[0001] The present invention relates to an ultra-low resistivity heterofilm which has a
hetero-structure.
[0002] EP-A-0165111 discloses the fabrication of conductive films from organic polymers.
[0003] According to the present invention there is provided an ultra-low resistivity heterofilm
having a hetero-structure composed of Z type or A type polarized and Y type non-polarized
Langmuir Blodgett dielectric films stacked on one another and sandwiched between conductive
films, the ultra-low resistivity heterofilm having a resistivity value not higher
than that of metal in the direction of the film surface thereof at a temperature not
lower than room temperature; and
wherein the potential well is generated in the inside of the heterofilm and the
potential well is filled with an electron gas so as to form a two dimensional conductive
plane.
[0004] According to the present invention there is further provided a method of manufacturing
an ultra-low resistivity heterofilm having a potential well generated inside it, the
potential well being filled with an electron gas so as to form a two dimensional conductive
plane, the method comprising the steps of:
forming an insulating film on a silicon wafer; forming a thin evaporated Al film on
the insulating film;
forming a thin heterofilm on the thin evaporated Al film, the thin heterofilm being
composed of Z-type or A-type polarized and Y-type non-polarized Langmuir Blodgett
dielectric films stacked on one another; and forming a thin evaporated Au film on
the heterofilm.
[0005] The polarized film(s) may be stacked on the non-polarised film(s) or vice-versa and
the hetero-structure sandwiched between conductive films so that the resistance of
the film in the direction of the film surface becomes much lower than that of metal
films.
[0006] Generally, a dielectric is also an insulator. A dielectric material according to
the invention which shows a resistivity much lower than metals at a temperature no
lower than room temperature has nor previously existed.
[0007] As produced according to the invention, if a two-dimensional potential well having
a depth of several tens of Angstroms (Å) can be formed by polarised and non-polarised
heterofilms and the potential well filled with an electron gas, generation of a two-dimensional
low resistivity potential well can be expected.
[0008] It is necessary to form a two-dimensional electrically-conductive well having a depth
of several nanometers (tens Å) filled with an electron gas and to produce a structure
in which the two-dimensional conductive well is sandwiched between dielectric films.
[0009] The Z-type or A-type LB film can be used as a polarized film. It has large polarization
substantially the same as saturation polarization of a ferroelectric even if no voltage
is applied. In order to form a uniform potential well over a large area, it is necessary
to smooth a surface on which a film is deposited. To this end, a SiO₂ film on a silicon
wafer can be used. Also, Ta₂O₅ film, ZrO₂ film, glass substrate, and plastic substrate
can be used.
[0011] Fig. 1 is a schematic view showing an embodiment of the dielectric ultralow resistivity
heterofilm according to the present invention; Fig. 2 is a sectional view taken on
line II-II of Fig. 1; Fig. 3 is a schematic view of the resistance measurement of
the ultralow resistivity heterofilm according to the present invention; Fig. 4 is
a view showing the voltage drop characteristics of the ultralow resistivity heterofilm
according to the present invention; Fig. 5 is a view showing the voltage characteristics
of a sample in which the ultralow resistivity heterofilm according to the present
invention is not existing; Fig. 6 is a view showing the resistance characteristics
of the ultralow resistivity heterofilm according to the present invention; Fig. 7
is a view showing a comparison of the resistivity between the ultralow resistivity
heterofilm according to the present invention and metal; Fig. 8 is a view showing
the temperature characteristics of the ultralow resistivity heterofilm according to
the present invention; and Fig. 9 is a view showing the switching characteristics
of the ultralow resistivity heterofilm according to the present invention.
[0012] Next, referring to the accompanying drawings, description will be made as to examples
of the dielectric ultralow resistivity heterofilm according to the present invention.
