane and Plane 2. whichis
the plane where the blade attains its maximum thickness and if unused between Plane
2. and the Outlet Plane cannot be changed by the following Stators into Heat Energy.
The only way this unwanted energy can dissipate itself is by causing the blades it
passes between and other components (Combustion chambers etc.) to vibrate. A result
of which is that they either fail because of fatigue or have to be given a limited
"service life" to prevent them failing.
[0004] The unwanted form of energy Esp. is made to exist whenever the plane which divides
the airflow into two equal mass flow halves is made to move away from its normal central
position and to illustrate this:-
[0005] Consider a cylinder containing one pound of air at normal temperature, pressure and
specific volume divided by a piston in the mid position into two equal halves. The
piston being integral with a rod in the axial position which extends through both
cylinder end plates fitted with air seals, the only constraint to axial movement being
the air at each side of the piston. Secure the cylinder to prevent axial movement
and then by force move the piston from its central position the distance D.
[0006] If one now calculates the specific volume of the two halves, add together and divide
by two to get the mean value it will be seen to be unchanged from its original value.
Calculate the temperature similarly, add and divide and again no change. Calculate
the pressure similarly, add and divide and this time the mean air pressure is greater
than the original value, and this is the only indication of the presence of the energy
Esp. When the piston is released it will spring back and beyond the central position
and oscillate until the energy is dissipated in the form of heat caused by friction
between the rubbing surfaces.
[0007] In the compressor it will be the stators which are caused to vibrate and the heat
generated will be at the root of the blades the strumming of which will also cause
unwanted sound. The heat causing the degeneration of the blade material and thus failure
at a much lower stress than that which it was designed to withstand. This form of
energy exists in both piston and turbine motivated engines but whereas in the former
it exerts itself in line with the gas flow and is thus innocuous in the latter is
transverse to it and malignant.
[0008] Thus it will be seen that if the Esp(1.2). is used to help drive the second portion
of the rotor blade ring, besides being more efficient in compressing the air will
be better from a structural point of view.
[0010] Where W(1.3). = The energy per unit air mass flow required to drive the Plane 1.
to 3. portion of the rotor blade ring.
[0011] Where W(2.3). = The energy - Ditto - Plane 2. to 3. - Ditto.
[0012] Where y., C., g., T., and Esp(1.2). are as previously stated.
[0013] Where vcm1. = Axial Air Velocity.
[0014] The above equation with suffices (r=0.) up to (r= Max.No.) apply to lamina streamline
values. That is the mean of unit air mass flow if it was disposed equally above and
below the lamina streamline.
[0015] Similarly with suffices (r= 1.) up to (r= Max.No.) it applies to the mean values
of the air mass flowing between the common outer boundary streamline (r= 0.) and the
streamline whose designation is used as the suffix. To distinguish between the two
sets of values, those of the latter equations have m. positioned one letter space
between in front thus:- m W(1.3)., m va2., m v2., m C3., m p2., m T2. etc.
[0016] To show the development of the design system used for the calculation of the rotor
blade profile it is necessary to postulate the four boundary surfaces and two end
planes which together form the absolute shape of an individual air stream flowing
between a single pair of blades. All six are of a different shape, so to simplify
a little, for an example will use that of a compressor having a constant value outside
diameter, thus:-
[0017] The inlet and outlet plane outer edges are both equal in radius and angular extent.
That at the outlet plane due to the air whirl velocity being angularly ahead in the
direction as of the rotation of the blades, of the inlet plane. Similarly the inside
edges are both arcs, that of the outlet plane being angularly ahead for the same reason
as the outer arc. Both arcs are equal in angular extent but the arc at the outlet
plane is at a larger radius than that at the inlet plane. Dependent on the type of
blade used to provide for reason of material stress a sectional area decreasing radially
outwards, the inside arcs can be at an equal, greater, or lesser axial distance apart
than the outer arcs. Thus the axial projection of both end planes are sectors of their
respective annulus.
[0018] The outer boundary surface that joins the two above planes together is of constant
arc radius but not of angular extent, the latter being of minimum extent at Plane
2. The surface also spiralling at a varying rate from inlet to outlet plane.
[0019] The inner boundary surface joining the two inner arcs, for reason that the compression
of the air should be done by the force used to accelerate the air in a tangential
direction only, is of a constant arc radius from Plane 1. to Plane 2., (optionally
to Plane 3.). Plane 2. being position of minimum angular extent. From Plane 2. to
Plane 4. (Outlet plane) both angular extent and arc radius increase at rates which
are related to each other to maintain from Plane 2. a constant cross sectional area
airstream to the outlet plane. Additional to the foregoing and similarly to the outer
surface it spirals in the same direction.
[0020] If we now look on the inlet plane of a compressor whose direction of rotation is
anti-clockwise and visualise the airstream described above to be situated on the top
half of the vertical centre line, the surface of the airstream to the left would be
the rear absolute profile of the blade to the left and the airstream surface to the
right would be the front absolute profile of the blade to the right of the airstream.
The reasoning of which could apply to the airstream to the right of the stipulated
one. Thus if we use the left side of the airstream to the right and the right side
of the stipulated one, together they delineate the absolute shape of the blade to
be dimensioned from which is developed the relative shape of the rotor blade (As manufactured).
[0021] As it is required for purposes other than aerodynamic (To stack the centroids of
all the lamina blade sections on or near a straight line which is offset to the rear
of a true radial line which intersects the rotor axis) the airstream is divided by
intermediate streamlines into lasser portions of the full air mass flow. For convenience
the radial depth on Plane 1. is divided into an even number of equal portions. The
outer boundary one is designated (r=0.) and the inner one (r=Max.No.), the inner ones
having intermediate numbers. The air mass flowing between the common outer boundary
and any one of the others is calculated for Plane 1. and is retained by the streamline
to the outlet plane.
[0022] At this stage it is necessary to explain the action between the blade (Solid body)
and the air passing between the blades during the period of time it takes the air
to travel from Plane 1. to Plane 3. which terminates the working length of the rotor
blades, and for this purpose have supplied Drawings Figures 1/2. & 2/2. which illustrate
two analogies. In both analogies the air container at all positions should be axially
in line but have been drawn offset to allow dimensioning.
[0023] In both analogies the air container weight and the atmosphere's resistance to movement
of the two bodies has been ignored. Each cylinder contains one pound of air at normal
static conditions and the solid bodies weigh less than one pound, having velocities
much higher than that of the cylinders. The single difference between the two analogies
is that the cylinder of the 2
nd. Analogy has an open rear end fitted with a piston and rod, the latter's purpose being
to prevent the solid body making contact with the cylinder. The piston being fitted
with a mechanism to allow only irreversible movement up the cylinder so that any compression
of the air effected between Positions 1. & 2. is retained. The conditions are recorded
in Bernoulli type equations at three positions which are 1. The instant of time when
the solid body makes contact with the cylinder or rod. 2. The instant of time when
the cylinder and solid body attain an identical speed. 3. The instant of time that
the cylinder or rod lose contact with the solid body, thus:-
1. (va12.+ b.vb12.)2.g. + p1.v1./(y-1.). =
2. (va22. + b.vb22.)/2.g. + p2.v2./(y-1.). + (E-(1.2). -(p2.v2.-p1.v1.)/(y-1.).) =
3. (va32. + b.vb32.)/2.g. + p3.v3./(y-1.).
1st.Analogy :- E(1.2). = vb1.- va1.)(va2.- va1.)-/2.g. = Esp(1.2). Where p2. = p1. = p3.
and v2. = v1. = v3. (Exclusive of air pressure due to presence of Esp(1.2). See Figure
1/2.
2nd.Analogy :- E(1.2). = (vb1.- va1.)(va2.- va1.)-/2.g. = ((p2.v2.-p1.v1.)/(y-1.). + Esp(1.2).).
(Exclusive of air pressure due to presence of Esp(1.2).). See Figure 2/2 .
[0024] Where p2. = p3. and v2. = v3. and the ratio (Esp(1.2)./E(1.2).) = ((va3.- va2.)/(va2.-
va1.))
2. = (C3.- 1.)
2. and the ratio (Ep(1.2)./E(1.2).) = (1.- (-(va3.- va2.)/(va2.- va1.))
2.).
[0025] Where E(1.2). = (1. + 1/b)(va2.-va1.)
2./2.g. Where Ep(1.2). = (1. 1/b)((va2.- val.)
2.- (va3.- va2.)
2.)/2.g.
[0026] Where Ep(1.2). = ((v1./v2.)
(y-1.).- 1.).T1.C./(y-1.).
[0027] Where E(1.2). ((v1./vr2.)
(y-1.).-1.).T1.C./2.(y-1.).
[0028] Where vr2. = Specific Volume of the air mass in the rear portion of the cylinder
(Adjacent to piston). Where va2. = va1. + (b.(vb1.- va1.)/(1. + b.)) = vb2. and vb2.
= vb1.- ((vb1.- va1.)/(1. + b.)) = va2. Where va3. = C3.(va2.- va1.). + va1. and vb3.
