

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 418 317 B2

(12)

NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the opposition decision:

19.05.1999 **Bulletin 1999/20**

(45) Mention of the grant of the patent:
09.03.1994 **Bulletin 1994/10**

(21) Application number: **89907445.4**

(22) Date of filing: **23.05.1989**

(51) Int Cl.⁶: **D21F 5/04**

(86) International application number:
PCT/US89/02230

(87) International publication number:
WO 89/12138 (14.12.1989 Gazette 1989/29)

(54) A PROCESS FOR THE RESTRAINED DRYING OF A PAPER WEB

VERFAHREN ZUR SCHRUMPFLOSEN TROCKNUNG EINER PAPIERBAHN

PROCEDE DE SECHAGE SOUS CONTRAINTE D'UNE BANDE DE PAPIER

(84) Designated Contracting States:
DE FR GB IT SE

(30) Priority: **02.06.1988 US 201705**

(43) Date of publication of application:
27.03.1991 Bulletin 1991/13

(73) Proprietor: **BELOIT TECHNOLOGIES, INC.**
Wilmington, Delaware 19803 (US)

(72) Inventors:

- **SKAUGEN, Borgeir**
Beloit, WI 53511 (US)
- **WEDEL, Gregory, L.**
Beloit, WI 53511 (US)

(74) Representative: **Haug, Dietmar, Dipl.-Ing. et al**
Patentanwälte
Andrae Flach Haug Kneissl
Bauer Schneider,
Balanstrasse 55
81541 München (DE)

(56) References cited:

EP-A- 0 332 599	WO-A-83/00514
WO-A-88/06204	WO-A-88/06205
US-A- 2 537 129	US-A- 3 868 780
US-A- 4 359 827	US-A- 4 359 828
US-A- 4 483 083	

- **TAPPI JOURNAL, vol. 70, no. 9, September 1987,**
Norcross, GA, US, pages 65-69; G.L. Wedel et al.:
"Advances in dryer section runnability".
- **"The Role of fundamental research in paper**
making-Transactions of the symposium held at
Cambridge : September 1981", London 1983,
pages 384-399
- **"The implications of fiber and sheet structure for**
the hygroexpansivity of paper", L. Salmén et al,
Nordic Pulp and Paper Research Journal No.
4/1987, pages 127-131
- **"Bel-Vent Rolls Instructions", published by**
Beloit Corporation, Wisconsin, U.S.A, November
1986

Description

[0001] The present invention relates to a process for the restrained drying of a paper web extending successively through a wet end and a dry end of a dryer section of a papermaking machine, said dryer section comprising a single-tier drying section for drying the web during movement of the web downstream relative to the wet end of the dryer section, said process being of the kind which comprises the steps of:

moving the paper web and a dryer felt contiguously to each other such that the web and felt wrap a portion of heated surfaces of a plurality of rotatable dryers of said single-tier drying section such that the web is disposed between the felt and the heated surfaces of said dryers;

guiding the web and felt contiguously to each other around a plurality of vacuum guide rolls of said single-tier drying section, each vacuum guide roll of said plurality of vacuum guide rolls being disposed between adjacent dryers of said plurality of dryers such that the web is supported by the felt during passage of the web between the dryers and the vacuum guide rolls, the arrangement being such that the felt is disposed between the web and the vacuum guide rolls when the web and felt wrap around a portion of the surface of the vacuum guide rolls; and

connecting the vacuum guide rolls to a source of vacuum such that a vacuum is applied to the web through the felt when the web and felt wrap around the vacuum guide rolls such that the web is drawn into close conformity with the felt when the web and felt wrap around the vacuum guide rolls.

[0002] Such a process is disclosed in the article headed "Advances in dryer section runnability", pages 65 - 69 in TAPPI Journal, Vol. 70, No. 9, September 1987. Norcross, CA, US.

[0003] The same process is disclosed also in each one of EP-A-0345266 and EP-A-0345291, both published on 13-12-89.

[0004] The afore-mentioned article indicates that a high vacuum of 1 kPa is produced by the vacuum transfer rolls to hold the web to the fabric around the rolls, thereby restraining the web against cross-machine directional shrinkage. A single-tier dryer section of the kind disclosed in the afore-mentioned article has been used at the wet end of the dryer section. The afore-mentioned article suggests to extend the single-tier concept through the entire dryer section. However, the shrinkage of the sheet is very low as it is dried from 40 to 60 percent dry. Once the sheet reaches 60 percent dry, the shrinkage increases and continues at a high rate until the sheet is essentially dry.

[0005] US-A-3868780 discloses a dryer section in which there are long felt draws between adjacent guide rolls so that cross-machine directional shrinkage is permitted. The guide rolls may have a perforated shell so

5 as to permit them to operate as traverse flow dryers when a vacuum is generated within the loop of the felt which is guided alternately around drying cylinders and guide rolls. Since the felt has long spans uncovered by the web, air will be drawn through such uncovered felt spans, thereby reducing the level of the vacuum acting on the web significantly. As a result the vacuum is inadequate to inhibit cross-machine directional shrinkage both at the wet end and the dry end of the dryer section.

[0006] An object of the present invention is to restrain 15 the web positively against cross-machine directional shrinkage during drying of the web in the dry end of the dryer section.

[0007] The object of the invention is achieved by a 20 process of the kind defined above, wherein a vacuum level of 1.49 to 1.99 kPa (6 to 8 inches WC) is applied in the vacuum guide rolls around which the web travels once it has reached a dryness of approximately 60% and until it is essentially dry so that cross-machine direction shrinkage of the web during drying of the web in the dry end of the dryer section is inhibited.

[0008] An advantage of the invention is that cross-machine direction shrinkage is not only inhibited during 25 passage of the web around the dryers but also around the vacuum guide rolls. Furthermore, the fact that the vacuum guide rolls are of a diameter considerably less than that of the dryers results in a joint run of the web and felt between the dryers and the guide rolls which is minimal so that the web is restrained against cross-machine direction shrinkage throughout most of the passage through the single-tier drying section.

[0009] The aforementioned sheet restraint reduces 30 edge curl and cockle and the graininess of the resultant sheet at the edges thereof. Furthermore, by the provision of such sheet restraint, the slice opening in the headbox is able to be more uniform and the cross direction fiber orientation profile is improved.

[0010] More specifically, various laboratory and mill 40 studies have been carried out in order to quantify the nonuniform cross directional sheet shrinkage which occurs during conventional drying processes. The aforementioned nonuniform shrinkage is responsible for non-uniformities in headbox slice profiles, in fiber orientation, and in the sheet elongation and tensile energy absorption.