[Example 1]
[0013] In this example, first, a thin evaporated film 3 of aluminum is formed on a silicon
wafer 1 having, on its surface, an insulating SiO₂ film 2 (thickness: about 500 nm
(5000Å)) as shown in Figs. 1 and 2. The thickness and width of the evaporated Al film
3 are several tens nm (hundreds Å) and 10 mm respectively, and the resistance value
thereof measured across its opposite ends separated away by 30 mm from each other
is about 600 Ω. Next, the evaporated Al film 3 is coated, by an LB method, with an
LB heterofilm 4 which is composed of an arachidic acid LB film 4-a constituted by
4-6 single molecular layers and an LB film 4-b of 2-pentadecyl-7,7',8,8'-tetracyanoquino-dimethane
(C₁₅·TCNQ) constituted by 4-6 single molecular layers. Further, the LB heterofilm
4 is coated with a thin evaporated film 5 of gold so that the dielectric ultralow
resistivity heterofilm having a structure of [Al / LB heterofilm / Au] is formed with
respect to the perpendicular to the LB heterofilm 4 according to the present invention.
In this ultralow resistivity heterofilm, the evaporated Al film and Au film are short-circuited
so that potentials of the Al and Au films are maintained in equipotentially. Finally,
nine gold electrodes 6 are evaporated on the Au film 5, as the measurement terminals.
Here, the arachidic acid LB film (non-polarized Y-type film) shows very small polarization,
while the LB film of C₁₅·TCNQ (polarized Z-type film) shows large polarization.
[0014] Fig. 3 shows a circuit for measuring resistivity by using a four-point probe technique.
A current is made to flow into/from a power source 8 through the outermost pair of
electrodes 6-1 and 6-9 of the nine gold electrodes formed, through evaporation, on
the dielectric ultralow resistivity heterofilm of the present invention, and a voltage
drop
v across another pair of electrodes 6-a and 6-b is measured by a voltmeter 10 to thereby
obtain the resistance value of the dielectric ultralow resistivity heterofilm across
the electrodes 6-a and 6-b. In this case, the internal resistance of the voltmeter
10 is sufficiently high, and therefore the voltage drop
v across the electrodes 6-a and 6-b can be accurately measured. An ammeter 9 measures
a current I flowing across the outermost electrodes 6-1 and 6-9. Since the insulating
SiO₂ film 2 is so thick to be 500 nm (5000Å) as to have a very good insulating property,
the current flowing across the electrodes 6-1 and 6-9 passes through the very thin
evaporated Al film 3, the LB heterofilm 4, and the evaporated Au film 5. The resistance
value R of the foregoing thin film across the electrodes 6-a and 6-b separated about
3.3 mm can be obtained through the following expression (1).

[0015] Fig. 4 shows voltage drops among nine electrodes with currents of 0.16, 0.55 and
1.1 A as parameters, measured with respect to samples (Si-5L) of the dielectric ultralow
resistivity heterofilm using the LB heterofilm constituted by the arachidic acid LB
film and the C₁₅·TCNQ LB film each constituted by five single molecular layers (5L)
according to the present invention. As seen in the figure, across the electrodes 6-2
through 6-8, the voltage drop is generally small, and when the voltage drop across
adjacent electrodes is converted into a resistance value by using the expression (1),
the resistance value is about 10⁻ to 10⁻³Ω while the value varies slightly depending
on specific positions of the adjacent electrodes. On the other hand, the voltage drop
is large across the electrodes 6-1 and 6-2 and across the electrodes 6-8 and 6-9,
which may be caused by the contact resistance between the electrode and the LB film.
[0016] Fig. 5 shows voltage drops measured with respect to samples (Si-0L) in which only
the LB heterofilm is eliminated from the sample shown in Figs. 1 and 2. The voltage
drop generated when each of three kinds of currents I, that is, I=0.026A (0L-1), I=0.013A
(0L-2), and I=0.0026 (0L-3), was made to flow was proportional to a distance from
an electrode 6-7 when the measurement was performed from the electrode 6-7. Across
the outermost electrodes 6-1 and 6-7, the resistance is about 28 Ω and the resistance
value across adjacent electrodes is 4.4 Ω. This resistance value is substantially
equal to that of the evaporated film of Al/Au just underneath the electrodes.
[0017] Fig. 6 shows a comparison of the resistance value across adjacent electrode terminals
obtained from the results of Figs. 4 and 5 between the Si-0L having no LB heterofilm
and Si-3L, Si- 4L, and Si-5L each having the LB heterofilm. The resistance value is
reduced to 10⁻³ times only by interposition of the LB film having only a thickness
of 18,9 nm (189Å)(Si-3L), 252Å (Si-4L), or 31,5 nm (315Å) (Si-5L) between the Al and
Au evaporated films. This fact shows that the current passes in the inside of the
surface of the very thin LB heterofilm.
