

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 429 725 A1

⑫

EUROPEAN PATENT APPLICATION

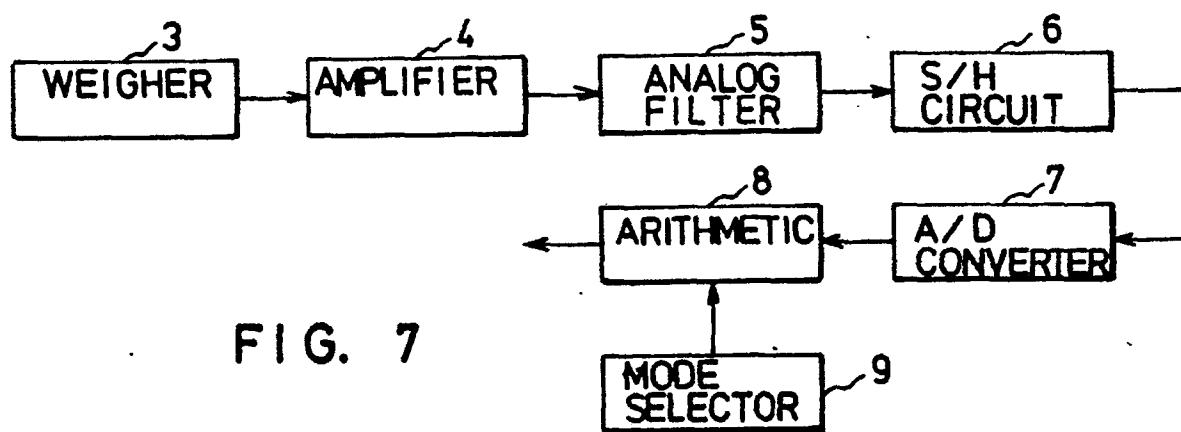
⑬ Application number: **89312423.0**

⑮ Int. Cl.⁵: **G01G 3/14, G01G 23/06,
H03H 17/02**

⑯ Date of filing: **29.11.89**

⑭ Date of publication of application:
05.06.91 Bulletin 91/23

⑰ Applicant: **YAMATO SCALE COMPANY,
LIMITED
5-22, Saenba-cho
Akashi-shi Hyogo-ken(JP)**


⑯ Designated Contracting States:
CH DE FR GB IT LI Bulletin 7

⑰ Inventor: **Inoue, Shinichi
3-1-30, Utashikiyama
Tarumi-ku Kobe(JP)**

⑰ Representative: **Lerwill, John et al
A.A. Thornton & Co. Northumberland House
303-306 High Holborn
London, WC1V 7LE(GB)**

⑯ Device and method for filtering weight indicative signal from weighing device.

⑯ A digital filter or an equivalent device for filtering a weight signal provided by a weighing device to remove undesirable oscillatory components caused by mechanical vibration of the weighing device, which is constructed to have a plurality of notch frequencies in its transfer characteristic within and/or near the frequency range including such undesirable oscillatory components by utilizing the principle of transfer function of multiplex progressing averages of a series of sample values extracted from the weight signal.

FIG. 7

BACKGROUND OF INVENTION

This invention relates to a device and a method for filtering a weight indicative electric signal (hereinunder referred to as "weight signal") to remove undesirable components therefrom. More specifically, this invention relates to a device and a method for enabling removal of oscillatory components attributable to external forced vibration from the ground or floor in addition to conventional undumped inherent oscillatory components attributable to the structure of weigher.

The weight signal produced from a weighing device such as strain gauge load cell or force balance generally includes various undesirable components attributable to inherent vibration of the device, loading shock and likes in addition to a d.c. component indicative of the true weight of product to be weighed. The frequency characteristic of such weigher has a shape as shown in Figure 1(a) and a peak frequency 5 indicative of a feature of the inherent vibration is a frequency band 1 in unloaded condition, while it is shifted to a lower frequency band 2 in loaded condition. In order to remove these undesirable components, therefore, three frequency ranges a, b and c may be provided as shown with reference to this frequency distribution to filter the weight signal by a filtering device having a frequency-versus-attenuation characteristic as shown in Figure 1(b). A skillful filtering system which enables this proceeding has been disclosed in 10 the Japanese patent opening gazette No. 62-280625 and the Australian patent No. 578,181 of the same applicant as this application and the U.S. patent No. 4,817,026 assigned to this applicant. In this system, as 15 shown in Figure 2, an analog weight signal from a weigher 3 is amplified by an amplifier 4, filtered by an analog filter 5 and then supplied to a sample-and-hold circuit 6 to be sampled therein at a predetermined sampling frequency. A series of sampled weight signal output is digitized by an analog-to-digital (A/D) 20 converter 7 and supplied to an arithmetic circuit 8. The analog filter 5 is adapted to previously remove noises relating to the sampling frequency (above a half of the sampling frequency). The following operation is applied to a series of input digital weight values D_1, D_2, D_3, \dots in the arithmetic circuit 8.

As shown in Figure 3, the successive weight values D_1 to D_{n_1} (D_1 to D_{10} in Fig. 3) are averaged and the resultant average is indicated as M_1 . Next, the successive weight values D_2 to D_{n_1+1} (D_2 to D_{11} in Fig. 25 3) are averaged and the resultant average is indicated as M_2 . A similar averaging operation is repeated to obtain a time-series of averages M_1, M_2, M_3, \dots as shown in Figure 3. Such series of averages are referred to as "moving (or progressive) averages of the first order" and the number n_1 (10 in Fig. 3) is referred to as their "averaging number". Next, the successive averages M_1 to M_{n_2} (M_1 to M_{11} in Fig. 30 3), M_2 to M_{n_2+1} (M_2 to M_{12} in Fig. 3) and so on are sequentially averaged to obtain a second time-series of averages M_1, M_2, M_3, \dots as shown. This series of averages are referred to as "moving (or progressive) averages of the second order" and the number n_2 (11 in Fig. 3) is referred to as their "averaging number". By repeating a similar operation, moving averages M_i ($i = 1, 2, 3, \dots$) of r -th order having the averaging number n_i can be calculated successively. Such operation is referred to as "multiplexing of moving (or progressive) averages".

35 As well known in the field of digital filters, the transfer function of the moving averages of the first order is expressed by the following equation.

$$40 G(j\omega) = \frac{\sin(\frac{1}{2}n_1\omega T)}{n_1 \sin(\frac{1}{2}\omega T)} e^{-j\omega \frac{n_1-1}{2}T} \quad (1)$$

The former part of this equation is representative of the amplitude characteristic and the latter exponential 45 part thereof is representative of the phase delay. In the equation, T denotes the sampling interval or period and ω equals to $2\pi f$ where f denotes the oscillation frequency. The amplitude characteristic is therefore rewritten as follows.

$$50 |G| = \frac{\sin(n_1 \pi f T)}{n_1 \sin(\pi f T)} = \frac{\sin \varphi}{n_1 \sin(\varphi/n_1)} \quad (2)$$

where $\phi = n_1 \pi T f$

Accordingly, the amplitude becomes zero when ϕ equals $N\pi$ where N is a positive integer excluding zero. Therefore, if $f_{n1} = 1/n_1 T$, the zero amplitude occurs at frequencies Nf_{n1} . This feature is shown in Figure 4 where the averaging number is assumed as ten (10). The frequencies Nf_{n1} ($N = 1, 2, \dots$) are referred to as "notch frequencies". Thus, it is understood that the moving average operation executed by the arithmetic circuit 8 functions as a filter having an attenuation band above about a half of frequency f_{n1} and notch frequencies representative of the zero amplitude appearing at integral multiples of f_{n1} .

Similarly, the amplitude characteristic of the moving averages of the third order is expressed by the following equation.

10

$$|G| = \frac{1}{n_1 n_2 n_3} \frac{\sin(\pi n_1 T f) \sin(\pi n_2 T f) \sin(\pi n_3 T f)}{\sin^3(\pi T f)} \quad (3)$$

15

This characteristic is shown in Figure 5 where $n_1 = 10$, $n_2 = 11$ and $n_3 = 12$. In the drawing, the three notches of f_{n3} , f_{n2} and f_{n1} exhibiting attenuation above 70dB correspond to the frequency range b of Figures 1(a) and (b) and the range above 20Hz exhibiting attenuation of at least about 40dB corresponds to the frequency range c. The attenuation degrades with decrease of the frequency in the transition range below 16Hz corresponding to the frequency range a. As described above, the resonance components of inherent vibration of the weigher and various undesirable components attributable to shock and likes including frequency components above the intermediate portion of the range a can be filtered out substantially completely by suitably selecting the order number r and the averaging number n_1, n_2, \dots in accordance with the above-cited prior art system.