[0011] Tensile energy absorption hereinafter referred 50 to as TEA is defined in "The Dictionary of Paper" Fourth Edition, published 1980, as the energy absorbed when a paper specimen is stressed to rupture under tension. It is expressed in energy units per unit area eg kg-cm/cm². It is useful in evaluating packaging materials subject to rough handling.

[0012] The continuous drying restraint has a direct effect on the finished sheet properties by controlling the

cross-directional elongation and TEA profiles. Additionally, such reduced shrinkage reduces the cockles and graininess of the sheet edges.

[0013] The aforementioned dictionary defines cockles as "a puckered condition of the sheet resulting from nonuniform drying and shrinking; it usually appears on paper that has had very little restraint during drying."

[0014] Furthermore, graininess is defined in the aforementioned dictionary as small variations in the surface appearance of a paper or board, resulting from any of a variety of causes, such as impressions of wires or felts, irregular distribution of color, and uneven shrinkage in drying.

[0015] Also, by restraining the sheet from cross direction shrinkage, the opening of the slice lip of the headbox may be maintained more uniform and an improved cross direction fiber orientation profile is obtained as stated more particularly hereinafter.

[0016] The process according to the invention provides a transfer of the web between dryers with positive support and restraining the sheet with fabric pressure and roll vacuum. The combination of the aforementioned arrangement has improved sheet threading, machine runability, and sheet properties.

[0017] In a conventional dryer section, the wet paper is dried by intermittent contact with cast-iron, steam heated dryers. The thermal contact between the paper and the dryer is maintained by tensioned dryer fabrics which apply a pressure to the paper as it wraps the dryer.

[0018] The aforementioned fabric pressure not only improves the drying contact, but also applies a restraint to the paper to prevent shrinkage from occurring. Such restraint, however, is repeatedly released as the sheet passes through the open draws between conventional dryer cylinders as described hereinbefore.

[0019] The fabric pressure continues to provide some restraint in the machine direction by maintaining a machine direction draw, but in the cross-machine direction, the paper is virtually unrestrained. The paper shrinks freely in the cross direction particularly at the edges and somewhat less so near the center of the web where the sheet is at least partly restrained by the outer portions.

[0020] Such nonuniform cross-machine shrinkage gives rise to nonuniform cross-directional sheet properties such as stretch, TEA and tensile.

[0021] Stretch is defined in the aforementioned dictionary as "the elongation corresponding to the point of rupture in a tensile strength measurement; it is usually expressed as a percentage of the original length."

[0022] The high cross-directional edge shrinkage also aggravates the susceptibility of the sheet to edge cockle, curl and graininess.

[0023] The aforementioned dictionary defines curl as "the curvature developed when one side of a paper specimen is wetted; it was formerly used as a measure of the degree of sizing."

[0024] The lack of shrinkage restraint also increases the hygroexpansivity and can also have an adverse ef-

fect on fiber orientation. Hygroexpansivity is defined in "The Dictionary of Paper" as "the change in dimension of paper that results from a change in the ambient relative humidity; it is commonly expressed as a percentage and is usually several times higher for the cross direction than for the machine direction. This property is of great importance in applications where the dimensions of paper sheets and cards or construction board (wallboard, acoustical tile, etc.) are critical."

[0025] In various mill trials, the first phase of such study was directed at quantifying the nonuniformity on commercial paper machines and then determining the effect that the nonuniform shrinkage has on the machine operation and on the finished sheet properties.

[0026] The cross-directional sheet shrinkage was determined by metering fine drops of ink onto the stock as it discharged from the slice lip of the headbox. The distance between marks at the wet end were then compared to the distances at the dry end to determine the cross-directional shrinkage profile.

[0027] Results for a fine paper machine are discussed hereinafter. The shrinkage was found to be highly non-uniform, and in fact almost parabolic. As expected, the highest shrinkage was found to occur at the edges, where the sheet has the least cross-directional restraint and the sheet shrinkage was the lowest near the center where the paper was at least partly restrained by the outer portions.

[0028] A cross-directional paper sample was then tested in the laboratory to determine the variations in sheet properties and these results are discussed in greater detail hereinafter. Such results show the machine direction stretch is very uniform in the cross direction because it is controlled by the machine direction draws. However, the cross-directional stretch is very nonuniform which appears to be a direct reflection of the cross-directional shrinkage. In other words, the highest stretch occurs at the edges where the sheet has experienced the greatest shrinkage.

[0029] The machine direction and cross direction tensile strength profiles were also measured for the same sample.

[0030] Tensile strength is defined in the aforementioned dictionary as "the maximum tensile stress developed in a specimen before rupture under prescribed conditions; it is usually expressed as force per unit width of the specimen."

[0031] As discussed hereinafter, the machine direction tensile was fairly uniform, again being affected in part by the machine direction draw which does not vary in the cross direction. However, the cross direction tensile profile is nonuniform and exhibits a slight hyperbolic configuration. The lowest tensile occurs near the sheet edges, again where the cross-direction shrinkage was the greatest.

[0032] From the aforementioned tests, it is also evident that an increase in cross-direction restraint, as experienced near the center of the machine, causes a re-

duction in stretch with a corresponding increase in tensile strength. Since the cross-direction tensile varies in the cross direction, while the machine direction tensile remains fairly uniform, the tensile ratio also varies, with the highest ratio occurring at the edges.

[0033] The tensile ratio is the ratio of the tensile in the cross direction to the tensile in the machine direction and will be discussed in detail hereinafter.

[0034] The TEA profiles were also measured for the sample. The cross-direction profile reflected the nonuniformity in cross-direction stretch. The TEA profile, however, does not exhibit quite as much variation as the cross-direction stretch, because the loss in stretch near the machine center is greatly offset by the increase in tensile strength.

[0035] The increased shrinkage which occurs near the edges also has an adverse effect on headbox performance. In order to produce a level basis weight profile at the reel, the slice opening must be closed down near the edges. Such closing down near the edges of the slice opening reduces the basis weight at the edges to compensate for the higher shrinkage which occurs near the edges. Such reduction in basis weight causes the paper to go through the press section and earlier dryer sections with light edges which eventually heavy up as the edges shrink.

[0036] Basis weight is defined in the aforementioned dictionary as "the weight in pounds of a ream cut to a specified basis size. The number of sheets in a ream is usually 500."

[0037] The aforementioned nonuniform slice opening is known to cause a distortion of the fiber orientation by inducing cross flows.

[0038] The fiber orientation was determined for the aforementioned sample by measuring the sonic modulus profile as discussed hereinafter. The fiber orientation is indicated as the angle of the primary axis of the modulus envelope from the machine direction. A positive angle indicates the fibers are oriented towards the back side of the web and a negative angle indicates the fibers are oriented towards the front side.