[0018] Since the thickness of the LB heterofilm is known, the resistivity of the LB heterofilm
can be obtained from the thickness, the width of the electrode, and the interval between
the electrodes. Fig. 7 shows the values of the resistivity plotted with respect to
the current flowing in the LB film. The values within a range of 10⁻⁸ to 10⁻⁹ Ωcm
were obtained, and each of the values was 10
-3 ∼ 10⁻⁴ times the illustrated value of metal (M) (about 10⁻⁵ Ωcm).
[0019] From the experiments described above, it has been found that the dielectric heterofilm
having the LB film according to the present invention has a resistance value much
lower than that of metal.
[Example 2]
[0020] The resistivity of the dielectric heterofilm constituted by the LB films according
to the present invention hardly changes in a range of from the room temperature to
about 80 °C. Fig. 8 shows an example as to the sample of Si-4L. The temperature of
the silicon substrate was measured a thermocouple. The resistivity is about 8.6 x
10⁻⁸ Ωcm (4L-1). The temperature rise is caused by heat generated from the sample
in a way of making an applied voltage high. Also, current values at various temperatures
are shown (4L-2). From this experiment, it can clearly be seen that no current passes
the silicon wafer of the substrate. This is because the resistivity of silicon rapidly
decreases with temperature and therefore if the current passes in the silicon wafer,
the resistivity cannot be kept constant as illustrated in the drawing but it must
decrease with the temperature.
[Example 3]
[0021] A current of about 1A is flowing in the LB ultralow resistivity heterofilm according
to the present invention as shown in Fig. 8, and if converted, the current value corresponds
to a current density having a large value of 400,000 A/cm. Further, at this time,
the temperature rises to 80 °C as shown in Fig. 8. This LB heterofilm, however, was
never damaged. Moreover, even if the applied voltage was further increased in order
to increase the current, a switching phenomenon as shown in Fig. 9 was caused to thereby
rapidly decrease the current, and the current did not increase more.
[0022] Fig. 9 shows an example of the switching phenomenon, and shows a current I (5L-8)
and a voltage drop (5L-9) between the adjacent electrode terminals 6-8 and 6-9, with
respect to an applied voltage V. As apparent form the drawing, the current rapidly
falls from 1.3A to 3 x 10⁻⁴A, and at the same time the voltage drop rises to 15.5V.
The voltage drop is substantially equal to a voltage applied from the power source
to the sample at this point of time. If the applied voltage is lowered, the current
rapidly increases again (at the point of the applied voltage of 2V) so as to return
to the original value. At the same time, also the resistance value decreases so as
to return to the original one. That is, as the applied voltage increases/decreases,
the current changes through a course of 0-a-b-c-d-a-0, and, on the other hand, the
voltage drop changes through a course of 0-e-f-b-g-h-a-e-0. Such a switching phenomenon
was generated even when the experiment was repeated again and again. Further, the
same phenomenon was observed also with respect to the sample of Si-4L.
[0023] Various applications in the future of the dielectric ultralow resistivity heterofilm
using the LB films according to the present invention can be considered. Finally,
the characteristics of the heterofilm according to the present invention are summarized
in Table 1. All the characteristics are values obtained at a temperature not lower
than room temperature.
Table 1
material |
Si-3L |
Si-4L |
Si-5L |
Thickness of LB heterofilm [Å] |
189 |
252 |
315 |
Resistance between two adjacent electrodes (width 10mm, distance 3.3mm) [Ω] |
0.024 |
0.012 |
0.0037 |
|
0.0004 |
0.001 |
Resistivity of LB heterofilm [Ωcm] |
1.5x10⁻⁷ |
8.5x10⁻⁸ |
3.9x10⁻⁸ |
|
3.4x10⁻⁹ |
1.0x10⁻⁸ |
Switching current [A] |
|
0.91 |
1.3 |
Maximum current density [A/cm] |
2.4x10⁴ |
3.6x10⁵ |
4.1x10⁵ |
1. An ultra-low resistivity heterofilm having a hetero-structure composed of Z type or
A type polarized (4-a) and Y type non-polarized (4-b) Langmuir Blodgett dielectric
films stacked on one another and sandwiched between conductive films (3,5), the ultra-low
resistivity heterofilm having a resistivity value not higher than that of metal in
the direction of the film surface thereof at a temperature not lower than room temperature;
and
wherein the potential well is generated in the inside of the heterofilm and the
potential well is filled with an electron gas so as to form a two dimensional conductive
plane.