20

The object of removal in the prior art is the inherent oscillatory components within the frequency range of about 20Hz to 50Hz which is attributable to the structure of the weighing device itself, while this frequency range was found thereafter to be better revised as 15Hz to 50Hz. However, it has been found that, in a highly accurate and sensitive weighing device, especially, in the case of using a weighing unit having a relatively large tare, some of the oscillatory components attributable to external forced vibration acting to the device from the ground or floor have very low frequencies such as 3Hz to 8Hz and such components may be insufficiently filtered to cause a problem when they are too much. While the strength of such oscillatory components of very low frequency necessarily varies with the external condition, addition of a separate filter effective to this frequency range will result in a problem of degradation of signal response and consequent reduction of weighing power of the weigher.

25

Accordingly, an object of this invention is to provide improved device and method for filtering a weight signal, which enables to change the attenuation in accordance with the external condition to remove the above-mentioned very low frequency components in the frequency region a of Figure 1(b) as maintaining the frequency band having the attenuation characteristic of the prior art as shown in the same drawing.

40

Summary of Invention

According to this invention, there is provided a device for filtering a weight signal of a weighing device, having in a first frequency range an attenuation band for attenuating undesirable components including oscillatory components determined by the weighing range of the weighing device or strong resonance components caused by the weighing device and, further in a second frequency range lower than the first frequency range an oscillatory component attributable to the external vibration. The device comprises means for sampling the weight signal to provide a series of sample signals and arithmetic means for arithmetically processing the sample signals according to a transfer characteristic and the transfer characteristic corresponds to a transfer function of multiplexed moving averages of the sample signals. The arithmetic means includes means for selecting the averaging numbers of the respective orders of the moving averages to provide a plurality of notch frequencies within the first frequency range and, as a feature of this invention, means for changing the averaging number corresponding to at least one of the orders of the moving averages to produce a plurality of notch frequencies separate from those in the first frequency range within and near the second frequency range.

The means for changing the averaging number may be a selective input device which, for example, stores several predetermined averaging numbers and read one of them in accordance with selection of the operator to supply it to the arithmetic means. The arithmetic means may be a computer as disclosed in the

above-cited prior art and a digital filter including a variable coefficient multiplier and effecting an operation equivalent to the above-mentioned moving average multiplexing operation.

These and other objects and features of this invention will be described in more detail below about its embodiments with reference to the accompanying drawings.

5

Brief Description of Drawings

In the drawings:

10 Figures 1(a) and (b) are explanatory diagrams of the principle of the prior art filtering system on which this invention is based;

Figure 2 is a block diagram representing a configuration of the prior art filtering system;

Figure 3 is a diagram representing a schema of the moving average multiplexing operation;

15 Figure 4 is a diagram representing an example of the transfer function of moving averages;

Figure 5 is a diagram representing an example of the filtering characteristic of the prior art filtering system;

Figure 6 is an explanatory diagram of the principle of the filtering system according to this invention;

Figure 7 is a block diagram representing a configuration of the filtering device according to this invention;

20 Figure 8 is a block diagram representing a first embodiment of the filtering device according to this invention;

Figures 9 and 10 are explanatory diagrams of the filtering characteristic of the filtering device according to this invention;

Figure 11 is a block diagram representing a general configuration of a second embodiment of the filtering device according to this invention;

25 Figures 12 and 13 are block diagrams representing circuit configuration of the second embodiment;

Figure 14 is a block diagram representing an alternative modification of the circuit of Figure 12;

Figure 15 is a block diagram representing an alternative modification of the circuit of Figure 13; and

Figure 16 is a block diagram representing a circuit configuration of a third embodiment of the filtering device according to this invention.

30 Throughout the drawings, same reference numerals are given to corresponding structural components.

Description of Preferred Embodiments

35 The principle of the above-mentioned device of this invention is to selectively change the inclination of the attenuation in the low frequency range a of the filtering characteristic of Figure 1(b) as shown by A , A' and A'' , thereby expanding the filtering range as shown by a , a' and a'' , while maintaining the attenuation in the higher frequency ranges b and c as shown in Figure 6. In the device of this invention, therefore, the arithmetic circuit 8 of the prior art device of Figure 2 is provided with a mode selector device 9 which

40 enables to selectively change the averaging number of the moving average multiplexing operation in at least one of the orders thereof as shown in Figure 7. In the following embodiments, it is assumed, as an example, that the moving averages of weight samples at a sampling frequency $T = 1/155$ second are calculated to the fourth order and that the value of the averaging number n_1 of the first order can be specified arbitrarily among four values 14, 21, 28 and 35 and the averaging numbers n_2 , n_3 and n_4 of the second, third and

45 fourth orders are fixed to 8, 9 and 10, respectively.

Assuming now that the sample data as $D_1, D_2, \dots, D_i, \dots$, the moving averages of n_1 of them (first order) as ${}_1M_1, {}_1M_2, \dots, {}_1M_i, \dots$, the moving averages of n_2 of them (second order) as ${}_2M_1, {}_2M_2, \dots, {}_2M_i, \dots$, the moving averages of n_3 of them (third order) as ${}_3M_1, {}_3M_2, \dots, {}_3M_i, \dots$ and the moving averages of n_4 of them (fourth order) as ${}_4M_1, {}_4M_2, \dots, {}_4M_i, \dots$, then, the following relation is obtained among the averages of

50 respective orders.

$$1M_{i+1} = 1M_i + \frac{D_{i+1}}{n_1} - \frac{1M_{i-n_1+1}}{n_1} \quad (4a)$$

5

$$1M_{i+1} = 2M_i + \frac{1M_{i+1}}{n_2} - \frac{1M_{i-n_2+1}}{n_2} \quad (4b)$$

10

$$3M_{i+1} = 3M_i + \frac{2M_{i+1}}{n_3} - \frac{2M_{i-n_3+1}}{n_3} \quad (4c)$$

15

$$4M_{i+1} = 4M_i + \frac{3M_{i+1}}{n_4} - \frac{3M_{i-n_4+1}}{n_4} \quad (4d)$$

20

While the left side of the equation 4a, $4M_{i+1}$, becomes the filtered output, a configuration of the arithmetic circuit 8 for effecting these operation is shown in Figure 8. In the drawing, 10, 11, 12 and 13 denote shift registers having n_1 , n_2 , n_3 and n_4 stages, respectively, and 14 denotes a shift register of a single stage. As n_1 is variable as described above, the number of stages of the shift register 10 is made 35, the maximum of 25 n_1 , and the taps of the 14th, 21st, 28th and 35th stages (generalized by D_{i-n_1+1} in the drawing) can be arbitrarily selected by the mode (n_1) selector 9. 15, 16, 17 and 18 denote arithmetic units for effecting the operations of the equations 4a, 4b, 4c and 4d, respectively. A series of sample data D_{i+1} are applied to the first shift register 10 and successively shifted rightwards and, then, the earliest sample data D_{i-n_1+1} is supplied to the arithmetic unit 15 from the specified n_1 -th stage. The arithmetic unit 15 is also supplied with 30 the current sample data D_{i+1} of the shift register 10 and the output $1M_i$ of the first stage of the second shift register 11 to calculate the moving averages $1M_{i+1}$ from these inputs. The calculated moving averages $1M_{i+1}$ are input to the second shift register as new data. The second arithmetic unit 16 also calculates $2M_{i+1}$, the movingh average of the second order, from $1M_{i+1}$, the calculated moving average, $1M_{i-n_2+1}$, the earliest data from the second shift register 11 and $2M_i$, the output of the first stage of the third shift register 35 12. It is understood that the shift registers for the respective orders and the corresponding arithmetic units repeat thereafter a similar operation and finally calculate $4M_{i+1}$, the moving average of the fourth order.