[0039] The fibers are all oriented towards machine center line as would be expected because the slice opening is closed down near the edges to compensate for edge shrinkage.

[0040] The aforementioned advantages obtained by restrained drying of the web are reflected in considerable commercial advantages over webs produced in non-restrained drying sections.

[0041] A vacuum level of 1.49 to 1.99 kPa (6 to 8 inches water column) in the vacuum rolls is essentially equal to the restraint which is applied by the dryer fabric. Such vacuum level is also the level which is required for positive sheet restraint.

[0042] An embodiment of the present invention will be evident from the detailed description contained herein-after taken in conjunction with the various figures of the drawings and graphs in which:-

5 Figure 1 is a side-elevational view of a typical prior art double-felted dryer section;

10 Figure 2 is a graph showing the percentage of shrinkage from the front to the back edge of the sheet;

15 Figure 3 is a graph comparing sheet elongation profiles in a machine direction and a cross-machine direction;

20 Figure 4 is a graph comparing the sheet tensile strength profiles in a machine direction and cross-machine direction;

25 Figure 5 is a graph showing the sheet tensile ratio profile from the front to the back edge of the sheet;

30 Figure 6 is a graph showing the sheet tensile energy absorption profiles from the front to the back edge of the sheet for the machine direction and the cross-machine direction respectively;

35 Figure 7 is a graph showing the dry weight of a sheet from the front to the back edge thereof;

40 Figure 8 shows a slice profile of a headbox with the opening profile configured such that a dry weight is obtained as shown in figure 7;

45 Figure 9 is a graph showing sheet fiber orientation profile from the front to the back edge of the sheet;

50 Figure 10 is a graph comparing machine direction to cross-machine direction shrinkage and the effects thereon of sheet vacuum restraint on such sheet shrinkage;

Figure 11 is a graph similar to that shown in figure 9 but showing the effect of sheet vacuum restraint on sample stretch;

Figure 12 is a graph showing the effect of sheet vacuum restraint on sample tensile strength;

Figure 13 is a graph showing the effect of sheet vacuum restraint on sample TEA;

Figure 14 is a side-elevational view of a single felt dryer-section or serpentine run or Uno-run dryer section;

Figure 15 is a side-elevational view of a TOTAL BEL RUN® single tier dryer section as described in EP-A-0345266 and EP-A-0345291;

Figure 16 is a graph showing sample shrinkage characteristics in a machine direction and in a cross-machine direction respectively;

Figure 17 is a graph showing the effect of restrained compared to nonrestrained on hygroexpansivity;

Figure 18 is a copy of a photomicrograph showing the surface of a freely dried sheet; and

Figure 19 is a photomicrograph showing the surface of a restraint dried sheet.

[0043] Similar reference characters refer to similar parts throughout the various embodiments shown in the drawings.

[0044] 55 Figure 1 is a side-elevational view of a typical double-felted dryer section generally designated 10 including dryers 11 and 12 of an upper tier generally designated 13. The dryer section 10 also includes lower dry-

ers 14 and 15 of a lower tier generally designated 16. The web W extends in sinusoidal configuration past dryers 14, 11, 15 and 12 respectively so that alternate sides of the web are dried as they come into contact with the respective external surfaces 17, 18, 19 and 20 of dryers 14, 11, 15 and 12. An upper felt 21 extends around a guide roll 22 and then around dryer 11. The upper felt 21 then extends around a further guide 23 and the upper dryer 12. Similarly, a lower felt 24 after extending around dryer 14 extends around a lower guide roll 25 and dryer 15 and then around a further lower guide roll 26.

[0045] Although this prior art dryer section provides sheet restraint during passage around the respective upper and lower dryers 11, 12, 14 and 15, the web is unsupported and therefore unrestrained against shrinkage during transit of the web W between for example dryers 14 and 11. Such unsupported web is known in the art as an open draw 27. Because the web W is unsupported during transit through the open draws 27, cross-machine direction shrinkage of the web occurs with the attendant edge curl, graininess, and edge cockles.

[0046] Figure 2 is a graph showing the results for a fine paper machine wherein the shrinkage was found to be highly nonuniform with the graph being almost parabolic. As expected, the highest shrinkage was found to occur at the edges where the sheet has the least cross-directional restraint and the sheet shrinkage was the lowest near the center where the paper was at least partly restrained by the outer portion. In the graph of figure 2, the x axis includes readings taken from the front edge to the back edge of the sample web and the amount of shrinkage is shown as a percentage of the initial width.

[0047] Figure 3 is a graph showing a cross-directional paper sample tested in the laboratory to determine the variations in sheet properties. As shown in figure 3, the machine direction and cross-machine direction sheet strength profiles are demonstrated. The machine direction stretch is very uniform in the cross direction because it is controlled by the machine direction draws. However, the cross-machine direction stretch is very nonuniform as shown by the graph. From a comparison of the graph 28 with the graph 29 of the machine direction, it appears there is a direct reflection of the cross-direction shrinkage, that is the highest stretch occurs at the edges where the sheet has experienced the greatest shrinkage.

[0048] The graph shown in figure 4 includes a graph of the sheet tensile strength profiles for the cross-machine direction 30 and the graph for the machine direction 31. The machine direction tensile as shown in figure 4 is fairly uniform again being affected in part by the machine direction draw which does not vary in the cross-direction. The cross-direction tensile profile, however, is nonuniform. It exhibits a slight "frown" or hyperbolic shape. The lowest tensile occurs near the sheet edges again where the cross-machine direction shrinkage was

the greatest.

[0049] From the above data it is clearly demonstrated that an increase in cross-machine direction restraint, as experienced near the center of the machine causes a reduction in stretch with a corresponding increase in tensile strength. Since the cross-machine direction tensile varies in the cross direction, while machine direction tensile remains fairly uniform, the tensile ratio also varies with the highest ratio occurring at the edges as shown by the tensile ratio graph 32 shown in figure 5.

[0050] Figure 6 shows two graphs 33 and 34. Graph 33 demonstrates the sheet TEA profile in a machine direction where graph 34 shows the sheet TEA profile for the cross-machine direction.

[0051] The TEA profiles also measured for the same sample. The cross-machine direction profile shown in figure 6 reflects the nonuniformity in the cross-machine direction stretch. The TEA profile, however, does not exhibit quite as much variation as the cross-machine direction stretch because the loss in stretch near the machine center is partly offset by the increase in the tensile strength.