= vb1.- (va3.- va1.)/b.
[0029] Where Am(1.2). = (va2.-va1.)/t(1.2). = Abm(1.2). = b.(vb1. -vb2.)/t(1.2).
[0030] and Am(2.3). = (va3.- va2.)/t(2.3). = Abm(2.3). = b.(vb2.-vb3.)/t(2.3).
[0031] Where b. = (va2.- va1.)/(vb1.- vb2.). Where va2. = vb2.
[0032] Where C3. = (1.+ (Esp(1.2)./E(1.2).)
1/2.). = (va3.- va1.)/(va2.- va1.).
[0033] Where t(1.2). = 2.P1.(1.- v2./v1.)/(vb1.- va1.). and t(2.3). = P1.(1.-v2./v1.)/(va3.-vb3.).
[0034] Where P1. = Inside length of cylinder at Position 1. of Analogy. (Cylinder head to
inside face of Piston).
[0035] At this time it is necessary to single out the value C3. which has a unique part
to play in the design of an axial compressor rotor blade which uses up the malignant
Air Spring Energy Esp(1.2). for it is this value which links up all the different
kinds of energy.
[0036] To bridge the differences between the formulae of the 2
nd. Analogy and the new design system it is first necessary to account for the extra
power required for full cycle operation. The second requirement is to provide for
specified air mass flows, and thirdly to connect the foregoing with the tangential
blade velocity, and finally to streamline the blank end of the blade which in the
analogy would be (P1. - P2) wide at position 3. of the analogy.
[0037] The first being satisfied by adding the value (Ba1.- b.) to b. of the analogy at
Position 1. which would disappear at Position 2. The second by changing the straight
line operation of the analogy to circular, which allows area's to be specified between
concentric lamina streamlines which together with the addition of axial air velocity
defines air mass flow. The third by linking the axial and tangential air velocities
together and to the tangential blade velocity, thus the Bernoulli type equation of
the analogy becomes:-
1.- (va12. + vcm12. + Ba1.vb12.)/2.g. + y.p1.v1./(y-1). =
2.- (va22. + vcm12. + b.vb22.)/2.g. + y.p2.v2./(y-1). + Esp(1.2). =
3.- (va32. + vcm12. + b.vb32.)/2.g. + y.p2.v2./(y-1.). And as (Ba1.vb12.- b.vb22.)/2.g. = W(1.2). And as b.(vb22.- vb32.)/2.g. = W(2.3).
1.- W(1.3)r. + (va1r2. + vcm1r2.)/2.g. + y.p1r.v1r./(y-1.). =
2.- W(2.3)r. + (va2r2. + vcm1r2.)/2.g. + y.p2r.v2r./(y-1.). + Esp(1.2),. =
3.- (va3r2.+ vcm1r2.)/2.g. + y.p2r.v2r./(y-1.). Where W(1.2)r. = y.Ep(1.2),. + Esp(1.2)r.+ (va2r2.- va1r2.)/2.g.
Where w(2.3)r. + Esp(1.2),. = (va3r2.- va2r2.)-/2.g. = Ek(2.3)r.
Where (y-1.).Ep(1.2)r. = Ei(1.2),. = (Ba1r.- b,.)-.vb1/r2./2.g.
[0038] And the formula which connects the tangential blade velocity to the air velocities
on the Root Streamline are:-
V1 R. = m vb(1.3)R. + Maximum m vcm(1.3)R. See Figure 1/9.
vcm3R. (va3R.(V1R.- va3R.))1/2. See Figure 1/9.
In the example Tables 1 D. to 6D. a constant value vcm1R. has been used which is slightly less than both the two values above.
Where m vb(1.3)R. = m va(1.3)R. + X2R./2.t(1.3)R.
Where m va(1.3)R. = ((t(1.2)R.(va1R. + va2R.)) + (t-(2.3)R.(va2R. + va3R.)))./2.t(1.3)R.
m va(1.3)R. = C4R.(va3R.- va1R.). + va1 R.
Limited Angle C°. is taken to be 45°. and the value of the angular difference between
the absolute and Relative centre lines of the tail portions (Plane 3. to Plane 4.)
is 90°. See Figure 1/9.
[0039] It is also of importance that on the root streamline where V1R. has the minimum velocity,
that vb1
R. should have a value not exceeding (V1
R. + va1
R.).
[0040] With reference to surge conditions it should be noted that the rotor blade shape
(As manufactured) when stationary is also its absolute shape. Thus in the run up to
the designed speed (V1.) the rotor blade absolute shape continuously in contact with
its relative shape on Plane 1. appears to move in an anti-clockwise direction like
a pointer of a clock until at the designed speed it reaches the designed speed position.
Intermediate to the two positions described above the absolute shape passes through
a third position where it is disposed axially. This is the position where surge conditions
would arise if the relative blade shapes did not give full static coverage to the
inlet plane. Thus in a front view of a compressor the rotor blade at all radii should
have a minimum arc length of one blade pitch.. (See Figure 9/9.)
[0041] It will also be seen that for industrial use where protection can be given to prevent
ingestation of foriegn bodies it would be advantageous to use finer pitched blades
than would be used for aircraft engines.
[0042] With regard to streamlining it should be noted that as in the analogy where the piston
is locked tothe cylinder at Position 2. to retain the compression of the air to Position
3. so also does the blade of the compressor attain its maximum thickness at Plane
2. and in the example given retains this thickness to Plane 3. from which it is streamlined
to a point at Plane 4. It should be noted however that if required it could have been
commenced at Plane 2. If the Synopsis 1A. had been used for the example the starting
plane of the streamlining would have been prior to Plane3.
[0043] The absolute lamina blade circular arc dimensions are measured from an axial line
which passes through the blade point at Plane 1. and the axial length dimensions from
Plane 1. along the line. Note also that all streamlines in the Synopsis are at a constant
radius thus r(1.3).
[0044] Front profile dimension designations are prefixed by the letters Fp and rear profile
dimensions Rp. The mean centre line of air mass flow moved circumferentially one half
blade pitch so that it can be dimensioned from the above axial line uses the prefix
S.
[0045] The blade length is divided into three sections a., b., c. which represent (Plane
1. to 2.)., (Plane 2. to 3.) and (Plane 3. to 4.) and thus:-
Fpa1r. = Zero. Fpa2,. = t(1.2)r.(vb1r.+vb2r.)/2.
Sa1 r. = Zero. Sa2r. = t(1.2)r.(va1r. + va2r.)/2.
Rpa1 r. = Zero. Rpa2r. = t(1.2)r.(va1r. + va2r.)/2.
Fpb3r. = Fpa2r. + t(2.3),.(vb2,. + vb3r.)/2.
Sb3r. = Sa2r. + t(2.3)r.(va2r + va3r.)/2.
Rpb3r. = Rpb2,. + t(2.3)r.(vb2r. + vb3r.)/2.
[0046] And in the intermediate positions:-
Fpanr. = t(1.n)r.(vb1r. + vbnr.)/2.
Sanr. = t(1.n)r.(va1r. + vanr.)/2.
Rpanr. = t(1.n)r.(va1r. + vanr.)/2.
Rpbmr. = Rpa2r. + t(2.m)r.(vb2r. + vbmr.)/2.
Sbm,. = Sa2r. + t(2.m)r.(va2r. + vamr.)/2.
Fpbmr. = Fpa2,. + t(2.m)r.(vb2r. + vbmr.)/2. And for blade section c.
Sc4,. = Sb3r. + t(3.4)r.va3r. Scwr. = Sb3r. + t(3.w)-r.va3r.
Fpc4r. = Sc4. = RpC4r.
Fpcwr. = Scwr. + Xwr./2. Rpcwr. = Scwr.- Xwr./2.
Fpb3r. = Sb3r. + X2r./2 Rpb3r. = Sb3,.- X2r./2.
Where Xw,. = 2.((RFr2.- L(3.w)r2.)1/2.-(RFr2.- L(3.4)-r2.)1/2.
And RFr. = Blade Form Radius = (L(3.4)r2./X3r.) + X3r./4.
And X3,. = X2r.
[0047] And for axial lengths.
L(1.2),.= t(1.2)r.vcm1r. & L(1.n)r.= t(1.n)r.vcm1r.
L(1.3)r. = t(1.3)r.vcm1r. & L(1.m)r. = t(1.m)r.vcm1r.
L(1.4)r. = t(1.4)r.vcm1r. & L(1.w)r. = t(1.w)r.vcm1r.
[0048] And for relative Blade Shape Dimensions.
R Fpa2r. = Fpa2r.- t(1.2)r.V1r. & R Fpanr. = Fpanr.- t(1.n)r.V1r.
R Fpb3,. = Fpb3r.- t(1.3)r.V1r & R Fpbmr. = Fpbmr.- t(1.m)r.V1r.
R Fpc4r. = Fpc4r.- t(1.4)r.V1r. & R Fpcwr. = Fpcwr.- t(1.W)r.V1r.