The frequency transfer function H according to the above operation is given by the following equation.

$$H(j\omega) = H_1(j\omega) \times H_{234}(j\omega) \quad (5)$$

where H_1 is the frequency transfer function of the moving averages of the averaging number n_1 and H_{234} is 40 the frequency transfer function of the moving averages of the third order of the averaging numbers n_2 , n_3 , and n_4 . They are expressed as follows with reference to the equations 1 and 3.

$$H_1 = \frac{1}{n_1} \frac{\sin(\pi n_1 Tf)}{\sin(\pi Tf)} e^{-j\pi Tf(n_1-1)} \quad (6)$$

$$H_{234} = \frac{1}{n_2 n_3 n_4} \frac{\sin(\pi n_2 Tf) \sin(\pi n_3 Tf) \sin(\pi n_4 Tf)}{\sin^3(\pi Tf)} \times e^{-j\pi Tf(n_2+n_3+n_4-3)} \quad (7)$$

55 The amplitude characteristic of the above H is shown in Figure 9 where n_1 is 14 and 28. As shown in the drawing, a plurality of notch frequencies are produced within the range b. More particularly, the notch frequencies f_2 , f_3 and f_4 produced by the averaging numbers n_2 , n_3 and n_4 are always fixed regardless of the value of the averaging number n_1 . In addition, where $n_1 = 14$, one notch frequency f_1 appears in the range a and another notch frequency $2f_1$ which is the second order of f_1 appears in the range b.

Accordingly, four notch frequencies $2f_1$, f_2 , f_3 and f_4 in total appear in the range b. When $n_1 = 28$, a notch frequency f_1 and its second order notch frequency $2f_1$ appear in the range a and its third and fourth order notch frequencies $3f_1$ and $4f_1$ appear in the range b. In this case, therefore, five notch frequencies $3f_1$, $4f_1$, f_2 , f_3 and f_4 in total appear in the range b, thereby providing the range b with stronger attenuation as compared with the case where $n_1 = 14$. Though not shown in the drawing, two (i.e., first and second order) notch frequencies appear in the range a and one third order notch frequency and three notch frequencies f_2 , f_3 and f_4 (i.e., four in total) appear in the range b when $n_1 = 21$, three (i.e., first, second and third order) notch frequencies appear in the range a and three notch frequencies f_2 , f_3 and f_4 and two other (i.e., fourth and fifth order) notch frequencies (i.e., five in total) appear in the range b when $n_1 = 35$. In other words, the attenuation in the range b is substantially raised when $n_1 = 21$, 28 or 35 as compared with the case where $n_1 = 14$ in this embodiment, and the raised attenuation is ensured in the range b for all of these averaging numbers. Figure 10 shows the low frequency range of this frequency characteristic with respect to four values of n_1 . It is well understood therefrom that the number of notch frequencies in the low frequency range increases with increase of n_1 , thereby increasing the attenuation and expanding the attenuation is maintained above 75.8dB over 15.5Hz to 22.14Hz in the range b and also above 59dB even in the range c, though the characteristics corresponding to $n_1 = 21$ and $n_1 = 35$ are not shown in Figure 9.

The frequency transfer functions of the equations 5, 6 and 7 can be transformed into time region and expressed in pulse transfer functions as follows.

20

$$H_1(z) = \frac{1}{n_1} \frac{(1-z^{-n_1})}{(1-z^{-1})} \quad (8)$$

25

$$= \frac{1}{n_1} [1+z^{-1}+z^{-2}+\dots+z^{-(n_1-1)}] \quad (8')$$

30

$$H_{234}(z) = \frac{1}{n_2 n_3 n_4} \frac{(1-z^{-n_2})(1-z^{-n_3})(1-z^{-n_4})}{(1-z^{-1})^3} \quad (9)$$

$$= \frac{1}{n_2 n_3 n_4} [1+b_1 z^{-1}+b_2 z^{-2}+\dots]$$

35

$$+b_{(n_2+n_3+n_4-3)} z^{-(n_2+n_3+n_4-3)} \quad (9')$$

$$H(z) = H_1(z) \times H_{234}(z)$$

40

$$= \frac{1}{n_1 n_2 n_3 n_4} \frac{(1-z^{-n_1})(1-z^{-n_2})(1-z^{-n_3})(1-z^{-n_4})}{(1-z^{-1})^4} \quad (10)$$

45

The equation 10 is expanded about Z as follows.

50

$$H(z) = \frac{1}{n_1 n_2 n_3 n_4} [1+b_1 z^{-1}+b_2 z^{-2}+\dots]$$

$$+b_{(n_1+n_2+n_3+n_4-4)} z^{-(n_1+n_2+n_3+n_4-4)} \quad (10')$$

55

where b_1 , b_2 , ... are weighting coefficients. These equations are equivalent to known finite impulse response (FIR) filters and, therefore, arithmetic operation of each transfer function can be effected substantially by a

digital filter. In this case, the decay of response due to multiplexed averaging operation is determined by the number of order of the highest order of Z and the sampling interval T as shown by the equation 10' and it is calculated as follows in this example.

$$(n_1 + n_2 + n_3 + n_4 - 4)T = (14, 21, 28, 35 + 8 + 9 + 10 - 4)/155$$

5 = 0.239, 0.284, 0.329 or 0.374 sec.

As shown in Figure 11, the operation of the equation 10 can be realized by constituting the arithmetic circuit 8 of Figure 7 with an averaging number selectable non-recursive filter 19 for the operation of the equation 8' and an averaging number fixed non-recursive filter 20 for the operation of the equation 9'. Hereinunder, the digital sample input and output of the former stage filter will be expressed respectively as $f(n)$ and $x(n)$ and the filtered output of the latter state filter will be expressed as $y(n)$.

10 Figure 12 shows an example of the non-recursive filter 19 in the former stage. In this example, thirty four (34) delay elements are connected in series and respective delayed outputs are supplied to a summer circuit 22 together with the original input as shown. In this case, the outputs of the fourteenth to twentieth stages, the outputs of the twenty-first to twenty-seventh stages and the outputs of the twenty-eights to thirty-fourth stages are supplied through gates 23, 24 and 25, respectively. The output of the summer 22 is applied to a coefficient multiplier 26 and multiplied by a coefficient equal to $1/n_1$ to complete the operation of the equation 8'. While the coefficient of the coefficient multiplier 26 is selected by the mode selector 9, the selector 9 is adapted also to control the gates 23, 24 and 25 at the same time in accordance with the following table. In the table, the binary code "1" indicates a closed circuit and the binary code "0" indicates an open circuit.

20

25	MODE	n1	GATE	GATE	GATE
			23	24	25
	1	14	0	0	0
	2	21	1	0	0
	3	28	1	1	0
	4	35	1	1	1

30

By comparing this table with Figure 12, it is understood that the arithmetic operation of the equation 8' is adequately executed with each value of n_1 .

35 Figure 13 shows an example of the non-recursive filter 20 in the latter stage. The filter 20 includes twentyfour (24) delay elements connected in series and its input and the outputs of the respective stages are supplied to a summer 29 through twentyfive (25) coefficient multipliers $28_0, 28_1, \dots, 28_{24}$, respectively, as shown. Each multiplier is adapted to store a coefficient as shown and multiplies thereby its input. It is readily understood that the operation of the equation 9' is effected by this circuit. Thus, the output $y(n)$ of the summer 29 becomes the output of the filtering device of this invention.

40 A modification of the non-recursive filter of Figure 12 is shown in Figure 14. Here, a delay element 30 of the fourteenth order and three delay elements 31, 32 and 33 of the seventh order are connected in series instead of the thirtyfour delay elements 21 of the first order and the outputs of the respective elements are supplied to an inverter 39 through four terminals 35, 36, 37 and 38 of a switch 34. The inverter 39 is adapted to multiply the input by -1 (to invert its phase) and supplies the result to an adder 40 to add to the original input $f(n)$. A non-recursive filter is constituted with these components. The sum output of the adder 40 is supplied to a coefficient multiplier 26 which is similar to that of Figure 12 and multiplied by a coefficient equal to $1/n_1$. The mode selector 9 is adapted to change the divisor n_1 of the coefficient multiplier 26 into 14, 21, 28 or 35 and also turn the switch 34 to corresponding one of the terminals 35, 36, 37 and 38 in accordance with the operator's selection. The output of the coefficient multiplier 26 is supplied to the recursive filter composed of an adder 41 and a delay element 42 of the first order. Putting $A = 1 - Z^{-1}$, $B = 1/n_1$ and $C = 1/(1 - Z^{-1})$ in the equation 8, then $H(Z) = ABC$ and it is understood that three equations of A , B and C are operated respectively by three dashed blocks A , B and C of Figure 14. It is also understood that the output of the recursive filter C is the filtered output $x(n)$.