[0052] Figure 7 is a graph 35 showing the dry weight of a sample sheet from the front to the back edge thereof.

[0053] Figure 8 is a graph showing the slice profile required in order to obtain the result shown in figure 7. As shown in figure 8 the slice openings are reduced at the respective edges in order to obtain a relatively uniform resultant web after shrinkage.

[0054] The fiber orientation was determined for the sample by measuring the sonic modulus profile. The profile is shown in figure 9 which is a graph from the front to the back of the sheet. The graph indicates actual readings whereas the graph 36 shows the average orientation. The fiber orientation is indicated as the angle of the primary axis of the modulus envelope from the machine direction. A positive angle indicates that the fibers are oriented towards the back side, and a negative angle indicates that the fibers are oriented towards the front side.

[0055] In the sample used, the fibers were all oriented towards the machine center line, as expected, because the slice opening was closed down near the edges to compensate for edge shrinkage.

EXAMPLES:

[0056] Numerous hand sheet trials in the laboratory were performed which indicated that increased sheet restraint during drying produces a reduction in stretch, an increase in tensile strength, and an increase in modulus.

[0057] In the trial, instead of using hand sheets, the samples were manufactured on pilot two-wire machines at commercial speeds. These sheets were then freely dried on a dryer fabric which was supported by a vacuum box. Separate sheets were dried with different levels of vacuum in the box to provide different levels of sheet

shrinkage restraint.

[0058] With no vacuum in the box, the machine made sheet was able to shrink unrestrained. The total machine direction shrinkage was about 1% and the total cross-machine direction shrinkage was nearly 7%, as shown in figure 10. However, as the vacuum level (drying restraint) was increased, there was a progressive decrease in shrinkage.

[0059] The corresponding sheet properties for these samples are shown in figures 11 to 13 for stretch, tensile, and TEA. The same trends are seen in these properties as indicated by the mill trials. The increased cross-machine direction restraint (experienced by the center samples of the commercial machine and induced by the vacuum box in the laboratory studies) caused similar changes in the finished sheet properties.

[0060] More specifically, figure 10 shows the effect of sheet vacuum restraint on sheet shrinkage for machine directions as shown by graph 37 and for cross-machine direction as shown by graph 38.

[0061] Figure 11 shows the effect of sheet vacuum restraint on sample stretch and shows graph 39 for the machine direction and graph 40 for the cross-machine direction.

[0062] Figure 12 shows the effect of sheet vacuum restraint on sample tensile strength with the machine direction graph 41 and the cross-machine direction 42.

[0063] Figure 13 shows the effect of sheet vacuum restraint on sample TEA with graph 43 indicating machine direction and graph 44 showing cross-machine direction.

[0064] In order to achieve a level weight profile without a nonuniform slice opening, and in order to produce a sheet with uniform cross-direction property profiles, it is necessary to control the cross-machine direction shrinkage. Since the shrinkage occurs as the moisture is removed, the majority of the shrinkage takes place in the open draws where the water flashes. In order to reduce the shrinkage, the open draws must be replaced by a means of positive restraint as exemplified in EP-A-0345266 and EP-A-0345291.

[0065] A common commercial arrangement for eliminating open draws is the single felt or serpentine dryer section shown in figure 14.

[0066] In figure 14 dryers 100, 101 and 102 constitute an upper tier generally designated 103 whereas dryers 104 and 105 constitute a lower tier 106. A joint run of the web WA and felt F extends in serpentine configuration respectively around the dryers 100, 104, 101, 105 and 102. Although blow boxes 107 and 108 draw the web towards the felt during transit of the web between dryers, such vacuum is insufficient to cause any appreciable restraint of the web. Although this arrangement does eliminate the open draws, it does not replace the open draws with positive restraint and it dries the sheet from one side only.

[0067] Figure 15 shows the TOTAL BEL RUN@ arrangement disclosed in EP-A-0345266 and EP-A-

0345921 including dryers 200, 201 and 202 arranged as a single tier generally designated 203. Interposed between the dryers 200 and 201 is a vacuum guide roll 204. Furthermore, another guide roll 205 is disposed between the dryers 201 and 202. In this design the bottom ineffective dryers of the serpentine section shown in figure 14 have been eliminated and replaced with vacuum rolls 204 and 205. Two-sided drying is maintained in this arrangement by alternating between top-felted and bottom-felted single tier sections as shown in EP-A-0345266 and EP-A-0345921.

[0068] The intermediate vacuum rolls 204 and 205 of the aforementioned single tier section 203 act much like the fabric vacuum box used in the afore-mentioned laboratory studies. This vacuum maintains the restraint which is applied by the dryer fabric pressure as the sheet is transferred between dryers.

[0069] The vacuum which is induced by conventional serpentine blow boxes is typically only 24.9 to 49.81 Pa (0.1 to 0.2 inches water column) and is clearly inadequate to provide significant shrinkage restraint as shown from figure 9. Additionally, this low level vacuum does not extend around the entire bottom dryer. With the long sheet length between top dryers, the sheet is left unrestrained for a significant portion of the drying cycle in the conventional serpentine dryer section.

[0070] A vacuum level of 1.49 to 1.99 kPa (6 to 8 inches WC) in the vacuum rolls is essentially equal to the restraint which is applied by the dryer fabric. It is also the vacuum level which is required for positive sheet restraint as indicated in figure 9.

[0071] In order to achieve the same property improvements on a commercial machine as those achieved in the above laboratory studies, the drying restraint must be applied in those sections where the sheet is shrinking the most. Specific laboratory tests were made on the pilot machine samples to determine the natural or unrestrained shrinkage characteristics. The results for one of these samples is shown in figure 16.

[0072] In figure 16 for the particular furnish, the machine direction and cross-machine direction shrinkage as indicated by graphs 300 and 301 respectively, shrinkage is very low as the sheet is dried from 40 to 60 percent dry. Once the sheet reaches 60% dry, the shrinkage increases and continues at a high rate until the sheet is essentially dry.

[0073] The serpentine and single tier dryers without vacuum guide rolls have been applied to the wet end of the dryer section. This has been done in order to improve runability. However, based on the results of figure 16, the single tier dryer section should be applied near the dry end of the machine. For improved paper properties for best runability and sheet quality, the single tier dryer section configuration should be applied to the entire dryer section.

[0074] In addition to the aforementioned improvements in sheet quality resulting from sheet restraint during drying, recent work has indicated that sheets dried

under restraint exhibit a significant reduction in hygroexpansivity. These results shown in figure 17, show that the sheet is more stable when it is dried under restraint and also that the sheet hygroexpansivity is virtually unaffected by changes in sheet density, that is from pressing and fines content as a result of the fining.