R Rpc4r. = Rpc4r.- t(1.4)r.V1r. & R RpcWr.= Rpcwr.- t(1.w)r.V1r.
R Rpb3r. = Rpb3r.- t(1.3)r.V1r. & R Rpbm,.= Rpbmr-t(1.m)r.V1r.
R Rpa2r. = Rpa2,.- t(1.2)r.V1r. & R Rpanr. = Rpanr.- t(1.n)r.V1r.
[0049] To relate all the above dimensions together a Drawing has been provided:- Figure
1/1.
Axial Flow Air Compressor Design Procedure - Rotor Blades. i
Notes:
[0050] - A Synopsis is not compiled for any specific air mass flow but to provide relationships
between the dimensions of the air duct and rotor blades to the large number of different
air and blade velocities and air conditions which simplify the design of a compressor
having a specific air mass flow.
[0051] Thus a first requirement before compilation is to know whether it is for airplane
or industrial use. If the former, to facilitate maximum blade loading, the area contained
within the rotor blade profile is made to increase in a direction radially outwards
as on Synopsis Table 1A. The decrease in material sectional area in the same direction
for reason of material stress being effected by coring which would be facilitated
by making the blades in halves and fusing together.
[0052] For industrial use due to the high material and manufacturing costs of the former
it is usual to use solid blades decreasing in sectional area radially outwards as
on Synopsis Table 1 D.
[0053] A study of both the above Synopses shows that to obtain the maximum air mass flow
through a given area inlet plane, the axial air velocity on the root streamline should
be the maximum value and the air whirl velocity a minimum value. The resultant energy
of both causing the drop in air pressure from static to inlet plane.
[0054] As values which are the mean over various portions of the airflow are required, to
simplify their calculation, products (r1
r.vcm1
r.) and (r1
r.vcm1
r.W-(1.3)
r.) have been made to vary at a constant rate radially across the inlet plane. Thus
for example m W(1.3)
r=4. = W(1.3)
r=2., m C3
2=3. = C3
r=1.1/2., etc. This however is not mandatory and could be different providing the resultant
air pressure drop is a constant value over the whole inlet plane.
[0055] If in the case of the example it is required to reduce the axial length of the rotor
blade, the way to do it is either increase the number of blades in the ring or alternatively
reduce r(1.3)
o. or do both, but certainly not the axial length alone even though it appears uselessly
too long.
[0056] If the Synopsis 1A. had been used for the example the blade thickness would have
increased radially outwards thus necessitating a longer length for streamlining at
all radii except at the root. The starting positions of the tapering could with advantage
be moved up to Plane 2. while still retaining the same circular arc pitch length as
Synopsis 1 D. Thus the formulae for Fpbm
r. and Rpbm
r. would require modification to take the streamlining into account thus:-
Fpb3r. = Fpa2r. + t(2.3)r.(vb2r. + vb3,.)/2. - (X2,.-X3r.)/2.
Rpb3,. = Rpa2r. + t(2.3)r.(vb2,. + vb3r.)/2. + (X2r.-X3r.)/2.
Rpbmr. = Rpa2,. + t(2.m)r.(vb2r. + vbmr.)/2. + (X2r.- Xmr.)/2.
Fpbmr. = Fpa2,. + t(2.m)r.(vb2r. + vbmr.)/2. - (X2,.-Xmr.)/2.
R Fpb3,. = Fpb3r.- t(1.3)r.V1r.
R Rpb3r. = Rpb3r.- t(1.3)r.V1r.
R Rpbmr. = Rpbmr.- t(1.m)r.V1r.
R Fpbm,. = Fpbmr.- t(1.m)r.V1r.
Sb3r. = Sa2r. + t(2.3)r.(va2r. + va3r.)/2. (Unchanged)
Sbm,. = Sa2r. + t(2.m)r.(va2r. + vam,.)/2. (Unchanged)
R Sbmr. = Sbmr. - t(1.m)r.V1r.
R Sb3r. = Sb3r. - t(1.3)r.V1r.
Note:
[0057] - The above dimensions give the blades position and shape on cylinders of constant
r1
r. radius which when looking down the stacking line are identical to the blade shapes
on the streamlines.
Computation of Stage 1. Synopsis Values.
[0058] The first requirement is the choice of the following values:-V1
0., r(1.3)o., r(1.3)
r., No. of blades in ring., Ratios (P2
r./Z2
r.)., ICAC Standard Atmosphere air conditions., a stipulation of the value of va1
R., a stipulation of the value of the Ratio (vcm1
R./Max.vcm1
R.) From which are derived all other values on either Synopsis 1A. or 1D. (1D. used
in example):-
Root Streamline Column applicable to Synopsis 1A. or 1D.
[0059] Ref.No. 9 .- C3
R. = (1. + ((B.- A.)/B.)
1/2.) Where A. = ((P2
R./Z2
R.)
(y-1.).- 1.) Where B. = (((P2
R./(2.Z2
R.- P2
R.))
(y-1.).- 1.)/2.) Where (P2
R./(2.Z2.- P2
R.)) = (1./2.Z2
R./P2
R.- 1.)) Ref.No.10 .- C4
R. = (3.C3
R.- 1.)/(4.C3
R2.-2.C3
R.) Ref.No.11 .- bR. = (1./(D. + (
D2. + 1.)
1/2.)) Where D. = ((y-1.)(1.- (C3
R.- 1.)
2.)/2.) Ref.No.14. - vcm1
R. = Ratio-(vcm1
R./Max.vcm1
R.).Max.vcm1
R. Where Max.vcm1
R. = C3
R.C4
R.V1
R./(1. + b
R.) See also Sheet 9. Ref.No.15. - T1,. = T.-(y-1.)(va1
R2. + vcm1R2.)-/2.g.y.C. Ref.No.16.-p1,. = p.(T1
R./T.)
y/(y-1.). Ref.No.17. - V1
r. = v.(T./T1
R.)
1/(y-1.) Ref.No.31. - Ep(1.2)
R. = (Ref.No.9.- A.)-.C.T1,./(y-1.) Ref.No.30. - E(1.2)
R. = (Ref.No.9.- B.).C.T1
r./(y-1.) Ref.No.32. - Ei(1.2)
R. = (y-1.).Ep(1.2)
R. Ref.No.12. - Ba1
R. = b
R. + Ei(1.2)
R.2.g./vb1
R2. Ref.No.20. - vb1
R. = V1
R. + va1
R. Ref.No. 5. - V1
R. = r(1.3)
R.V1
0./r(1.3)
0. Ref.No.33. - Esp(1.2)
R. = E(1.2)
R.-Ep(1.2)
R. Ref.No.18. - va2
R. = E(1.2)
R.2.g./(vb1
R.-va1
R.). + va1
R. Ref.No.34 .- Ek(1.2)
R. = (va2
R2.- va1
R2.)/2.g. Ref.No.19. - va3
R. = C3
R.(va2
R.- va1
R.). + va1
R. Ref.No.36 .- Ek(1.3)
R. = (va3
R2.- va1
R2.)/2.g. Ref.No.21. - vb3
R. = vb1
R.- (va3
R.- va1
R.)/b
R. Ref.No.26. - m va(1.3)
R. = C4
R.(va3
R.- va1
R.). + va1
R. m va(1.3)
R. = ((t(1.2)
R.(va1
R. + va2
R.)) + (t(2.3)-
R.(va2
R. + va3
R.)))/2.(t(1.2)
R. + t(2.3)
R.). Ref.No.27. - m vb(1.3)
R. = m va(1.3)
R. + X2
R./2.t-(1.3)
R. Ref.No.28. - t(1.2)
R. = 2.X2
R./(vb1
R.- va1
R.). Ref.No.29. - t(2.3)
R. = X2
R./(va3
R.- vb3
R.). Ref.No.38. - T2
R. = T3R.= (Ep(1.2)
R.(y-1.)./C.) + T1
R. Ref.No.39. - p2
R. = p3
R.= p1
r.(T2
R./T1
r.)
y/(y-1.). Ref.No.40. - v2
R. = v3
R. = v1
r.(T1
r./T2
R.)
1/(y-1.). Ref.No.35. - W(1.2)R.= (Ba1
R.vb1
R2. -b
R.vb2
R2.)-/2.g. Ref.No.37. - W(1.3)
R. = (Ba1
R.vb1
R2. -b
R.vb3
R2.)-/2.g. Ref.No.49. - Angle A
R. = Tan.
-1-(va3
R./vcm1R.). Ref.No.50. - Angle B
R. = Tan.
-1((V1
R.-va3
R.)-vcm1
R.). Ref.No.51. - Angle C
R. = Tan.
-1-((V1
R.- m vb-(1.3)
R.)/vcm1
R.). Ref.No.53. - (1.x 14.x 37.)
R= (r(1.3)
R.vcm1
R.W-(1.3)
R.). Ref.No.54 .- (1.x 14.)
R. = (r(1.3)
R.vcm1
R.)
[0060] Continuation - Outer Streamline Column - Synopses Table 1D. & 1A.