55 Similarly, the equation 9' can be operated by a non-recursive/recursive filter of Figure 15 instead of the non- recursive filter of Figure 13. This filter is composed of three blocks of the same configuration and each block consists of a non-recursive section comprising delay element 44 of the n_2 -th, n_3 -th or n_4 -th order, an inverter 45 and an adder 46, a recursive section comprising elements 47 and 48 respectively corresponding to the elements 41 and 42 of Figure 14 and an intervening coefficient multiplier 50 having a coefficient $1/n_2$, $1/n_3$ or $1/n_4$. It is understood that the operations of the respective blocks correspond respectively to three

factors $(1-Z^{-n})/n(1-Z^{-1})$ where n equals n_2 , n_3 and n_4 .

Putting in the equation 10' as

$$n_1 + n_2 + n_3 + n_4 - 4 = m-1 \quad (11)$$

and

$$5 \quad K_0 = 1/n_1 n_2 n_3 n_4, \quad K_1 = b_1 / n_1 n_2 n_3 n_4,$$

$$K_2 = b_2 / n_1 n_2 n_3 n_4, \dots$$

$$K_{m-1} = b_{(m-1)} / n_1 n_2 n_3 n_4, \quad (12)$$

the equation can be rewritten as follows.

$$H(Z) = K_0 + K_1 Z^{-1} + K_2 Z^{-2} + \dots + K_{m-1} Z^{-(m-1)} \quad (13)$$

10 All the coefficients K_0 , K_1 , K_2 , ... of the equation 13 can be calculated from the equations 12. Figure 16 shows a further embodiment of the arithmetic circuit 8 of this invention which is based upon this principle. This device includes $m-1$ number (58 in this case) of serially connected delay elements 51 of the first order, m number of multipliers 52 for processing the original input and the outputs of the respective delay elements and a summer 53 for summing the outputs of all multipliers 52 and a mode selector 9 is adapted
15 to supply the coefficients K_0 , K_1 , K_2 , ... to the respective multipliers 52. The mode selector 9 stores a list of four sets of the K values (the coefficients K_0 , K_1 , K_2 , ...) previously calculated for each of the n_1 values 14, 21, 28 and 35 and, when the operator specifies the n_1 value, supplies a corresponding set of K values to the respective multipliers 52. It is apparent that the equation 13 is operated by this device.

The above embodiment have been presented for illustrative purpose only and never mean any limitation
20 of the invention thereto. It is apparent to those skilled in the art that various modifications and variations can be made within the spirit and scope of this invention as defined in the appended claims. For example, while the above embodiments use moving averages to the fourth order and have the averaging number n_1 of the first order made variable, it is possible to use moving averages to any order and have the averaging number of any order or orders made variable. For example, it has been found that the attenuation can be further
25 improved in the very low frequency range if the averaging number n_2 of the second order is doubled. It is also apparent that an equivalent operation can be effected by a computer or microprocessor instead of the digital filters in the above embodiments. Such operations can be effected also by multiplier/accumulators of Analog Device Co. and likes, for example.

30

Claims

1. A device for filtering a weight signal of a weighing device, said filtering device having in a first frequency range, an attenuation band for attenuating undesirable components including oscillatory components
35 determined by the weighing range of said weighing device or strong resonance components caused by said weighing device and further, in a second frequency range lower than said first frequency range, an oscillatory component attributable to external vibration, and comprising means for sampling said weight signal to provide a series of sample signals, and arithmetic means for arithmetically processing said sample signals according to transfer characteristic, the transfer characteristic of said arithmetic means correspond-
40 ing to a transfer function of multiplexed moving averages of said sample signals, and said arithmetic means including means for selecting the averaging number of the respective orders of the moving averages to provide a plurality of notch frequencies within said first frequency range; characterized in that said arithmetic means further includes means for changing the averaging number corresponding to at least one of the orders of said moving averages to produce at least one or more separate notch frequencies within
45 and near said second frequency range.
2. A device as set forth in Claim 1,
characterized in that said averaging number changing means including means for specifying any one of a plurality of values of the averaging number of the averaging number of at least one of the orders of said moving averages.
3. A device as set forth in Claim 1,
characterized in that said arithmetic means includes a digital filter for producing plural sets of transfer function equivalent to said multiplexed moving averages.
4. A device as set forth in Claim 3,
characterized in that said digital filter is a non-recursive filter.
5. A device as set forth in Claim 3,
characterized in that said digital filter is a non-recursive/recursive filter.
6. A device as set forth in Claim 1,
characterized in that said arithmetic means includes a first section for effecting an arithmetic operation

equivalent to the arithmetic operation of the order of said moving averages whose averaging number is changeable, and a second section for effecting an arithmetic operation equivalent to the arithmetic operation of the order of said moving averages whose averaging number is fixed, and said averaging number changing means is coupled to said first section.

- 5 7. A device as set forth in Claim 1, 2, 3, 4, 5 or 6, characterized in that said arithmetic means includes arithmetic operation means using a computer or microprocessor.
8. A method of filtering a weight signal of a weighing device, said method having, in a first frequency range, an attenuation band for attenuating undesirable components including oscillatory components determined by the weighing range of said weighing device or strong resonance components caused by said weighing 10 device and further, in a second frequency range lower than said first frequency range, an oscillatory component attributable to external vibration, and comprising the steps of sampling said weight signal to provide a series of sample signals, and arithmetically processing said sample signals to provide a filtered output, said arithmetic processing step including a step of calculating multiplexed moving averages of said sample signals, said calculating step including the step of selecting the averaging number of each order of 15 said multiplexed moving averages so that a plurality of notch frequencies appear within said first frequency range; characterized in that said calculating step further includes the step of changing the averaging number corresponding to at least one of the orders of said moving averages so that at least one or more notch frequencies appear within and near said second frequency range.
9. A method as set forth in Claim 8,
- 20 characterized in that said arithmetic processing step includes an operation equivalent to the multiplexed moving averages of said sample signals.
10. A method as set forth in Claim 8, characterized in that said changing step includes the step of optionally specifying said averaging number to be changed from a plurality of predetermined values.
- 25 11. A method as set forth in Claim 9, characterized in that said changing step includes a step equivalent to the step of optionally specifying said averaging number to be changed from a plurality of predetermined values.

