

(1) Publication number:

0 432 716 A2

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 90123791.7

(51) Int. Cl.⁵. **G03C** 1/025

22) Date of filing: 11.12.90

3 Priority: 14.12.89 JP 324505/89

Date of publication of application: 19.06.91 Bulletin 91/25

Designated Contracting States:
 DE NL

Applicant: KONICA CORPORATION 26-2, Nishishinjuku 1-chome, Shinjuku-ku Tokyo 160(JP)

Inventor: Ichikawa, Kazuyoshi Konica Corporation, 1 Sakuramachi Hinos-hi, Tokyo(JP) Inventor: Suzuki, Shinichi

Konica Corporation, 1 Sakuramachi

Hinos-hi, Tokyo(JP) Inventor: Oyama, Sanae

Konica Corporation, 1 Sakuramachi

Hinos-hi, Tokyo(JP) Inventor: Saito, Susumu

Konica Corporation, 1 Sakuramachi

Hinos-hi, Tokyo(JP) Inventor: Kimura, Hideaki

Konica Corporation, 1 Sakuramachi

Hinos-hi, Tokyo(JP)

Representative: Türk, Gille, Hrabal Brucknerstrasse 20 W-4000 Düsseldorf 13(DE)

- Method of preserving composition for silver halide photographic light-sensitive material.
- (f) A method for preserving a composition for silver hlide photographic light-sensitive material is disclosed. In the method, the composition is preserved in a temperature within the range of from 0°C to the freezing point of the composition. The method is preferably appried for preserving a silver halide photographic emulsion, a oil-inwater type dispersion such as a oil-soluble coupler dispersion or a coating solution of the emulsion prepared to be coated.

METHOD OF PRESERVING COMPOSITION FOR SILVER HALIDE PHOTOGRAPHIC LIGHT-SENSITIVE MA-TERIAL

FIELD OF THE INVENTION

The present invention relates to a method of preserving the composition for silver halide photographic light-sensitive material, and more particularly to the method of preserving a silver halide emulsion, an oil-in-water type dispersion or an emulsion coating solution of which properties are prepared for coating to make an emulsion layer of light-sensitive material.

BACKGROUND OF THE INVENTION

- A silver halide photographic light-sensitive material (hereinafter referred to light-sensitive material) is usually produced by the following steps.
 - 1. The first ripening:
- Formation of silver halide emulsion (hereinafter referred to emulsion)
 - 2. Desalting of the emulsion
 - 3. The second ripening:

25

- 20 Chemical sensitization of the emulsion

 The emulsion essentially consits of silver halide grains, a binder and water at the steps of 1 to 3.
 - 4. Preparation of coating solution of the emulsion:
 - Coating solution of the emulsion (hereinafter referred to coating solution) is prepared in such a manner that: predetermined various additives are added to the chemically sensitized silver halide emulsion in order to provide photographic properties; and the concentration and viscosity of the solution are adjusted to necessary values for coating. When an oil soluble additive such as a color forming coupler or a development inhibitor releasing compound (DIR) is added to the solution, the oil soluble additive is dissolved in a high boiling solvent and dispersed in a hydrophilic colloid solution; and thus obtained oil-inwater type dispersion is added to the coating solution.
 - 5. Coating and drying of the coating solution (hereinafter referred to suspension)
- Prepared coating solution is coated on a support and dried.
 - In the industrial production of photosensitive materials, from the viewpoint of procedure and quality control, an emulsion needs to be preserved for a predetermined period of time during the above-described manufacturing processes. An emulsion may be preserved at the stage after desalting, after the second ripening, or after the preparation of a coating solution. The preservation of an emulsion at the stage after the preparation of a coating solution is advantageous in that: (1) it is possible to inspect the coating solution itself and the photographic characteristics of the coating solution can be checked before coating; (2) only an operation for melting the emulsion must be conducted at the stage of coating, so that deterioration of the photographic characteristics of the emulsion due to standing for prolonged time before coating can be avoided; and (3) a large amount of uniform emulsion can be obtained by blending the preserved emulsions.
 - Since the photosensitive material have been produced on a large scale and the coating speed has been increased, it is desirable to stably preserve the coating solution as well as the emulsion and dispersion into practical use.
 - However, from the viewpoint of stability of the emulsion which has been preserved, many problems are caused. When a composition such as an emulsion, dispersion or a coating solution is preserved, it is usually refrigerated in order to prevent the chemical reaction and denaturation by bacteria which are caused during preservation. In order to prevent breeding of bacteria and decrease in photographic sensitivity, the lower the temperature is, the higher the effect is. However, the above-described composition freezes at a temperature of about -6°C and water is separated in a form of ice from the composition. When it is defrosted, the characteristics of the composition can not be recovered in many cases. In the case of a

photographic emulsion and coating solution, fogging is increased and the viscosity is varied due to deterioration of gelatin. In the case of a dispersion, pinhole-like spots are given and the viscosity of the dispersion is varied. When a coating solution containing silver halide grains and a dispersion of high boiling solvent, in which an oil soluble additive such as a coupler is dissolved, is refrigerated for preservation, these problems are simulatenously raise. Therefore, it is difficult to preserve an emulsion after it has been made into a coating solution.