[0061] Ref.No. 9. and 10. - Values C3
0. and C4
o. Use formulae given for same values on Root Streamline. Ref.No.11. - b
o. Note :- Root Streamline value used for convenience such that Ref.No.12.-Ba1
o. is below unity. Ref.No.12. - Ba1
0.= b
0.+ Ei(1.2)
0.2.g./vb1
02. Ref.No.13. - va1
0.= V1
0.- V1
R.)/2. + va1
0. Value chosen to keep the value va3o. reasonable low. Ref.No.14. - vcm1
0.= (va1
R2.+ vcm1
R2.- va1
02.)
1/2. Ref.Nos. 6., 7., 8., 15., 16., 17. , Values T., p., v., T1., P1., and v1. are of
the same value as on the Root and all other streamline columns of the same Synopsis.
Ref.Nos.30. to 33. - E(1.2)o., Ep(1.2)o., Ei(1.2)o., Esp(1.2)o., Use formulae given
for same values on Root Streamline. Ref.No.18. - va2o.= vb2o.= (E(1.2)
0.2.g./(1. + 1/b
0.))
1/2. + va1o. Ref.No.19. - va3
0. = C3
0.(va2
0.- va1
0.) + va1
0. Ref.No.20. - vb1
0.= ((va2
0.- va1
0.)/b
0.) + va2
0. Ref.No.21. - vb3o.= vb1
0.- (va3o.- va1o.)/bo. Ref.Nos.26., 27., 28., 29., 34., 35., 36., 37., 38., 39., 40.,
49., 50., & 51. Values m va(1.3)., m vb-(1.3)., t(1.2)., t(2.3)., Ek(1.2)., W(1.2).,
Ek(1.3)., W(1.3)., T2. = T3., p2. = p3., v2. = v3., Angle A., Angle B., Angle C. Use
formulae given for same values on Root Streamline. Ref.No.53. - (1.x 14.x 37.) = r(1.3)
o.vcm1o.W-(1.3)
0. Ref.No.54. - (1.x 14.) = r(1.3)
0.vcm1
0.
[0062] Continuation - Intermediate Streamline Column -
[0063] Synopsis Tables 1 D. and 1 A.
[0064] Ref.Nos. 9. & 10. - Values C3
r. and C4,. Use formulae given for same values as on Root Streamline. Ref.No.54.-(r(1.3)
r.vcm1
r.). = (Max.Stre.No. - Stre.No.)(r(1.3)
0.vcm1
0.- r(1.3)
R.vcm1
R.)-/(Max.Stre.No.) + (r(1.3)
R.vcm1
R.). Ref.No.14. - vcm1
r. = (r(1.3)
r.vcm1
r.)/r(1.3)
r. Ref.No.13 .- va1
r. = (va1
R2. + vcm1
R2.-vcm1
r2.)- Ref.No.53 .- (1.x 14.x 37.),. = (Max.Stre.No.-Stre.No.)(r(1.3)
0.vcm1
0.W(1.3)
0.- r(1.3)-
R.vcm1
R.W(1.3)
R.)/(Max.Stre.No.). + (r(1.3)-
R.vcm1
R.W(1.3)
R.) Ref.No.37 .- W(1.3),. = .(1.x 14.x 37.)
r./(r(1.3)-
r.vcm1
r.). Ref.Nos. 6.,7.,8.,15.,16.,17 .- Values T.,p.,v.,T1.,p1.,v1. are of the same value
as on the Root Streamline Column of the same Synopsis. Ref.Nos.30 to 33 .- Values
E(1.2)
r.,Ep(1.2)
r.,Ei-(1.2)
r.,Esp(1.2)
r. Use formulae given for the same values on the Root Streamline. Ref.No.36 .- Ek(1.3)
r. = W(1.3),.- (y.Ep(1.2)
r.). Ref.No.19 .- va3,. = ((Ek(1.3)
r.2.g. + va1
r2.)
1/2. Ref.No.18 .- va2
r. = ((va3
r.-va1
r.)/C3
r.) + va1
r. Ref.No.34 .- Ek(1.2),. = (va2
r2.- va1
r2.)/2.g. Ref.No.20 .- vb1
r. = ((E(1.2)
r.2.g./(va2
r.-va1
r.)) + va1
r. Ref.No.11 .- b
r. = (va2
r.-va1
r.)/(vb1
r.- vb2
r.) Ref.Nos.35.,37.,38.,39.,40.,49.,50.,51 .-Values W-(1.2)
r.,W(1.3)
r., Angle A., Angle B., Angle C. Use formulae for the same values given for the Root
Streamline.
[0065] Continuation - Air Mass Flow Mean Values - Synopses Tables 1D. & 1A.
Note:
[0066] - The suffixes applicable to the example would be (r = 1.) to (r = 4.). Ref.No.41
.- Ar1
r. = Pi.(r(1.3)
(r=0.)2. -r(1.3)
r2.) Ref.No.42 .- m vcm1
r. = m vcm1
(r-x.). = vcm1
(r=x/2). Ref.No.43 .- M1,. = Ar1
r.m vcm1
r./v1
r. Ref.No.44 .- m Ek(1.3)
r. = m Ek(1.3)
(r=x.). = Ek-(1.3)
(r=x/2.). Ref.No.45 .- m Ep(1.2)
r. = m Ep(1.2)
(r=x.). = Ep-(1.2)
(r=x/2.). Ref.No.46 .- m Ei(1.2)
r.= m Ei(1.2)
(r=x.).= Ei-(1.2)
(r=x/2.). Ref.No.47 .- m W(1.3)
r. = m W(1.3)
(r=x.). = W-(1.3)
(r=x/2.). Ref.No.48 .- m T2
r. = m T3
r.
= m T2
(r=x.). = T2
(r=x/2.). NOte: - The mean values for m p2
r. and m v2
r. can be calculated from the above temperature if required. Ref.No.52. - Horse Power
= H.P.
r. = M1
r.m W-(1.3)
r./550. End of Procedure for Stage 1. Synopses Tables 1D. & 1A.
Computation of Plane n. values intermediate between Planes 1. & 2. All Streamline
Columns - Blade Section a. Tables 2D. & 3D.
[0067] Ref.No.54. - van
r. = va1
r. + n.(va2
r.-va1
r.)/N. va-(n=0.)
r. = va1,. Ref.No.55. - vbn
r. = vb1
r.- n.(vb1
r.-vb2
r.)/N. vb-(n=0.)
r.= vb1
r. Ref.No.56 .- Ek(1.n)
r. = (van
r2.- va1
r2.)/2.g. Ref.No.57. - E(1.n)
r.= (((2.vb1
r.)+ ((1/b
r.-1.)-va1
r.)- ((1/b
r.+ 1.)van
r.))(van
r.- va1
r.))/2.g. Ref.No.58 .- Ep(1.n)
r.= E(1.n=x.)
r+ W(2.m=-(M-x.))
r.- Ek(2.m = (M-x.))
r. Where M.No.of Planes = N.No.of Planes... Also Ep(1.n)
r. = E(1.n)
r.(1.- (C3
r.- 1.)
2.) Ref.No.59. - Esp(1.n)
r. = E(1.n)
r.(C3
r.- 1.)
2. Ref.No.60. - Ei(1.n),. = (y.- 1.).Ep(1.n)
r.. Ref.No.61 .- W(1.n)r.= (Ba1
r.vb1
r2.-Ban
r.vbn
r2.)-2.g. Ref.No.62 .- Ban
r. = ((Ba1
r.vb1
r2.-(2.g.(E(1.n)
r. + Ei(1.n),. + Ek(1.n.)
r.)))/vbn
r2. Ref.No.63 .- t(1.n)r.= ((1.- (T1
r./(T1
r.+ (y-1.).Ep-(1.n)
r./C.))
1/(y-1.).).2.P2
r./((vb1
r.+ vbn
r.)-(va1
r. + van,.))) Ref.No.64 .- L(1.n),.= t(1.n)
r.vcm1
r. Ref.No.65. - Fpan
r. = t(1.n)
r.(vb1
r. + vbn
r.)/2. Ref.No.66. - San
r. = t(1.n)
r.(va1
r. + van
r.)/2. Ref.No.67 .- Rpan
r. = t(1.n)
r.(va1
r.+ van
r.)/2. Ref.No.86. - R Fpan
r. = Fpan
r. - t(1.n)
r.V1
r. Ref.No.87 .- R San
r. = San
r. - t(1.n)
r.V1
r. Ref.No.88 .- R Rpan
r. = Rpan
r. - t(1.n)
r.V1
r.
Computation of Plane m. values intermediate between Planes 2. & 3. All Streamline
Columns - Blade Section b. Tables 3D., 4D. & 5D.