30

35

40

45

50

55

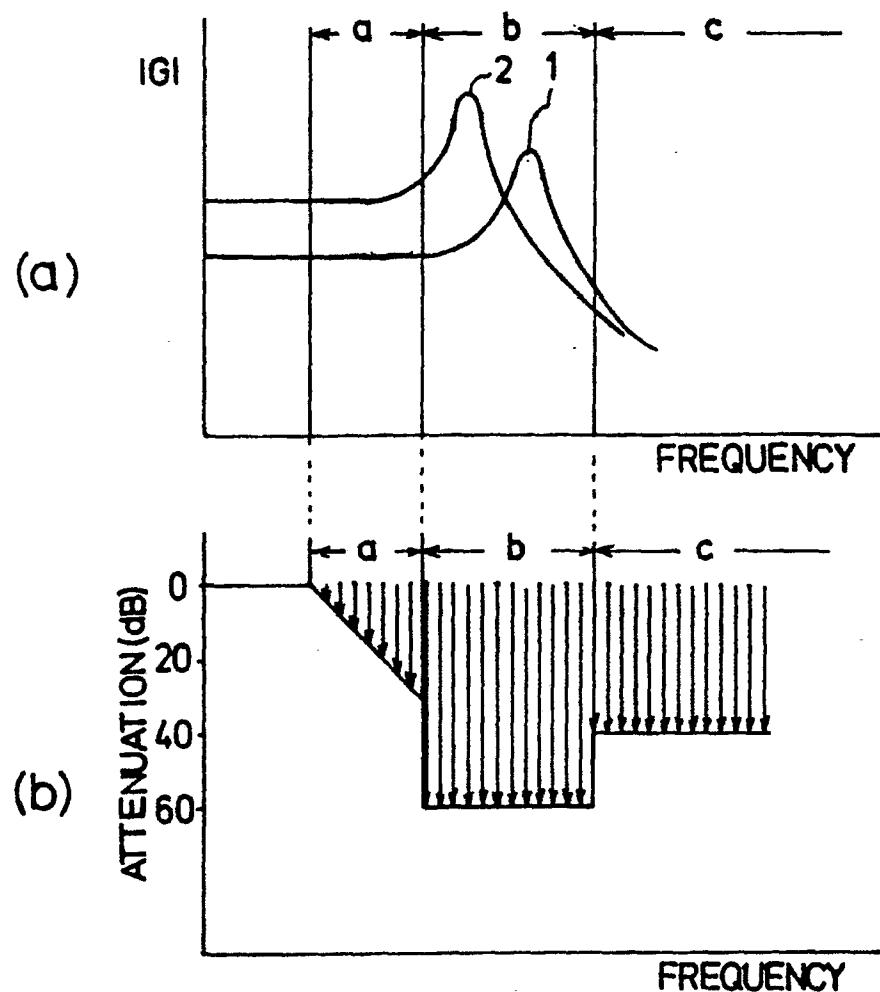


FIG. 1

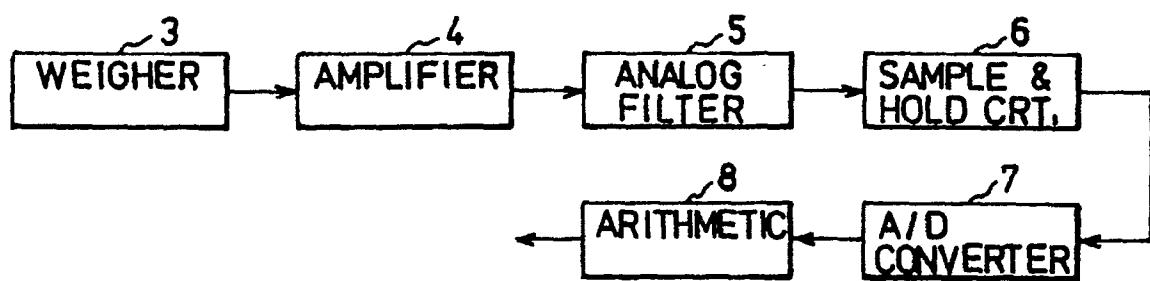


FIG. 2 (PRIOR ART)