[0075] A sheet which is dried under a restraint is significantly different from one which is dried freely.

[0076] The reduction in shrinkage also reduces the susceptibility of the sheet to develop curl, cockle, and grainy edges. These sheet defects are all induced by hygroexpansivity and aggravated by nonuniformities in Z direction by the density, filler distribution, fines distribution, and fiber orientation. By reducing the hygroexpansivity, these defects can be greatly reduced or eliminated. Figure 17 shows the effect of restraint on hygroexpansivity, the upper graphs 400, 401 and 402 representing freely dried sheets and the graphs 403, 404 and 405 representing sheets dried under restraint.

[0077] The photomicrographs shown in figures 18 and 19 compare the fiber surface characteristics of a sheet taken from the center of the machine that is under partial cross-machine direction restraint to a sheet taken from the edges with unrestrained cross-machine direction. These micrographs show the same reduction in fiber kinks and caliper as seen in laboratory dried samples.

[0078] In summary, the cross-directional sheet shrinkage which occurs during the drying process is highly nonuniform. This nonuniform shrinkage directly affects the cross-machine direction stretch, tensile, modulus and TEA profiles. The greatest shrinkage occurs near the edges. In order to achieve a level basis weight profile at the reel, the headbox slice opening must be reduced near the edges to recompensate for the edge shrinkage. The nonuniform shrinkage thereby indirectly affects fiber orientation and a single tier dryer section with intermediate vacuum rolls can be used to control the cross-machine direction shrinkage. Vacuum levels in the intermediate rolls or guide rolls in the range 1.49 to 1.99 kPa (6 to 8 inches WC) will continue the restraint applied by the dryer fabric pressure and substantially reduce the edge shrinkage.

[0079] This control of shrinkage will produce more uniform cross-direction property profiles, allow the slice opening to remain level, reduce the cross-machine direction variations in fiber orientation and minimize any tendency for curl, cockle or grainy edges to develop. Also, the web is restrained during transfer between drying sections.

Claims

1. A process for the restrained drying of a paper web extending successively through a wet end and a dry end of a dryer section of a papermaking machine, said dryer section comprising a single-tier drying section (203) for drying the web during movement

of the web downstream relative to the wet end of the dryer section, said process comprising the steps of:

5 moving the paper web and a dryer felt contiguously to each other such that the web and felt wrap a portion of heated surfaces of a plurality of rotatable dryers (200, 201, 202) of said single-tier drying section (203) such that the web is disposed between the felt and the heated surfaces of said dryers;

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

flächen einer Vielzahl an drehbaren Trocknern (200, 201,202) des einreihigen Trockenabschnitts (203) umschlingen, derart, daß die Bahn zwischen dem Filz und den erhitzen Oberflächen der Trockner angeordnet ist;

Leiten der Bahn und des Filzes in Anlage miteinander um eine Vielzahl an Saugleitwalzen (204,205) des einreihigen Trockenabschnitts (203) herum, wobei jede Saugleitwalze der Vielzahl an Saugleitwalzen zwischen benachbarten Trocknern der Vielzahl an Trocknern (200,201,202) angeordnet ist, derart, daß die Bahn von dem Filz während des Laufs der Bahn zwischen den Trocknern und den Saugleitwalzen gestützt wird, wobei die Anordnung so getroffen ist, daß der Filz zwischen der Bahn und den Saugleitwalzen angeordnet ist, wenn die Bahn und der Filz einen Teil der Oberfläche der Saugleitwalze umschlingen; und

Verbinden der Saugleitwalzen (204,205) mit einer Unterdruckquelle, derart, daß ein Unterdruck an der Bahn durch den Filz hindurch angelegt wird, wenn die Bahn und der Filz sich um die Saugleitwalzen schlingen, derart, daß die Bahn in enge Anlage an den Filz gezogen wird, wenn sich die Bahn und der Filz um die Saugwalzen herum schlingen; wobei ein Unterdruckniveau von 1,49 bis 1,99 kPa (6 bis 8 Zoll WS) in den Saugleitwalzen (204,205) angelegt wird, um die sich die Bahn bewegt, wenn sie einmal eine Trockenheit von annähernd 60% erreicht hat und bis sie im wesentlichen trocken ist, so daß die Schrumpfung der Bahn quer zur Maschinenrichtung während des Trocknens der Bahn im trockenen Ende der Trockenpartie gehemmt ist.

5

10

15

20

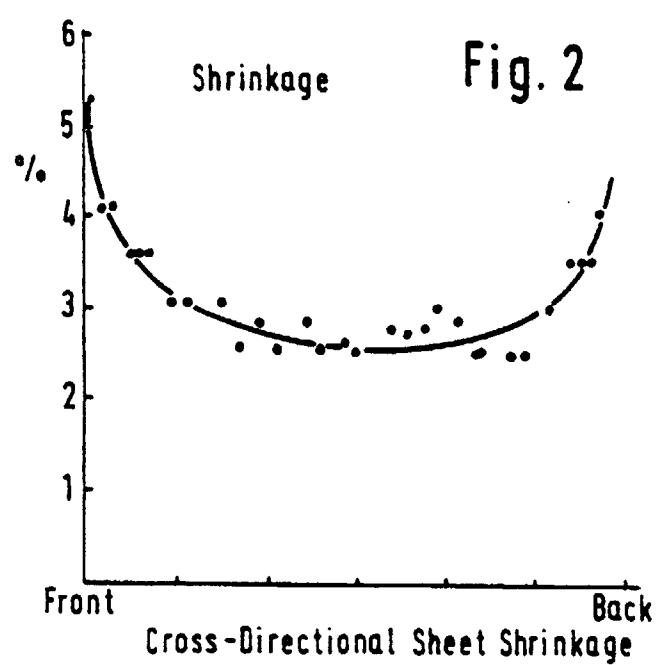
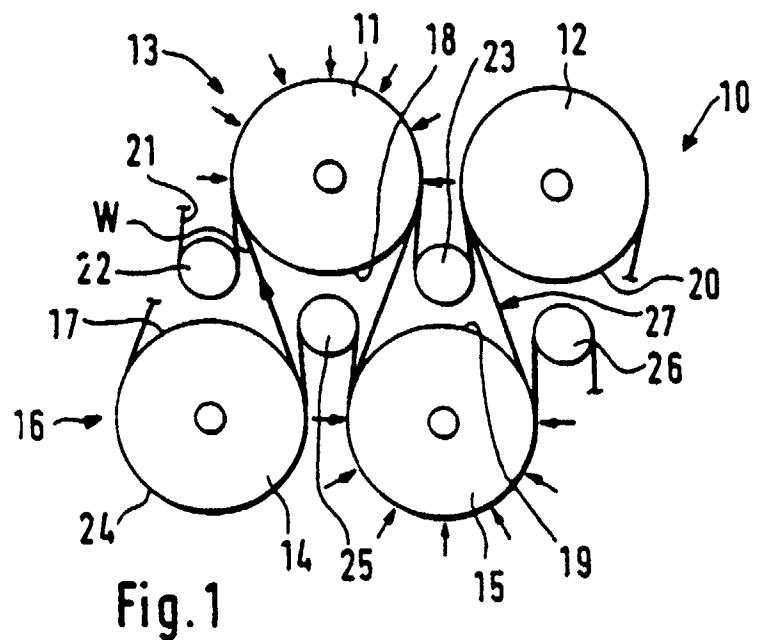
25