[0068] Re.No.68 .- vam
r. = va2
r. + m.(va3
r.- va2
r.)/M. Ref.No.69 .- vbm
r. = vb2
r. + m.(vb2
r.-vb3
r.)/M Ref.No.70 .- Ek(2.m)
r. = (vam
r2.- va2
r2.)/2.g. Ref.No.71 .- Esp(2.m),. = Ek(2.m)
r. - W(2.m),. Ref.No.72 .- W(2.m)
r. = b
r.(vb2
r2.- vbm
r2.)/2.g. Ref.No.75 .- Espm
r. = Residual Air Spring Energy existing at Plane m. = Esp(1.2)
r. = Esp-(2.m)
r. Ref.No.73 .- t(2.m)
r. = L(2.m)
r./vcm1
r. Ref.No.74 .- L(2.m)
r. = D
r.((Sin.(Tan.
-1-(vam
r./vcm1
r.)) -(Sin.(Tan.
-1(va2
r./vcm1
r.))). Ref.No.74A .- D
r. (Radius) = L(2.3),./(Sin.-(Tan.
-1.(va3
r./vcm1
r.)) -(Sin.
-1.(Tan.
-1.-(va2
r./vcm1
r.)). Ref.No.76 .- Fpbm
r. = Fpa2
r. + t(2.m)
r.(vb2
r. + vbm
r.)/2. Ref.No.77..- Sbm
r. = Sa2
r. + t(2.m)
r.(va2
r. + vam
r.)/2. Ref.No.78 .- Rpbm
r.
= Rpb2,. + t(2.m)
r.(vb2
r.
+ vbm
r.)/2. Ref.No.90 .- R Fpbm
r.
= Fpbm
r.- t(1.m)
r.V1
r. Ref.No.91 .- R Sbm
r. = Sbm
r.- t(1.m)
r.V1
r. Ref.No.92 .- R Rpbm
r.
= Rpbmr.- t(1.m)
r.VI
r. Ref.No.89 .- L(1.m)
r. = L(1.2)
r.
+ L(2.m)
r.
Computation of Plane w. values intermediate between Planes 3. & 4. All Streamline
Columns - Blade Section c. Tables 5D. & 6D.
[0069] Ref.No.79 .- L(1.w)
r.= L(1.3)
r.+ + w.L(3.4)
r./W. Ref.No.79A .- L(3.4)
r.
= L(1.4)
r.- L(1.3)
r. Ref.No.79B .- L(1.4)
r. = vcm1
r.t(1.4)
r. Ref.No.79C .- t(1.4)
r. = (P1
r.- t(1.3)
r.(va3
r.- m va-(1.3)r.))/(V1r.- va3
r.). Ref.No.83 .- rw
r. = b./2.a. + ((b./2.a.)
2. + c./a.)-
1/2.
[0070]
Where a. = 2.Pi./No. of Blades.
Where b. = (Xwouter.+ Xwinner.) Where inner & outer refer to two adjacent streamlines which enclose an area.
Where c. = (2.Pi.rwouter2./No. - (Arinner.-Arouter.)-.2./No. - b.rwouter.). Commence with the outer pair of which the outer Arr=0. = Zero. and continue inwards using the first calculated inner radius as the outer
of the next pair and so on. The individual area of the first set is:-(Ar2r=1. - Arr=0.).
[0071] Ref.No.80 .- Fpcw
r.
= Fpb3
r.+ w.t(3.4)
r.va3
r./W. - (X3
r.- Xw
r.)/2. Ref.No.81 .- Scw
r.
= Sb3
r. + w.t(3.4)
r.va3
r./W. Ref.No.82 .- Rpcw
r. = Rpb3
r. + w.t(3.4)
r.va3
r./W.
+ (X3
r.- Xw
r.)/2. Ref.No.96 .- R Rpcw
r. = Rpcw
r.- (V1
r./vcm1
r.).L-(1.w)
r. Ref.No.95 .- R Scw
r. = Scw
r.- (V1
r./vcm1
r.).L-(1.w)
r. Ref.No.94 .- R Fpcw
r. = Fpcw
r.- (V1
r./vcm1
r.).L-(1.w)
r. Ref.No.84 .- Xw
r.
= 2.((RF
r2.- L(3.w)
r2.)
1/2.- (RF
r2.-L(3.w)
r2.)
1/2.). Ref.No.93 .- RF
r. = Form Radius = (L(3.4)-
r2./X3
r.)
+ X3
r./4. Where in the example X3
r. = X2
r.
Computation of Plane w. values intermediate between Planes 3. & 4. All Streamline
Columns - Blade Section c. Tables 5D. & 6D.
Note:
[0072] - In the example the streamlining of all blade sections start at Plane 3. Thus with
the exception of the energy value Ei(1.2)
r. and the introduction of the value (Ba1
r.- b
r.) to take it into account which does not affect the blade absolute and relative profile
dimensions, the formulae of the analogy and those up to Plane 3. used for the example
are alike. However particularly in the case of Synopsis 1A. it could start earlier
with Plane 2. being a maximum upstream position.
[0073] In the case of Synopsis 1A. it would be advantageous for reason of material stress
to use the same root section as for 1 D. but on the blade tip section use Plane 2.
as the starting position of the streamlining. In between it could be varied from the
plane of one to the other.
[0074] The streamlining will not affect the energy change between Plane 2. and Plane 3.
providing the value (X2
r.- Xb
r.)/2 is subtracted from the front and added to the rear profile through blade section
b. similarly as is due on section c.
Rotor Blade Design Procedure applicable to Rotors which follow Stators. - Synopsis
Stage 2. Tables17D.
Notes:
[0075] - To provide for the matching of the airflow through a multiple number of stages
it will be noted that the Stage 1. Synopsis has made the two products (r(1.3)
r.vcm1
r.W(1.3)
r.) and (r(1.3)
r.vcm1
r.) to vary in value at a constant rate radially across the inlet plane, such that
the mean streamline values are also the mean values of the air mass flows which at
the inlet plane are symetrically disposed on the plane. Thus W(1.3)
r=x/2. equals m W-(1.3)
r=x., Ek(1.2)
r=x/2. equals m Ek(1.2)
r=x. etc.
[0076] This provision is made to apply to all stages with a further proviso that the two
values va1. and vcm1. on the mean streamline of the full air mass flow are the same
for all stages. However due to the repositioning of the full air mass mean streamline
each stage the values of the lesser portions do change slightly each stage.
[0077] The following formulae have been provided to calculate the new values:-
Ref.No.41 .- Ar1R. = Stage 1. Ar8R. & r(1.3)R. Stage 1. r8R.
[0078] Ref.No.41 .- Ar1
r. = Pi.(r(1.3)
0. - r(1.3)
r2.). Ref.No. 1 .- r(1.3)
R. = (r(1.3)
02.- Stage 1.Ar
8R./Pi.)
1/2. Ref.No. 1 .- r(1.3),. = r(1.3)
o. - (Str.No.)(r(1.3)
o. -r(1.3)
R.)/(Max.Str.No.). Ref.No.5 .- V1,. = r(1.3)
r.V1o./r(1.3)o. Ref.No.43 .- M1
r. = Ar1
r.m vcm1
r./m v1
r. Ref.Nos. 9.,10.,30.,31.,32.,33.,35.,38.,39., & 40. - C3
r.,C4
r., E(1.2)
r., Ep(1.2)
r., Ei(1.2)
r., Esp(1.2)
r., W(i.2)
r., T2
r., p2
r., v2
r., Formulae for their derivation are as used for Stage 1. Synopsis.
Rotor Blade Design Procedure applicable to Rotors which follow Stators. - Synopsis
Stage 2. Table 17D.
[0079] Ref.No.54 .- Stage 2.(1.x 14.)o. = r8o.vcm8o. Stage 2.(1.x 14.)
R. = r8
Rvom8
R. Stage 2.(1.x 14.)
r=M.No./2. = r(1.3)-
r=M.No./2.vcm1
r=M.No./2. Ref.NO.54 .- Stage 2.(1.x 14)
r.= (1.x 14.)
0. - ((r-(1.3)
0. -r(1.3)
r.)((1.x 14.)
0. - (1.x 14.)
R.)/(r(1.3)
0. -r-(1.3)
R.)). Ref.No.14 .- vcm1
r. = (1.x 14.)
r./r(1.3)
r. Ref.No.13 .- va1
r. = (Stage 1.(va1
r2. + vcm1
r2.) -vcm1
r2.)
1/2. Ref.Nos.15.,16.and 17 .- T1
r.,p1
r.and v1
r. = T8
r.,p8
r.and v8
r. Note: - It has been assumed that the blade strength is capable taking an equal load
as the 1
st.Stage so W(1.3)
RMR. of the 2
nd.Stage has been made equal to that of the 1
st.Stage. W-(1.3)
0. of the 2
nd.Stage has olso been made equal to W(1.3)
o. of the 1
st.Stage. Thus:-Ref.No.37 .- W(1.3),. = (1.x 14.x 37.)
r./(1.x 14.),. Ref.No.53 .- (1.x 14.x 37.)
r. = (1.x 14.x 37.)
0.+ (r(1.3)o.- r(1.3)
r.)(2.((1.x 14.x 37.)o.- (1.x 14.x 37.)