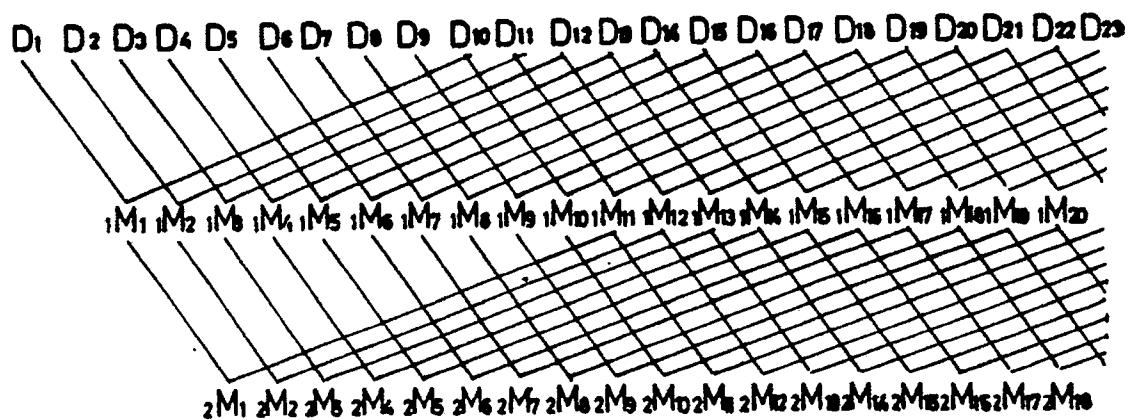


FIG. 3

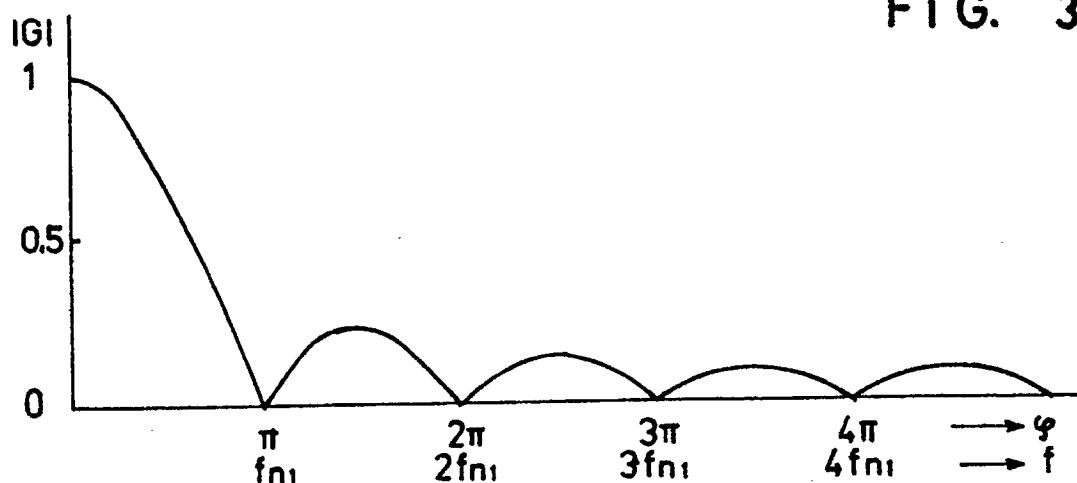


FIG. 4

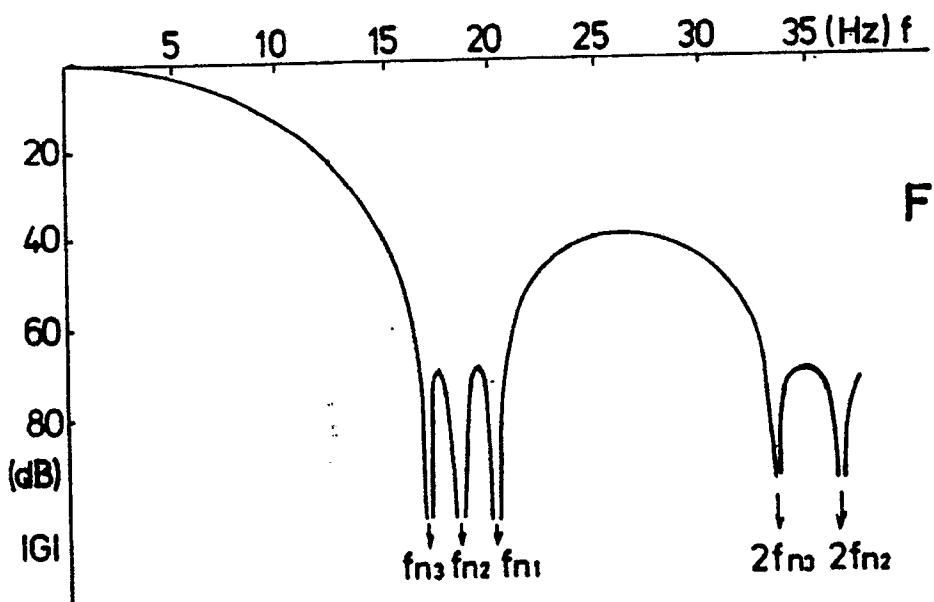


FIG. 5

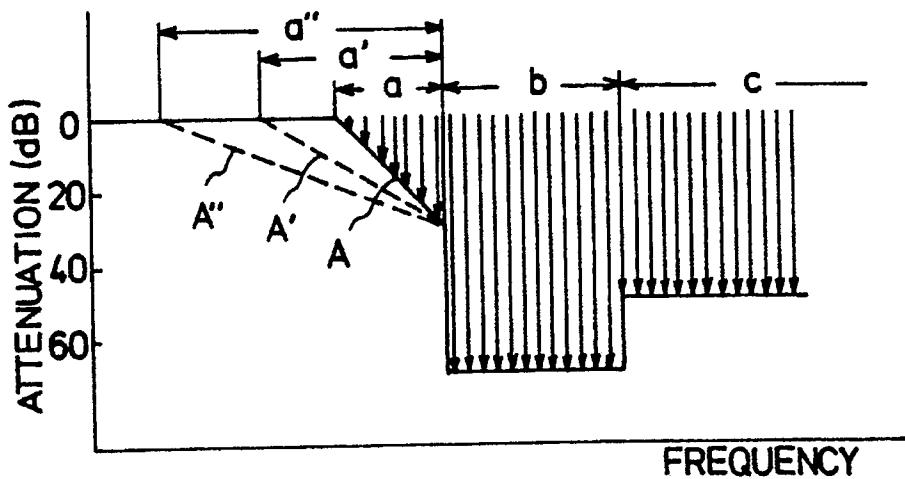


FIG. 6

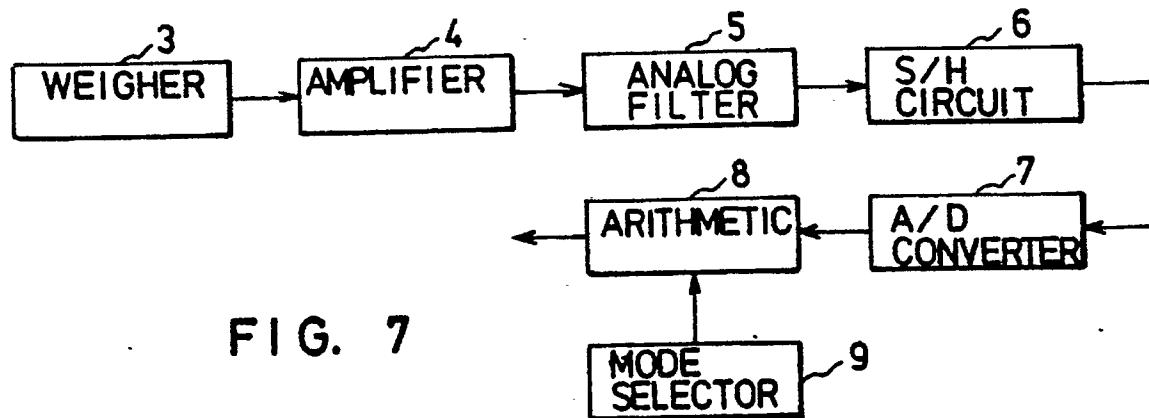


FIG. 7

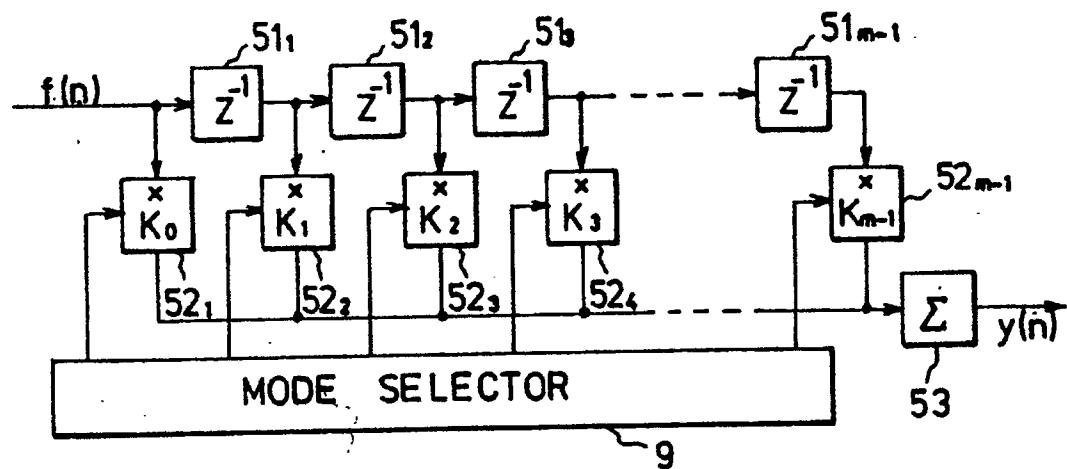


FIG. 16

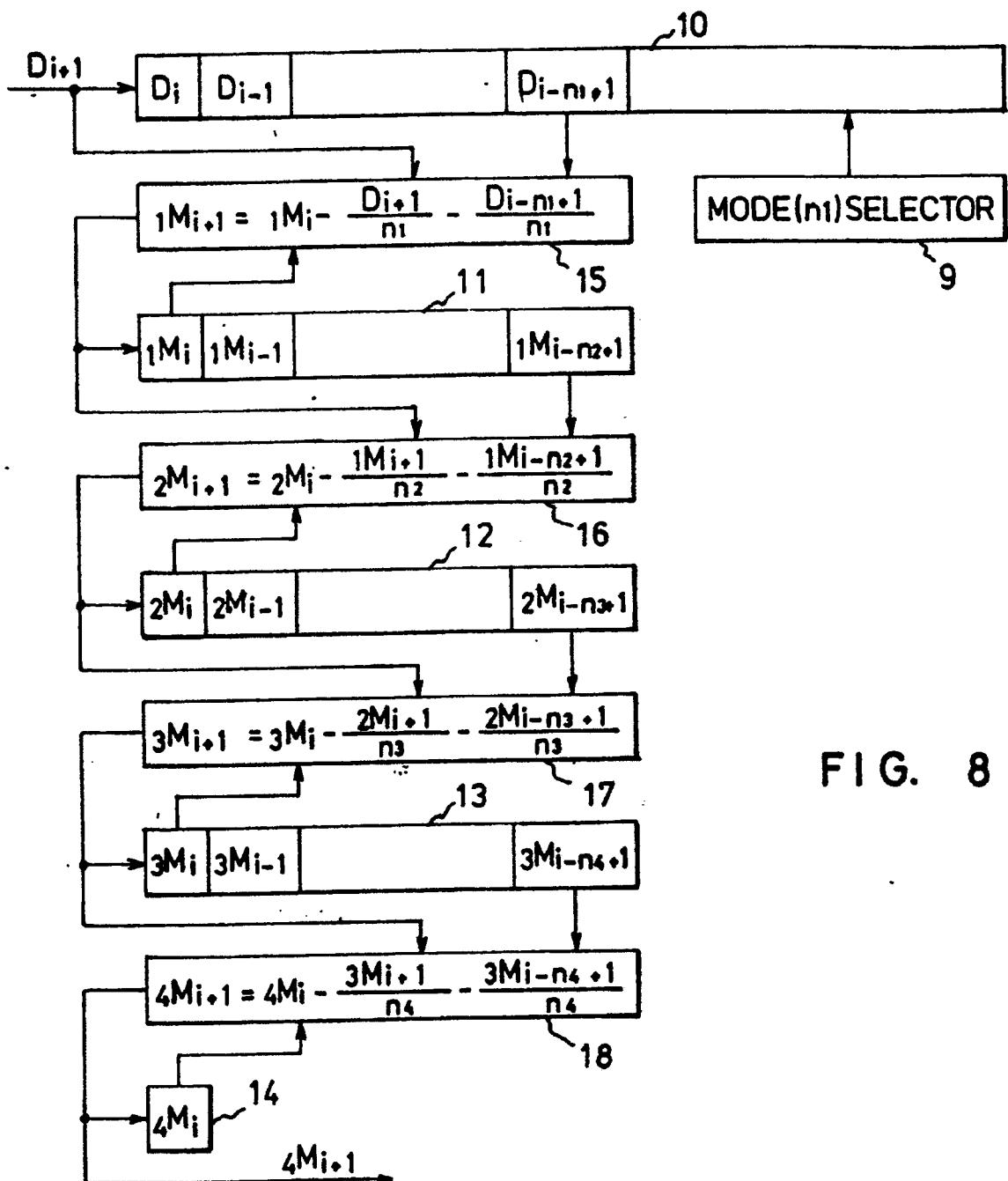


FIG. 8

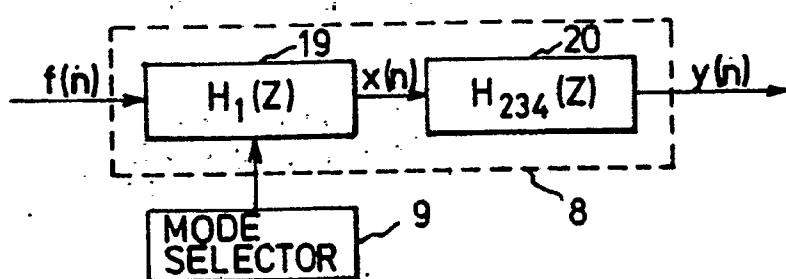


FIG. 11

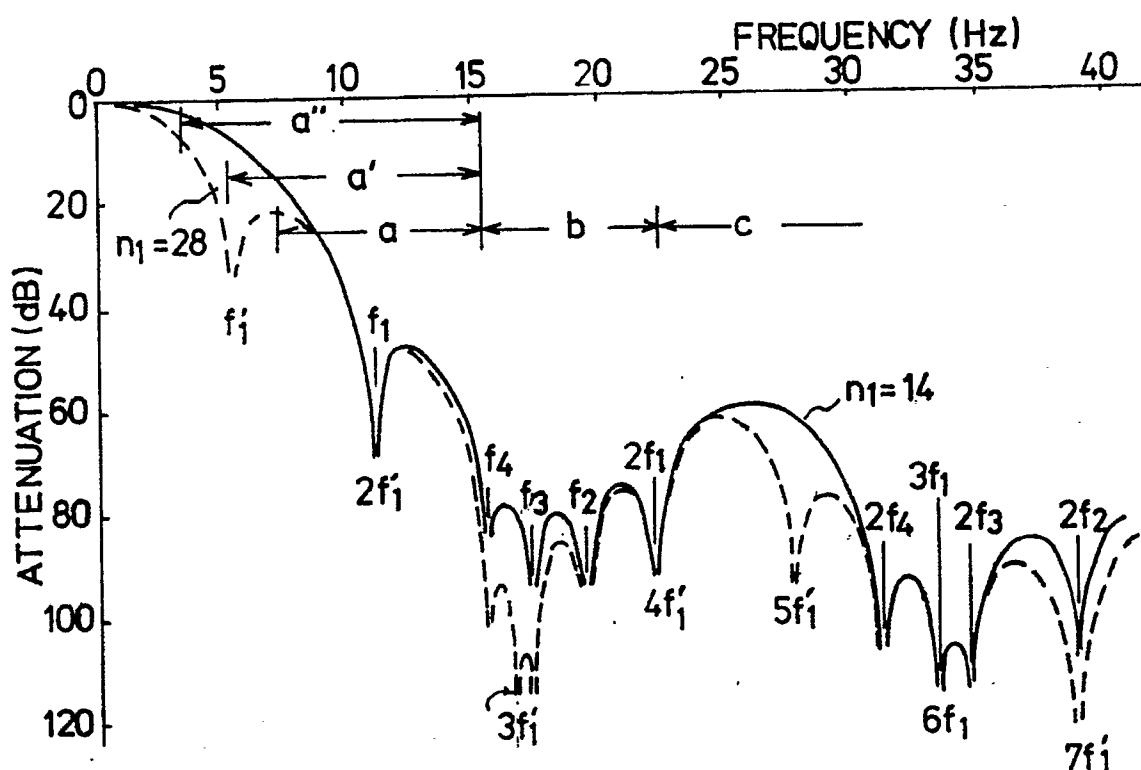


FIG. 9

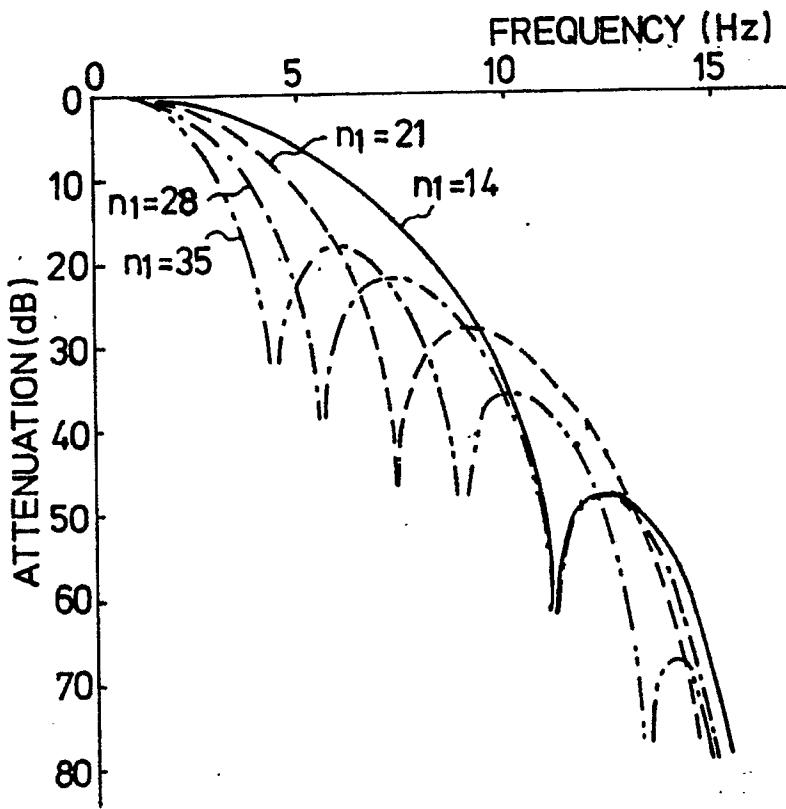


FIG. 10

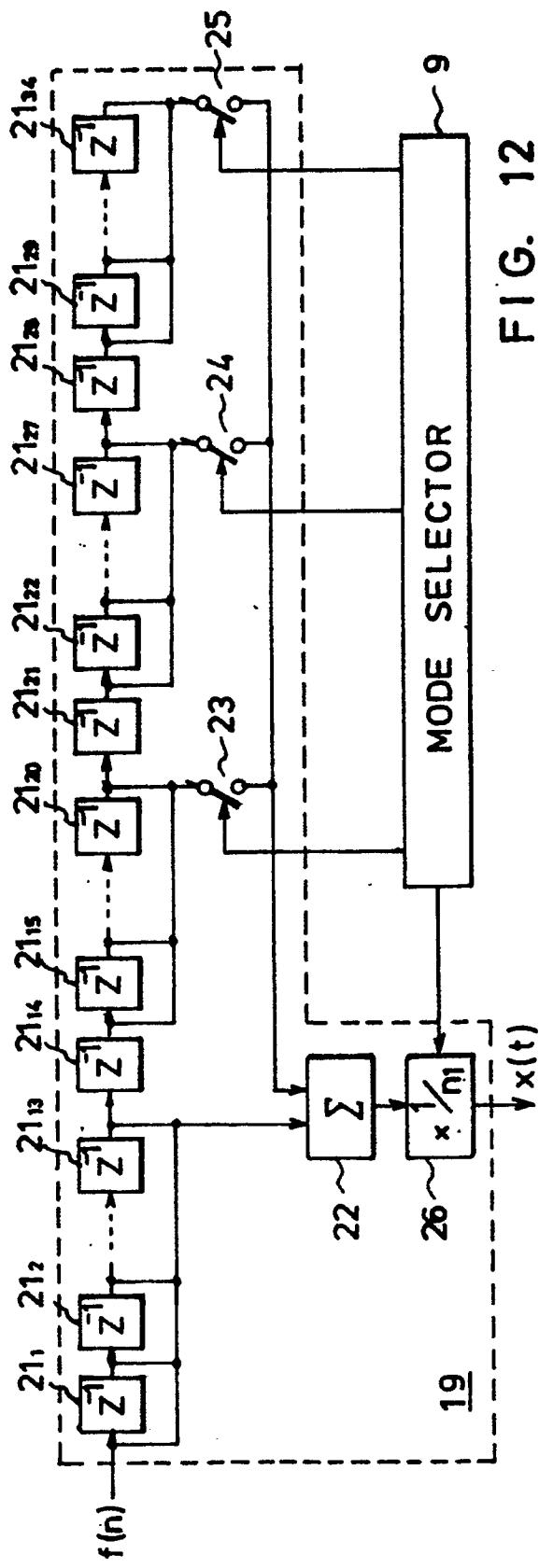


FIG. 12

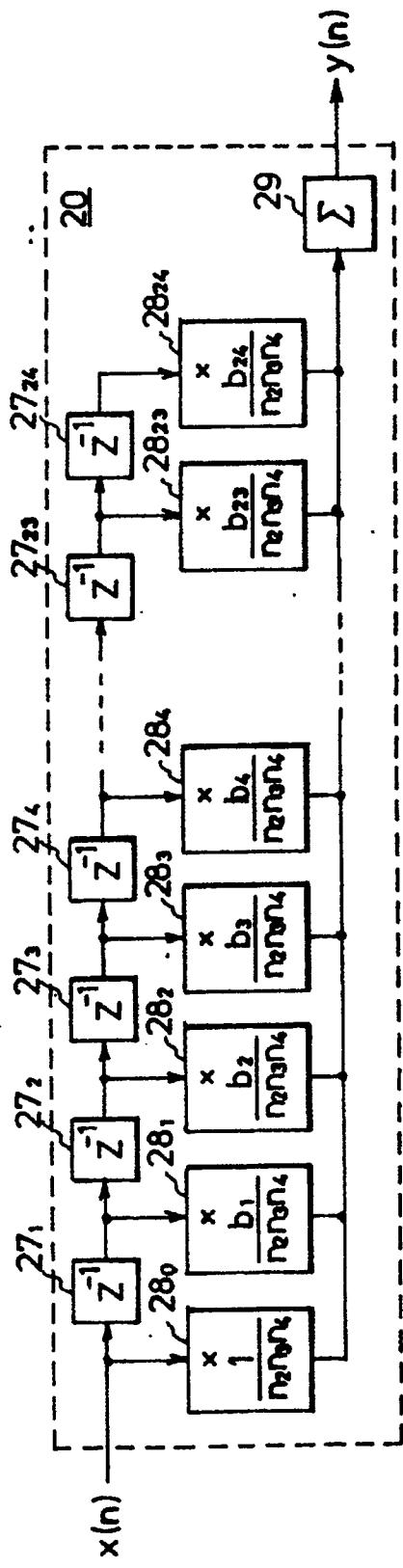