30

35

40

45



50

55

chauffée, à guider ensuite la nappe et le feutre, contigus l'un à l'autre, autour d'une pluralité de cylindres de guidage à vide (204,205) de la section de séchage à un seul étage (203), chaque cylindre de guidage à vide de la pluralité de cylindres de guidage à vide étant disposé entre des cylindres sécheurs voisins de la pluralité de cylindres sécheurs (200,201,202), de telle façon que la nappe soit supportée par le feutre pendant le passage de la nappe entre le cylindre sécheur et les cylindres de guidage, l'agencement étant tel que le feutre soit disposé entre la nappe et les cylindres de guidage lorsque la nappe et le feutre sont enroulés autour d'une partie de la surface des cylindres de guidage à vide et à connecter les cylindres de guidage à vide (204,205) à une source de vide de telle façon qu'un vide soit appliqué à la nappe, à travers le feutre, lorsque la nappe et le feutre sont enroulés autour des cylindres de guidage à vide, si bien que la nappe est aspirée de manière à être en conformité étroite avec le feutre lorsque la nappe et le feutre sont enroulés autour des cylindres de guidage à vide, caractérisé en ce qu'un niveau de vide allant de 1,49 à 1,99 kPa (de 6 à 8 Pouces de colonne d'eau) est appliqué dans les cylindres de guidage à vide (204,205) autour desquels se déplace la nappe une fois qu'elle a atteint un état sec d'environ 60% et jusqu'à ce qu'elle soit essentiellement sèche si bien qu'un rétrécissement de la nappe dans le sens travers de la machine, pendant le séchage de la nappe dans l'extrémité sèche de la section de sécherie, est empêché.

Revendications

1. Procédé pour le séchage restreint d'une nappe de papier s'étendant successivement à travers une extrémité humide et une extrémité sèche d'une section de sécherie d'une machine à papier, cette section de sécherie comprenant une section de séchage à un seul étage (203) pour sécher la nappe pendant le mouvement de cette nappe vers l'aval par rapport à l'extrémité humide de la section de sécherie, ce procédé comprenant les étapes consistant à déplacer la nappe de papier et un feutre sécheur en les maintenant contigus l'un à l'autre, de telle façon que la nappe et le feutre enveloppent une portion de surfaces chauffées d'une pluralité de cylindres sécheurs rotatifs (200,201,202) de la section de séchage à un seul étage (203) de telle façon que la nappe soit disposée entre le feutre et la surface

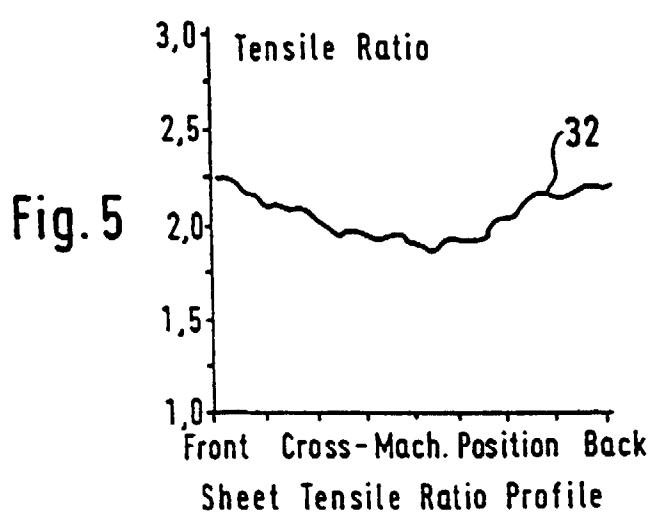
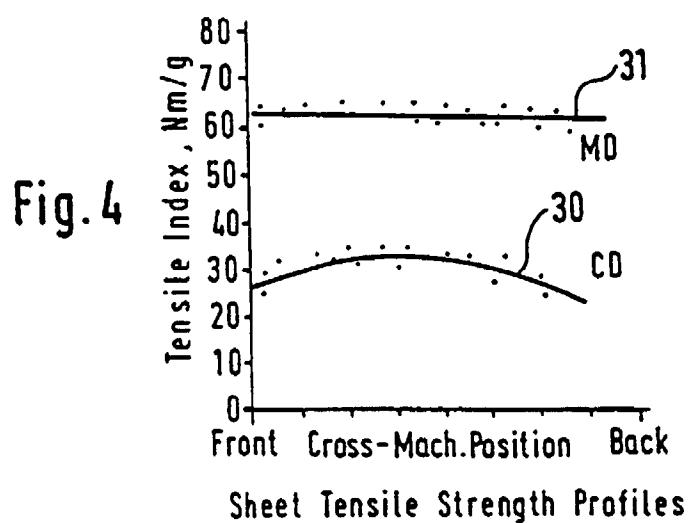
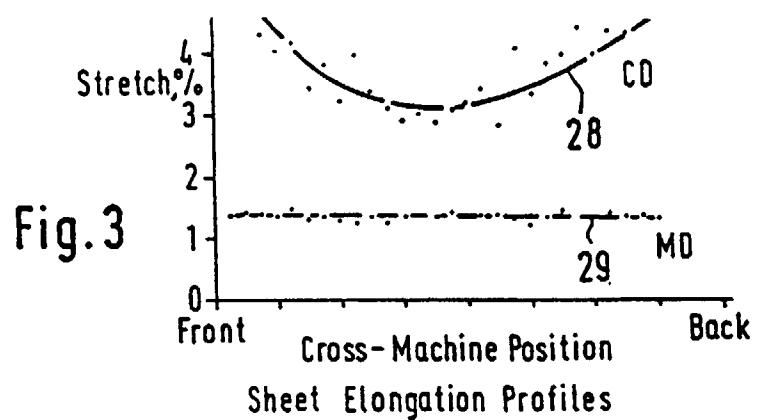