RMR.)/(r(1.3)
0. -r(1.3)
R.). Where (1.x 14.x 37.)o. = r(1.3)o.vcm1o.Stage 1.W(i.3)o. And (1.x 14.x 37.)
RMR. = r(1.3)-
RMR.vcm1
RMR.Stage 1.W(1.3)
RMR. Ref.No.36 .- Ek(1.3)
r. = W(1.3)
r.- y.Ep(1.2)
r. Ref.No.19 .- va3
r. = (Ek(1.3)
r.2.g.
+ va1
r2.)
1/2. Ref.No.18 .- va2
r. = (va3
r.- Va1
r.)/C3
r. + va1
r. Ref.No.34 .- Ek(1.2)
r. = (va2
r2.- Va1
r2.)/2.g. Ref.No.11 .- b
r. = (va3
r.- va1
r.)/(vb1
r.- vb3
r.) Ref.No.12. - Ba2
r.
= b
r. + Ei(1.2)
r.2.g./vb1
r2. Ref.No.20. - vb1
r. = (E(1.2)
r.2.g./(va2
r.- va1r.)) + va1
r. Ref.No.21. - vb3
r. = vb2
r.- (va3
r.- va2
r.)/b
r. Ref.No.26. - m va(1.3)
r. = ((va3
r.- va1
r.).C4
r.) + va1
r. Ref.No.27. - m vb(1.3)
r. = m va(1.3),. +X2
r./2.t-(1.3)
r. Ref.No.28 .- t(1.2)
r. = 2.X2
r./(vb1
r.- va1
r.). Ref.No.29. - t(2.3)
r.
= X2
r./(va3
r.- vb3
r.). Ref.No.42. - m vcm1
r=
x. = vcm1
r=x/2. Ref.No.44. - m Ek(1.3)
r=x.
= Ek(1.3)
r=x/2. Ref.No.45. - m Ep(1.2)
r=x.
= Ep(1.2)
r=x/2. Ref.No.46. - m Ei(1.2)
r=x.
= Ei(1.2)
r=x/2. Ref.No.47 .- m W(1.3)
r=x.
= W(1.3)
r=x/2. Ref.No.48 .- m T2
r=x. = T2
r=x/2. Ref.No.49. - Angle A
r. = Tan.
-1.(va3
r./vcm1
r.) Ref.No.50. - Angle B
r. = Tan.
-1((V1
r.- va3
r.)-/vcm1
r.) Ref.No.51 .- Angle C
r. = Tan.
-1.((V1
r.- m vb(1.3)-
r.)/vcm1
r.) Ref.No.52. - Horse Power = M1
r=x.m W(1.3)-
r=x./550.
[0080] Axial Flow Air Compressor Design Procedure.
Stator Blade Design Procedure - Notes. Tables 7D. to 16D.
[0081] The axial length of the stators is divided into two parts by a short length interposed
for the adjustment of total length for mechanical reasons. The basic planes being
as follows:-Inlet Plane 5.
[0082] This plane except for being divided by a different number of blades is exactly as
the preceding rotor outlet plane.
Planes 6. & 7.
[0083] Air conditions at these two planes are exactly alike. Except for allowing for the
rotation of the air, dimensions are also alike.
Outlet Plane 8.
[0084] Except for differences in the radial positions of the intermediate streamlines and
number of blades the dimensions of this plane are identical to the following Rotor
Blade Plane 1. Thus before calculating any Stator conditions it is required first
to compile the Stage 2. Synopsis.
Planes intermediate between the above planes.
[0085] The planes which divide the length L(5.6)
r. are designated by the letter m.
[0086] The planes which divide the length L(7.8)
r. are designated by the letter n.
[0087] The function of the first portion of the blades is to move the streamlines radial
position so that at Plane 6. they are axially in line with their position on Plane
8. A second requirement is to change the proportions of va5 and vcm5. such that the
ratios va6
r./vcm6
r., va7
r./vcm7
r. and va8
r./vcm8
r. are of the same value.
[0088] The function of the rear portion of the blades is to reduce the air velocities va7
r./vcm
r. via van
r./vcmn
r. to va8
r./vcm8
r. while changing the surplus of kinetic energy into heat energy. by diffusion.
[0089] An assumption has been made that the levelling out of air temperature radially outwards
is effected between Planes 7. & 8. which though not exactly true is only untrue quantitatively.
StatOr Blade Design Procedure - Continued.
Outlet Plane 8.. Tables 8D. & 16D.
[0090] Ref.No.3 .- m T8
r. = m T2
R. + m Ek(1.3),.(y-1)-./y.C. Ref.No. 4 .- m p8,. = m p2
R.(m T8
r./m T2
R.)
y/(y- 1). Ref.No. 5. - m v8,. = m v2
R.(m T2
R./m T8
r.)
1/(y- 1). Ref.No.22 .- T8
r.
= m T8
r. Ref.No.23 .- p8
r.= m p8
r. Ref.No.24 .- v8
r. = m v8
r. Ref.No.37 .- r8
r. (r8
02.- Ar8
r./Pi.)
1/2. Ref.No. 7. - Ar8
r. = M8
r.m v8,./m vcm8
r. = m Z8
r.H8
r.No. Ref.No.63 .- (37.x 21.)
0. = r8o.vcm8o. Where vcm8
0. = (vcm1
0.- vcm1
RMR.)(r8
0.-RM8
R.)/(r1
0.- RM1
R.). + vcm1 RMR. Ref.No.63 .- (37.x 21.)
R. = 2.(vcm1
RMR.RM8
R.). - (37.x 21.)
0. REf.No.63 .- (37.x 21.)
r. = ((37.x 21.)o- (37.x 21.)
R.)(r8
r.-r8
R.)/(r8
0.- r8
R.). + (37.x 21.)
R. Ref.No.21 .-vcm8r. = (37.x 21.)
r./r8
r. Ref.No.62 .- (41.x 2.)
RMr. = ((37.x 21.)
0.+ (37.x 21.),.)/2. Ref.No. 2 .- m vcm8
r. = (41.x 2.)
RMr./RM8
r. Ref.No.20 va8
r. = ((va1
r2. + vcm1
r2.).- vcm8
r2.)
1/2. Ref.No. 1 .- m va8
r. = ((va1
r2. + vcm1
r2.).- m vcm8
r2.)
1/2. Ref.No.41 .- RM8
r. = (r8o.
+ r8
r.)/2. Ref.No.17 .- m P8,. = 2.RM8
r.Pi./No. = Ref.No.18 .- m Z8
r. Ref.No.34 .- P8,. = 2.r8
r.Pi./No. = Ref.No.35 .-Z8
r. Ref.No.58 .- Rv8
r. = (va1
r2. + vcm1
r2.)
1/2. = Ref.No.5 8.- m Rv8
r. Ref.No.56 .- L(7.8)
r. = X7
r./2.Tan.Ø(7/8)
r. Ref.No.52 .- Ø(7/8)
r. = (Cos
-1((1. + (1. z(7/8)-
r.)Rt(7/8)
r./2)/(1.
+ Rt(7.8)
r.))/2. Ref.No.50 .- z(7.8)
r. = ((1/y)+(1/Rt(7/8)
r2.) --(1/y.Rt(7/8)
r2.))
1/2. Ref.No.49 .- Rt(7/8)
r.
= Rv7
r./Rv8
r. Ref.No.58. - Rv8,. = (va8
r2.+ vcm8
r2.)
1/2. Ref.No.58 .- m Rv8
r. = (m va8
r2./+ m vcm8
r2.)-
1/2.
[0091] Ref.No.57 .- L(5.8)
r. = (L(5.7)
r.
+ L(7.8)
r. Ref.No.55 .- t(7.8)
r. = L(7.8)
r./m vcm(7.8)
r. Ref.No.59 .- m vcm(7.8)
r. = (vcm7
r. + vcm8
r.)/2. Ref.No.60 .- M8
r. = As Stage 1. Rotor Plane 1. Ref.No.43. - m Q8
r. = Tan
-1(m va8
r./m vcm8
r.) Ref.No.44. - Q8,. = Tan
-1(va8
r./vcm8
r.) Ref.No.53 .- SFp8
r.
= Tan.Q8r.L(5.8)r.+ X7
r./2. Ref.No.54. - SRp8
r.
= SFp8
r. Ref:No.61. - Ry
r.
= L(7.8)
r./Sin.(2.Ø(7/8)
r.) Ref.No.62 .- (41.x 2.)
r. = RM8
r.m vcm8
r. Ref.No.63 .- (37.x 21.)
r. = r8
r.vcm8
r.
Note:
[0092] - The slight difference in the values of va8
r., vcm8
r. to the values of va1r., vcm1
r. on the Stage 2. Synopsis is accounted for by the slight changes of air mass flow
governed by the intermediate streamlines.
Inlet Plane 5. Tables 7D. & 9D.
Note:
[0093] - Plane 5. outer and inner boundary radii together with the radial positions of the
intermediate streamlines are exactly the same as on Plane 4. of the preceding rotor
blades.