FIG. 13

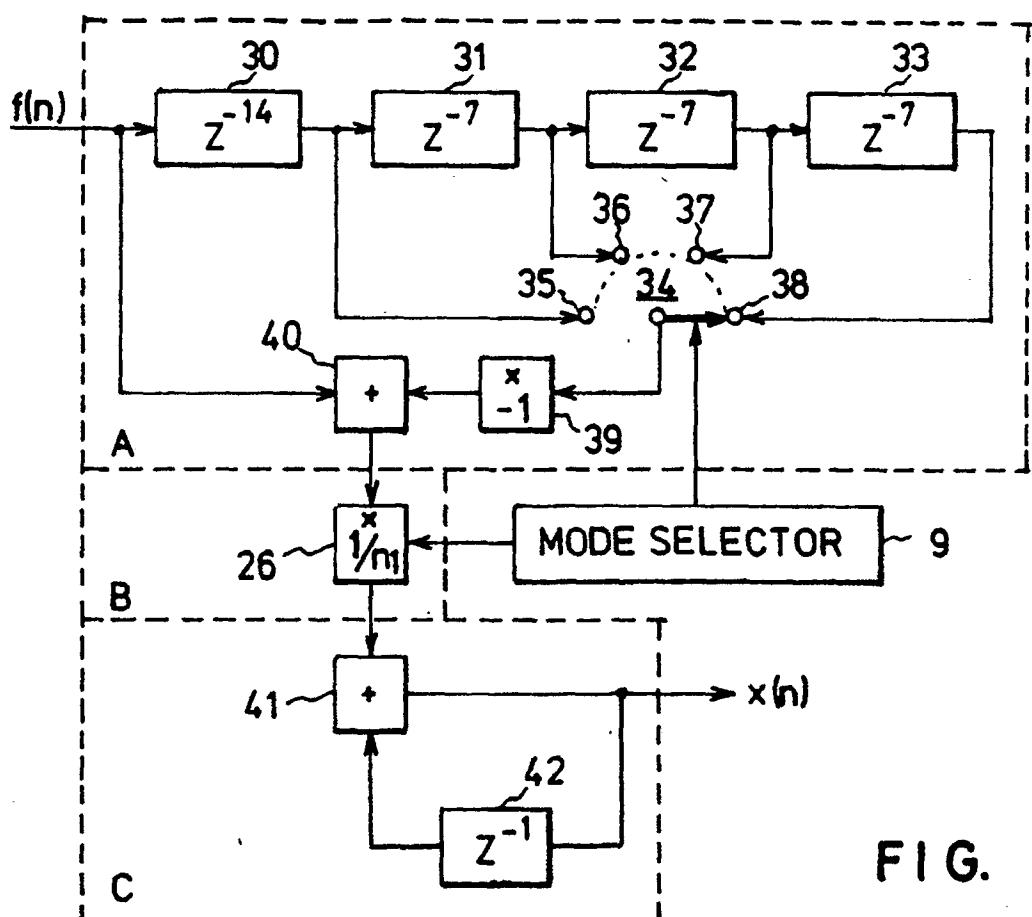


FIG. 14

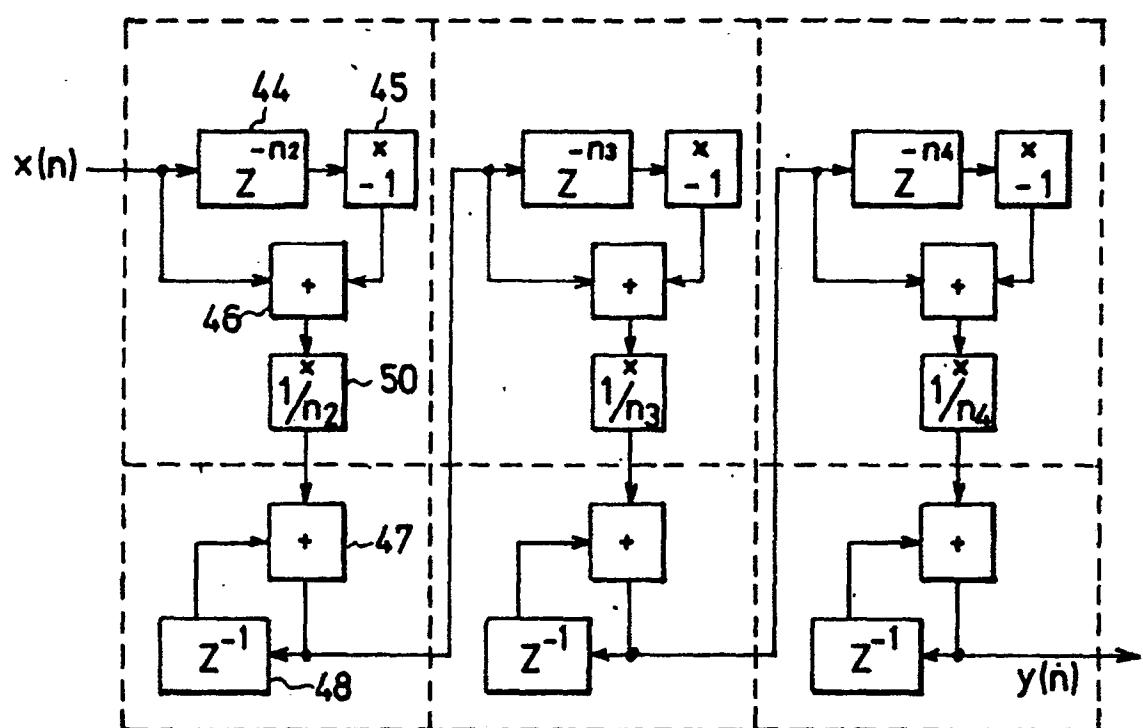


FIG. 15

EP 89 31 2423

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
A, D	AU-B-578181 (YAMATO SCALE CO. LTD.) * claims 1-9 * ---	1-11	G01G3/14 G01G23/06 H03H17/02
A	International conference on acoustics, speech, and signal processing, April 11-14, 1988, New York Hilton, New York City, USA; Vol. III Digital Signal Processing, pages 1463-1466; Petri Jarske et al.: "Variable linear phase FIR filters" *Abstract; paragraph 1,2; fig.1* ---	1	
A	EP-A-16841 (SHIMADZU CORP.) * abstract * ---	1, 8	
A	EP-A-64817 (HOBART CORP.) * abstract; figure 1 * ---	1, 8	
A	EP-A-216638 (ISHIDA SCALES MFG. CO. LTD.) * abstract * * column 2, lines 43 ~ 52; figure 3 * ---	1	
A	PATENT ABSTRACTS OF JAPAN vol. 12, no. 6 (P-653)(2853) 09 January 1988, & JP-A-62 167416 (SHIMADZU CORP.) 23 July 1987, * the whole document * -----	1	TECHNICAL FIELDS SEARCHED (Int. Cl.5) G01G H03H
<p>The present search report has been drawn up for all claims</p>			
1	Place of search THE HAGUE	Date of completion of the search 19 JULY 1990	Examiner GANCI P.A.
CATEGORY OF CITED DOCUMENTS		<p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			