2. A heterofilm as claimed in claim 1, wherein the conductive films (3,5) are short-circuited
to maintain the potentials thereof in equipotential.
3. A heterofilm according to claim 1 or claim 2, the ultra-low resistivity heterofilm
being formed on an insulating film (2).
4. A heterofilm according to claim 1, wherein the insulating film is at least one of
SIO₂ film, TA₂O₅ film, ZrO₂ film, glass substrate, and plastics substrate.
5. A heterofilm having a potential well below the Fermi-level of Al and Au due to:
a silicon wafer (1) on which an insulating film (2) is formed;
a thin evaporated Al film (3) formed on the insulating film;
a heterofilm (4) according to any of the preceding claims, formed on the thin evaporated
Al film; and
a thin evaporated Au film (5) being formed on the heterofilm.
6. A method of manufacturing an ultra-low resistivity heterofilm having a potential well
generated inside it, the potential well being filled with an electron gas so as to
form a two dimensional conductive plane, the method comprising the steps of:
forming an insulating film (2) on a silicon wafer (1);
forming a thin evaporated Al film (3) on the insulating film;
forming a thin heterofilm (4) on the thin evaporated Al film, the thin heterofilm
being composed of Z-type or A-type polarized (4-a) and Y-type non-polarized (4-b)
Langmuir Blodgett dielectric films stacked on one another; and forming a thin evaporated
Au film (5) on the heterofilm.
7. A method according to claim 6, further comprising the step of: shorting the Al film
(3) and Au (5) film to maintain the potentials thereof in equipotential.
1. Ein Heterofilm mit extrem niedrigem, spezifischem Widerstand, der eine Hetero-Struktur
aufweist, die auspolarisierten (4-a) Z-Typ oder A-Typ und nichtpolarisierten (4-b)
Y-Typ Langmuir Blodgett dielektrischen Filmen zusammengesetzt ist, die übereinander
gestapelt und zwischen leitenden Filmen (3,5) eingefügt sind, wobei der Heterofilm
mit extrem niedrigem, spezifischem Widerstand einen spezifischen Widerstandswert nicht
größer als derjenige von Metall in der Richtung der Filmoberfläche davon bei einer
Temperatur aufweist, die nicht niederer als Raumtemperatur ist; und
wobei die Potentialsenke im Inneren des Heterofilms erzeugt wird und die Potentialsenke
mit einem Elektronengas so gefüllt ist, daß sie eine zweidimensionale, leitende Ebene
gebildet wird.
2. Ein Heterofilm, wie in Anspruch 1 beansprucht, wobei die leitenden Filme (3, 5) kurzgeschlossen
sind, um deren Potentiale auf Gleichpotential zu halten.
3. Ein Heterofilm, gemäß Anspruch 1 oder Anspruch 2, wobei der Heterofilm mit extrem
niedrigem, spezifischem Widerstand auf einem isolierenden Film (2) geformt ist.
4. Ein Heterofilm, gemäß Anspruch 1, wobei der isolierende Film wenigstens einer von
einem SiO₂ Film, einem Ta₂O₅ Film, einem ZrO₂ Film, einem Glassubstrat und einem Kunststoffsubstrat
ist.
5. Ein Heterofilm, der eine Potentialsenke unterhalb des Fermi-Niveaus von Al und Au
aufweist, aufgrund:
eines Siliciumwafers (1), auf dem ein isolierender Film (2) geformt ist;
eines dünnen aufgedampften Al Films (3), der auf dem isolierenden Film geformt ist;
eines Heterofilms (4) gemäß irgendeinem vorhergehenden Ansprüche, der auf dem dünnen,
aufgedampften Al Film geformt ist; und
eines dünnen, aufgedampften Au Films (5), der auf dem Heterofilm geformt ist.