Fig. 6

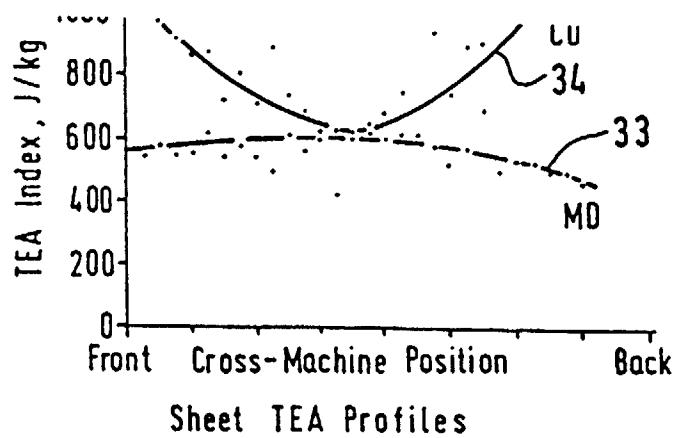


Fig. 7

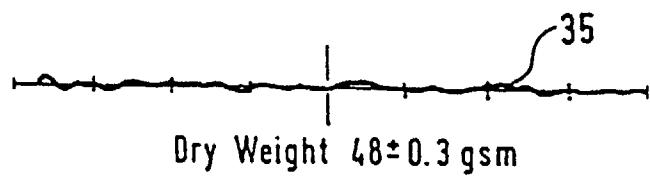


Fig. 8

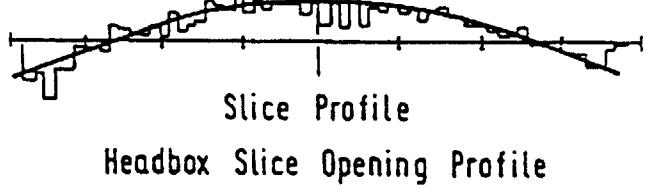


Fig. 9

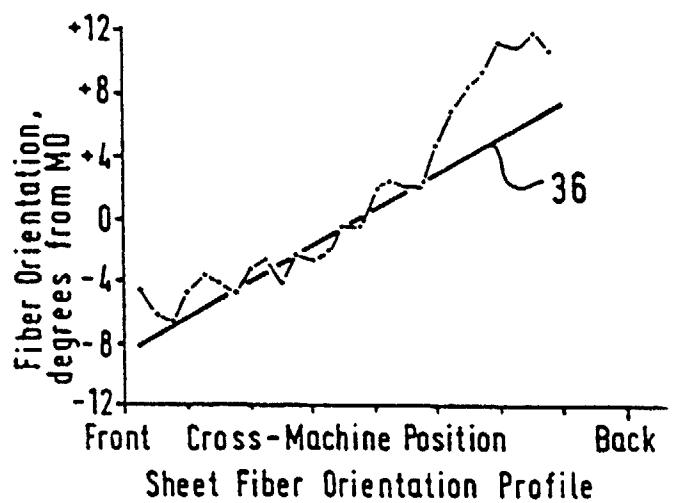


Fig. 10

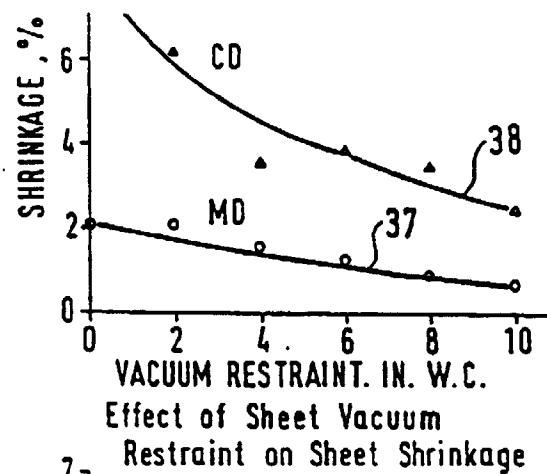


Fig. 11

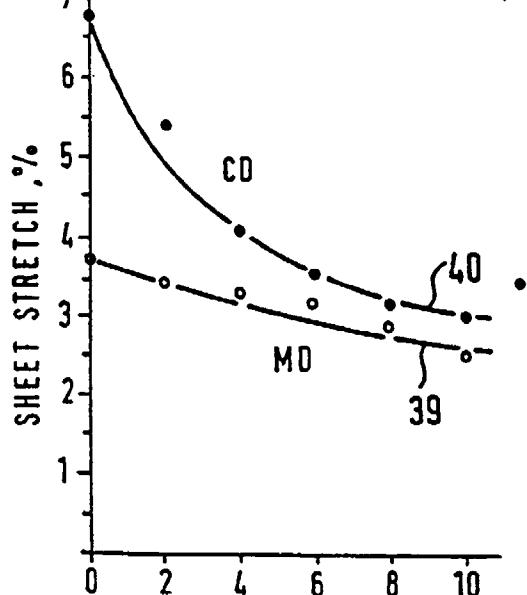
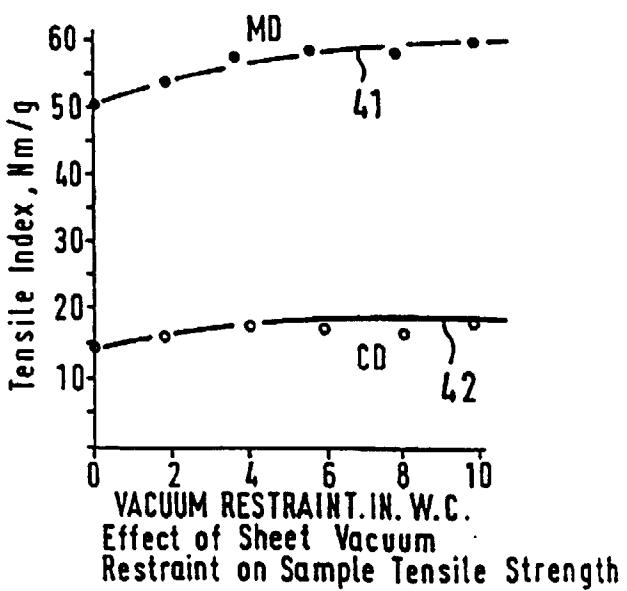