[0094] Ref.No.2. - m vcm5
r. = As Ref.No.42. of the Stage Synopsis. Ref.No. 1. - m va5
r=No. = (m EK(1.3)
r=No..2.g.
+ Va1
r=No./2.2.)
1/2. Ref.No. 1. - m va5
r=No.
= va3
r=No./2. Ref.No. 3. - m T5
r.= As Ref.No.48. of the Stage Synopsis. Ref.No. 4. - m p5
r.= m p5
r=No.
= p1
r.(m T2
r=No./T1
r.)
y/(y-1.). Ref.No. 5. - m v5
r. = m v5
r=No. = v1
r.(T1
r./T T5
r=No.)
1/(y-1.) Ref.No. 7. - Ar5
r. = M1
r.m v5
r./m vcm5
r. REF.No.37. - r5
r. = (r5
02.- Ar5
r./Pi.)
1/2.. Ref.No.41. - RM5
r. = (r5
0.+ r5
r.)/2. Ref.No.17. m P5
r. = 2.Pi.RM5
r.iNo. Ref.No.18 .- m Z5
r.
= m P5
r. Ref.No.34. - P5
r. = 2.Pi.r5
r./No. Ref.No.35. -Z5
r. = P5
r. Ref.No.36. - X5
r.= Zero. Ref.No.19. - X5
r.= Zero. Ref.No.42. - H5,. = (r5
o.- r5
r.) Ref.No.43. - m Q5
r.= Tan.
-1 (m va5
r./m vcm5
r.) Ref.No.44. - Q5
r. = Tan.
-1.(va5
r./vcm5
r.) Ref.No.53. - SFp5
r. = Zero. Ref.No.54 .- SRp5
r. = Zero. Ref.No.33. - m vcm(5.m)
r. = vcm5
r. Ref.No.58 - Rv5r.= (va5
r2. + vcm5
r2.)
1/2. Ref.No.58. - m Rv5
r. = (m va5
r2. + m vcm5
r2.)-
1/2. Ref.No.58. - Rvx5
r. = Rv5
r. Ref.No.58. - m Rvx5
r. = m Rv5
r.
Plane 6. & 7. - Tables 8D. & 13D.
[0095] Ref.No.58 .- Rv6
r. = (va6
r2. + vcm6
r2.)
1/2. = Rv7
r. = Rv5
r. Ref.No.58 .- m Rv6
r. = (m va6
r2. + m vcm6
r2.)
1/2. = m Rv7
r. = mRv5
r. Ref.Nos.43. & 44 .- m Q6
r. & m Q7
r. & Q6
r. & Q7
r. are exactly as m Q8
r. & Q8
r. Ref.No. 1 .- m va6
r. = m va7
r. = Sin.m Q8
r.m Rv6r. Ref.No. 2 .- m vcm6
r = m vcm7r.= Cbs.m Q8
r.m Rv6
r. Ref.No.20 - va6
r. = va7
r. = Sin.Q8
r.Rv6
r. Ref.No.21 .- vcm6
r. = vcm7
r. = Cos.Q8
r.Rv6
r. Ref.No.2 - T6
r. = T7
r. = T5
r. R ef.No.2 3 .-
p6r.
= p7r.
= p5r. Ref.No.24 .- v6
r. = v7
r. = v5
r. Ref.No.37 .- r6
r.= r7
r. = r8
r. Ref.No.41 RM6
r.= RM7
r.
= RM8
r. Ref.No.34 .- P6
r. = P7
r. = P8
r. Ref.No.17 .- m P6
r. = m P7
r. = m P8
r. Ref.No. 7 - Ar6
r. = Ar7
r. = M5
r.m v5
r./m vcm6
r. Let RMR. = (r=Max.No._2.) Ref.No.35 .- Z6
RMR.= Z7
RMR·= v6
RMR.vcm8
RMR.P6
RMR./vcm6
RMR.v8
RMR. Ref.No.35 .- Z6
RMR-1.-
= 2.((Ar6
RMR.-Ar6
RMR-1.)-/(r6
RMR-1-r6
RMR.).No.)- Z6
RMR. Ref.No.35 .- Z6
RMR-2. = 2.((Ar6
RMR-1.- Ar6
RMR-2.)/(r6
RMR-2-r6
RMR-1.).No.)- Z6
RMR-1. Ref.No.35 .- Z6
RMR+1. = 2.((Ar
6R MR+1.-Ar6
RMR·)/(r6
RMR·-r6
RMR+1.).NO.)- Z6
RMR. Ref.No.35 .- Z6
RMR+2. = 2.((Ar
6R MR+2.-Ar6
RMR+
1.)/(r6
RMR+1.-r6
RMR+
2.).No.)- Z6
RMR+1.- Ref.No.35 .- All values of Z6 apply to Z7. with identical suffices. Ref.No.18 .-
m Z6
r. = m Z7
r. = Ar6
r./No.H6
r. Ref.No.17 m P6
r. = m P8
r. Ref.No.19 .- m X6
r. = m X7
r. = m P6
r.- m Z6
r. Ref.No.39 L(5.6)
r = X6
r/(((vcm6,: vcm5
r.)-t(va5,.- va6
r.)) -(va8
r./vcm8
r.)). Ref.No.39 .- L(5.6)
r. = Rp
r.(Sin.Q5
r.- Sin.Q6
r.). Ref.No.64 .- Rp
r. _ (X6
r./(((vcm6
r.- vcm5
r.)/(va5
r.-
va6r.
))-- (va8
r./vcm8
r.))(Sin.Q5
r.- Sin.Q6
r.)) Ref.No.38 .- t(5.6)
r. = L(5.6)
r./m vcm(5.6)
r. Ref.No.33 .- m vcm(5.6)
r.= (((Rv5
r2/2.)(U6
r.-U5
r.)
+ (Rv5
r2./4.)(Sin.(2.U5
r.) - Sin.(2.U6
r.)-)/(va5
r.- va6r.)). Where U6r.= ((Pi./2) - Q6
r.) and U5
r.= ((Pi./2) - Q5r.) Where Q6
r. and QS
r. are in Radians. Where Rv5
r. = (va5
r2. + vcm5
r.
2)
1/2. Ref.No.31 .- L(6.7)
r. This length is optional. Ref.No.30.-t(6.7)
r.= L(6.7)
r./vcm6,. Ref.No.39 .- L(5.7)
r. = L(5.6)
r.
+ L(6.7)
r. Ref.No.38 .- t(5.7)
r. = t(5.6)
r.
+ t(6.7)
r. Ref.No.53 .- SFp6
r. = Tan.Q6
r.L(5.6)
r. Ref.No.53 .- SFp7
r. = Tan.Q6
r.L(5.7)
r. Ref.No.54 SRp7
r = SFp7
r. + X6
r. Where X6
r. = Z7r. Ref.No.54 .- SRp6
r. = SFp6
r. + X6
r. Ref.No.36 .- X6
r.
= X7,.
= (P6
r.- Z6
r.)
Tables 7D & 9D to 12D. Planes m. - Intermediate between Planes 5. & 6.
Note:
[0096] - There are two ways of plotting the inner lamina profiles of the various areas of
airflow, the first of which is to arrange a constant rate of change of the values
m Qm
r. and Qm
r. and a constant rate of change of the value Xm
r. in a radial direction. It is then possible using the required areas of airflow in
a Quadratic Equation to calculate the exact values of rm
r. to enable the inner lamina profiles to be plotted. Initially this was done but the
curves were inconsistant in form and for that reason were discarded.
[0097] The second method which was applied to the example is to use the values m Qm
r., Qm
r., and Xm
r. as before and arrange a curve of constant arc radius whose radius centre would lie
on a radial line intercepting Plane 6. of the inner streamline, and in a similar way
for the other streamlines. The latter curves are thus the mean of the calculated ones.
The effect of of the latter when the area Arxm
r. is greater is to slow down the value of m Rvxm
r. to m Rvm
r. and if less to speed up the value m Rvxm
r. to the value of m Rvm
r. And as m vcmxm
r. = m vcm5
r.Ar5
r./Arm
r. (Where Arm
r. = No.Hm
r.m Zm
r.), m vaxm
r. = Tan.m Qm
r.m vcmxm
r.
[0098] Ref.No.43. - m Qm
r.= m Q5
r. - m(m Q5
r.- m Q6
r.)/M. Ref.No.44. - Qm
r. = Q5
r.- Q6
r.)/M. Where Qm
r.= Tan
-1.(vam
r./vcmm
r.) Ref.No. 1. - m vam
r. = Sin.m Qm
r.m Rv5
r. Where m Qm
r.= Tan
-1.(m vam
r./m vcmm
r.). Ref.No. 2. - m vcmm
r. = Cos.m Qm,.m Rv5
r. Where m Rv5
r. = ( m va5
r2. + m vcm5
r2.)
1/2. Ref.No.20. - vam
r. = Sin.Qm
r.Rv5
r. Ref.No.21. - vcmm
r. = Cos.Qm
r.Rv5
r. Where Rv5
r. = (va5,
2. + vcm5
r2.)