6. Ein Verfahren zum Herstellen eines Heterofilms mit extrem niedriegem, spezifischem
Widerstand, der eine Potentialsenke aufweist, die innerhalb von ihm erzeugt ist, wobei
die Potentialsenke mit einem Elektronengas so gefüllt wird, daß eine zweidimensionale,
leitende Ebene gebildet wird, wobei das Verfahren die Schritte umfaßt:
Bilden eines isolierenden Films (2) auf einem Siliciumwafer (1);
Bilden eines dünnen, aufgedampften Al Films (3) auf dem isolierenden Film;
Bilden eines dünnen Heterofilms (4) auf dem dünnen, aufgedampften Al Film, wobei der
dünne Heterofilm aus polarisierten (4-a) Z-Typ oder A-Typ und nichtpolarisierten (4-e)
Y-Typ Langmuir Blodgett dielektrischen Filmen zusammengesetzt ist, die aufeinander
geschichtet sind;
und Bilden eines dünnen, aufgedampften Au Films (5) auf dem Heterofilm.
7. Ein Verfahren gemäß Anspruch 6, das ferner den Schritt umfaßt: Kurzschließen des Al
Films (3) und des Au (5) Films,um deren Potentiale auf Gleichpotential aufrechtzuerhalten.
1. Film hétérogène à très basse résistivité, présentant une structure hétérogène composée
de films diélectriques de Langmuir Blodgett, polarisés de type Z ou de type A (4-a)
et non polarisés de type Y (4-b), empilés l'un sur l'autre et pris en sandwich entre
des films conducteurs (3,5), le film hétérogène à très basse résistivité présentant
une valeur de la résistivité non supérieure à celle d'un métal selon la direction
de sa surface de film à une température non inférieure à la température ambiante;
et
dans lequel le puits de potentiel est généré à l'intérieur du film hétérogène et
le puits de potentiel est rempli d'un gaz d'électrons de façon à former un plan conducteur
bidimensionnel.
2. Film hétérogène selon la revendication 1, dans lequel les films conducteurs (3, 5)
sont mis en court-circuit pour maintenir leurs potentiels à un niveau équipotentiel.
3. Film hétérogène selon la revendication 1 ou 2, le film hétérogène à très faible résistivité
étant formé d'un film isolant (2).
4. Film hétérogène selon la revendication 1, dans lequel le film isolant est au moins
l'un des suivants, film SIO₂, film TA₂O₅, film ZrO₂, substrat de verre et substrat
de plastique.
5. Film hétérogène présentant un puits de potentiel inférieur au niveau d'énergie de
Fermi de Al et de Au dû à:
une microplaquette de silicone (1) sur laquelle un film isolant (2) est formé;
un fin film Al (3) formé, par vaporisation sous vide, sur le film isolant;
un film hétérogène (4) conforme à l'une quelconque des revendications précédentes,
formé sur le fin film Al formé par vaporisation sous vide, et
un fin film Au (5) formé, par vaporisation sous vide, sur le film hétérogène.
6. Procédé de fabrication d'un film hétérogène à très basse résistivité présentant un
puits de potentiel généré en son intérieur. le puits de potentiel étant rempli d'un
gaz d'électrons de façon à former un plan conducteur bidimensionnel. procédé comportant
les étapes consistant à:
former un film isolant (2) sur une microplaquette de silicium (1);
former un fin film Al (3), par vaporisation sous vide, sur le film isolant;
former un fin film hétérogène (4) sur le fin film (Al) formé par vaporisation sous
vide, le fin film hétérogène étant composé de films diélectriques de Langmuir Blodgett,
polarisés de type Z ou de type A (4-a) et non polarisés de type Y (4-b), empilés l'un
sur l'autre; et former un fin film Au (5), par vaporisation sous vide, sur le film
hétérogène.
7. Procédé selon la revendication 6, comportant en outre l'étape consistant à: mettre
en court-circuit le film Al (3) et le film Au (5) pour maintenir leurs potentiels
à un niveau équipotentiel.