Fig. 12

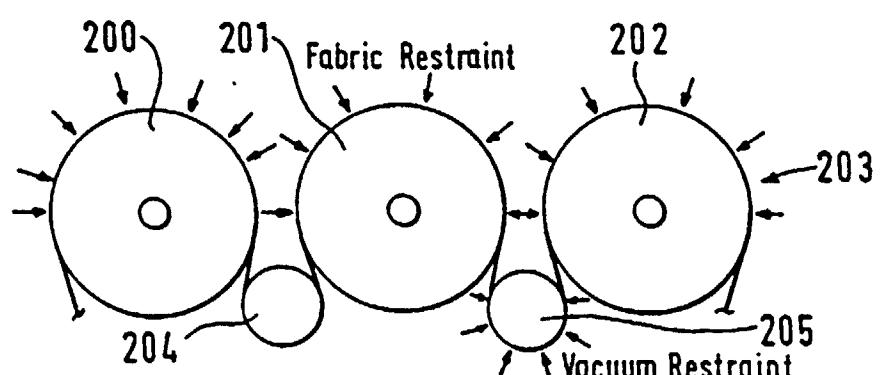
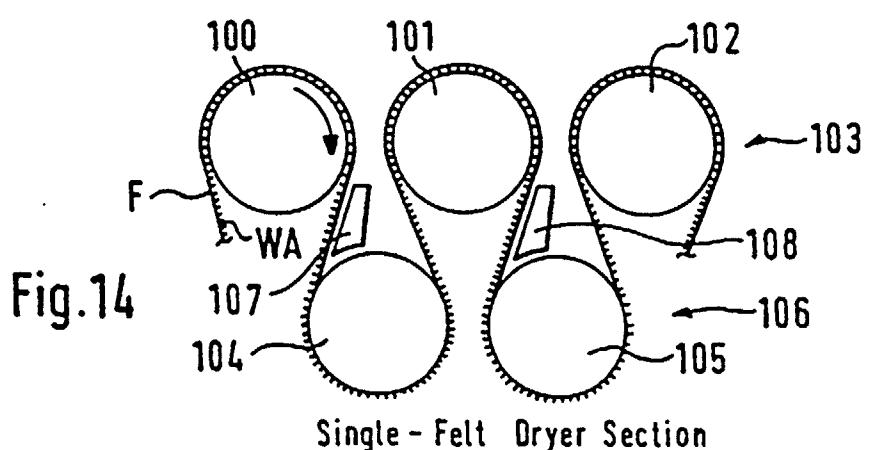
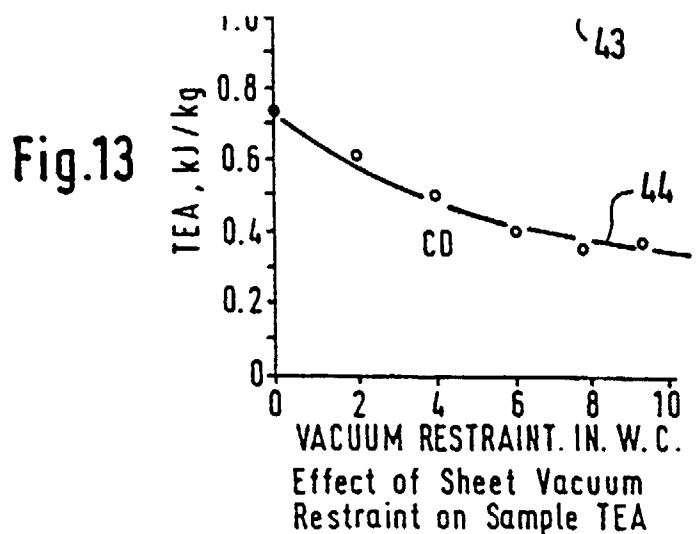




Fig.15 Beloit BelRun Single-Tier Dryer Section

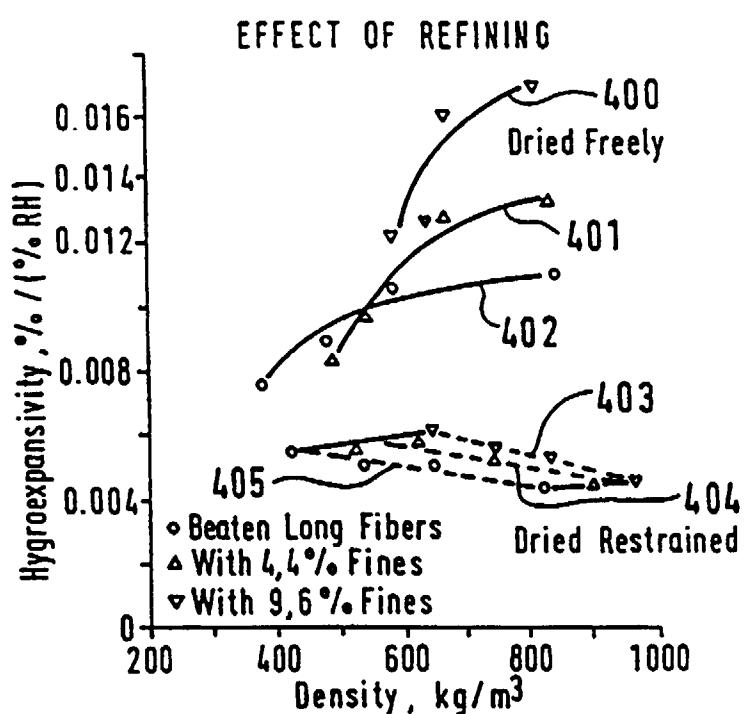
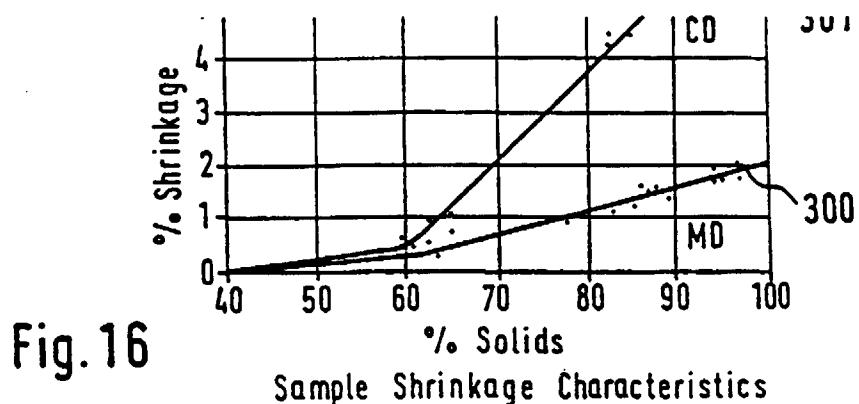



Fig. 17 Effect of Restraint on Hygroexpansivity (2)

FIG. 18

FIG. 19