1/2. Ref.No.2A. - m vcmxm
r. = m vcm5
r.Ar5
r./No.Hm
r.m Zm
r. Ref.No.1A. - m vaxm
r. = Tan.m Qm
r.m vcmxm
r. Ref.No. 7. - Arm
r. = No.Hm
r.m Zm
r.
Planes m. - Intermediate between Planes 5. & 6. Tables 12D to 9D.
[0099] Ref.No.20A .- vaxm
r. = Sin.Qm
r.Rvxm
r. Ref.No.21A .- vcmxm
r. = Cos.Qm
r.Rvxm
r. Where Rvxm
r. = Rvm
r.m Rvxm
R./m Rvm
R. Where R.= (r=Max.No.) Ref.No.37. - rm
r.= (Rx
r2.- (L(5.6)
r.- L(5.m)
r.)
2.)-
1/2+(r6
r.- Rx
r.). Where Rx
r.= (L(5.6)
r2./2.(r6
r.- r5
r.).). + (r6
r.- r5
r.)/2. Ref.No.39. - L(5.m)
r.= = L(5.6)
r.(va5
r.- vam
r.)-/(va5
r.- va6
r.). Ref.No.39. - L(5.m)
r.= (Rp
r.(va5
r.- vam
r.))IRvS
r. Where Rp
r. = L(5.6)
r.Rv5
r./(va5
r.- va6
r.). Ref.No.36. - Xm
r.= (Rp
r.(Cos.Qm
r.- Cos.QS
r.)) - (L(5.m)
r.Tan.Q6
r.). Ref.No.17. - m Pm
r.= = RMm
r.2.Pi./No. Ref.No.41. - RMm
r.= (rm
0. + rm
r.)/2. Ref.No.34. - Pm
r. = rm
r.2.Pi./No. Ref.No.35. - Zm,. = (Pm
r.- Xm
r.). Ref.No.18. - m Zm
r=4 = (Zmo.
+ Zm
r=4.)/8. + (Zm
r=1. + Zm
r=2. + Zm
r=3)/4. m Zm
r=3.= (Zmo.+ Zm
r=3.)/6. + (Zm
r=1. + Zm
r=2.)/3. m Zm
r=2.= (Zm
0. + Zm
r=2.)/4. + (Zm
r=1.)/2. m Zm
r=1.= (Zmo.
+ Zm
r=1.)/2. Ref.No.19. - m Xm
r.= m Pm
r.- m Zm
r. Ref.No.33 .- m vcm(5.m),.= ((Rv5
r2./2.)(Um
r-U5,.). + (Rv5
r2./4.)(Sin.(2.U5
r.) - Sin.(2.Um
r.)-)/(va5
r.- vam
r.). Where Um
r.= ((Pi./2)- Qm
r.). and U5
r. ((Pi./2)-Q5r.) Where Qm
r. and Q5
r. are in Radians. Ref.No.38. - t(5.m)
r. = L(5.m)
r./m vcm(5.m)
r). Ref.No. 7. - Arm
r. = No.Hm
r.m Zm
r. and Ref.No.43.- Hm
r.= (rmo.- rm
r.) Ref.No.53. - SFpm
r. = Sin.Q6
r.L(5.m)
r. Ref.No.54. - SRpm
r. = SFpm
r. + Xm
r.
Planes n. - Intermediate between Planes 7. & 8. Tables 8D.,14D.,15D.
[0100] Ref.No.58. - Rvn
r. = Rv7
r. - n.(Rv7
r.- Rv8
r.)/N. Ref.No.58 .- m Rvn
r. = m Rv7
r. - n.(m Rv7
r.- m Rv8
r)/N. Ref.No. 1 .- m van
r. = m va7
r.- n.(m va7
r.- m va8
r.)/N. m van
r = Sin.m Q8
r.m Rvn
r. Ref.No. 2 .- m vcmn
r. = m vcm7
r. - n.(m vcm7
r.- m vcm8
r.)/N. m vcmn
r. = Cos.m Q8
r.m Rvn
r. Ref.No.20 .- van
r. = va7
r.- n.(va7
r.- va8
r.)/N. =
Sin.Q8
r..Rvn
r. Ref.No.21 - vcmn
r. = vcm7
r.- n(vcm7
r.- vcm8
r.)-/N. = Cos.Q8
r.Rvn
r. Ref.No.22 .- Tn
r=M.No./2.= Tn
RMR.= T7
RMR·+ (y-1.)(Rv7
RMR2.-Rvn
RMR2.)/y.2.g.C. Ref.No. 3 .- m Tn
r=M.No.
= Tn
RMR. Ref.No.22 x.- Txn
r. = T7,. + (y-1.)(Rv7
r2.- Rvn
r2.)-/y.2.g.C.

Note: - For streamlines whose number is less than the Streamline (r=M.No./2) = RMR.
the value n.(Tn
RMR.- Txn
r.)/N. should be added to Txn,. For streamlines whose number is greater the value n.(Txn,.-
Tn
RMR.)/N. should be subtracted from the value Txn
r. It will thus be seen that in the temperature levelling out the surplus heat is presumed
to move radially outwards between Planes 7. and 8. Ref.No.22. - Tn
r. = Txn,. + n.(Tn
RMR.- Txn
r.)/N.
Ref.
No.
3. -
m Tnr.
= m Tn
r=x. = Tn
r=x/2. Ref.No. 4 m pn
r. = m p7
r.(m Tn
r./m T7
r.)
y/(y-1). Ref.No. 5 .- m vn
r. = m v7
r.(m T7,./m Tn
r.)
1/(y-1) Ref.No.23 .- pn
r. = p7
r.(Tn
r/T7
r.)
y/(y-1). Ref.No.24. - vn
r. = v7
r.(T7
r./Tn
r.)
1/(y-1).
Planes n. - Intermediate between Planes 7. & 8. Tables 14D. & 15D.
[0101] Ref.No. 3. - m Tn
r. = m Txn
r.
+ n.(m Tn
2.
RMR. - m Txn
r)/N. Ref.No.22. - Tn
r. = Txn
r. + n.(Tn
RMR. - Txn
r.)/N. Ref.No.23. - pn
r.= p7
r.(Tn
r/T7
r.)
y/(y-1). Ref.No.24. - vn
r.= v7
r.(T7
r./Tn
r.)
1/(y-1). Ref.No. 4 .- m pn
r. = m p7
r.(m Tn
r./m T7
r.)
y(y-1)-
[0102] Ref.No. 5. - m vn,. = m v7
r.(m T7
r./m Tn
r.)
1/(y-1)- Ref.No. 7. - Arn
r. = M5
r.m vn
r./m vcmn
r. Where M5
r. = M4
r. Ref.No.37. - rn
r. = r7
r. = r8
r. Ref.No.42. - Hn,. = H7,. = H8
r. Ref.No.35. - Zn
RMR. = Zn
r=M.No/2.= z7
RMR·vcm7
RMR·vn
RMR·/vcmn
RMR.v7
RMR· Ref.No.35. - Zn
r=1.= 2.((Arn
r=
2.- Arn
r=1.)/No.-(Hn
r=2.-Hn
r=1)) - Zn
RMR. Ref.No.35 .- Zn
r=o.= 2.(Arn
r=1/No.Hn
r=1)-Zn
r=1. Ref.No.35. - Zn
r=3.= 2.((Arn
r=3.- Arn
r=2.)/No.-(Hn
r=3.-Hn
r=2)) - Zn
r=2. Ref.No.35. - Zn
r=4.= 2.((Arn
r=4.- Arn
r=3.)/No.-(Hn
r=4.-Hn
r=3.)) - Zn
r=3. Ref.No.36. - Xn
r. = Ph
r.- Zn,. Ref.No.34. - Pn
r.= 2.Pi.rn
r.No. Ref.No.52. - φ(7/n)
r.= Tan.
-1(A
r./(Ry
r.2.A
r.- A
r2.)-
1/2). Where Ry
r. = L(7.8)
r./Sin.(2.φ(7/8)
r.). And A,. = (X7
r.- Xn
r.)/2. Ref.No.56. - L(7.n)
r. = Ry
r.Sin.(2.φ(7/n)
r.). Ref.No.55 .- t(7.n)
r.= L(7.n)
r./m vcm(7.n)
r. Ref.No.59 .- m vcm(7.n)
r. = (vcm7
r. + vcmn
r.)/2. Ref.No.17 .- m Pn
r. = 2.Pi.RMn
r./No. Ref.No.18 .- m Zn
r. = Arn
r./No.Hn
r. Ref.No.19 .- m Xn
r. = m Pn
r.- m Zn
r. Ref.No.57 .- L(5.n)
r. = L(7.n),. + L(5.7)
r. Ref.No.53 .- SFpn
r. = Tan.Q7
r.L(5.n)
r. + (X7,.-Xn,.)/2.
[0103] 
[0104] Ref.No.41. - RMn,. = RM7,. = RM8
r.