SUMMARY OF THE INVENTION

10

It is a primary object of the invention to provide a method of preserving compositions for silver halide photographic light-sensitive material in which photographic and physical properties of the composition are preserved; and further the coating solution can be simply and quickly prepared so that reliability and productivity of the coating solution can be improved.

The above-described object of the present invention can be accomplished by the method of preserving the above-described composition at a temperature within the range of from 0°C to the freezing point, and further the embodiment of the present invention is effective in the case where the above-described component is an oil-drop-in-water type of dispersion, a photographic light-sensitive silver halide emulsion essentially consisting of silver halide grains, a binder and water and a coating solution of an silver halide emulsion of which photographic characteristics and physical properties are prepared so that it can be coated. The coating solution usually contains various addenda.

DETAILED DESCRIPTION OF THE INVENTION

In the dispersion relating to the present invention, oil soluble additives which are added to a high boiling solvent are not limited to specific ones. The following are included in the oil soluble additives: various kinds of color-forming couplers; DIR couplers; UV absorbents; and color contamination preventing agents. Oil soluble additives are dissolved in a high boiling solvent and dispersed in a hydrophilic colloid water solution so that it is added to an emulsion in the form of a dispersion. In this case, various low-boiling solvents may be used together with the high-boiling solvent so that the oil soluble additives can be dissolved easily or the high-boiling solvent solution can be dispersed easily. The high-boiling solvent is not limited to a specific one. Various high-boiling solvents which are known to be used for this object, such as dibutyl phthalate, dioctyl phthalate and tricresyl phosphate, may be used. The hydrophilic colloid which is used for dispersing a high boiling solvent solution includes gelatin, gelatin derivatives, and various kinds of water-soluble polymers. It is preferable to use gelatin. The high-boiling solvent solution is dispersed in the hydrophilic colloid solution by a dispersing apparatus such as a homogenizer and an ultrasonic dispersing machine. The high boiling solvent solution is preferably dispersed under the presence of a surface active agent.

In the present invention, silver halide usually used for the silver halide emulsion, such as silver bromide, silver chloride, silver iodobromide, silver chlorobromide and silver chlorolodobromide, can be used. In the silver halide emulsion used in the present invention, widely known methods can be applied to the processes of formation of silver halide particles, desalting and chemical ripening. The chemically ripened emulsion can be spectrally sensitized by a widely known sensitizing dye, and other than the above-described high-boiling solvent dispersion, various kinds of widely known additives for photographic emulsion use such as a stabilizer, a sensitizer, an fog inhibitor, and an antistain agent can be optionally added.

The compositions relating to the present invention such as the above-described emulsion dispersion, photosensitive emulsion and coating solution are cooled, set, and preserved at the temperature within the range of from 0°C to the freezing point thereof. It is preferable to set the preserving temperature at a point slightly higher than the freezing point of the coating solution, concretely -3°C to -5°C. When the preserving temperature is 0°C or higher, problems are caused such as, the deterioration of the photographic characteristics including the decrease in sensitivity and increase in fog, and the breeding of bacteria. When the preserving temperature is freezing point or lower, the emulsion is frozen and the dispersed oil drops of the high-boiling solvent containing the oil soluble additives become large in size, resulting in the occurrence of pin holes.

The freezing point of composition can be measure by a well known method as follows. The composition to be measured is put in a vessel and a temperature censer is set in the composition. The composition is cooled in a freezer and temperature lowering with the laps of time is recorded as a curve. Thus obtained curve has a plateau caused by the freezing latent heat of the composition. The freezing point of the composition is determined at the temperature at which the plateau on the temperature lowering curve is formed.

It is preferable to cool the emulsion rapidly for setting. For example, the following cooling method described in Japanese Patent Publication Open to Public Inspection No. 104937/1985, is preferably applied to the present invention, in which an emulsion, is boiled under a reduced pressure and cooled rapidly by deprivation of the latent heat of vaporization so that the emulsion can be gelled. The emulsion is preferably preserved in a refrigerator which can be controlled the temperature to a tolerance of ±0.5° C.

In the method of the present invention, it is preferable that the addition, of all additives including the high boiling solvent dispersion, and adjustment of concentration and viscosity of the solution are carried out before setting the coating solution to be preserved. However, immediately effective additives such as a hardening agent, for example, which makes chemical reaction even when the emulsion is refrigerated, may be added when the emulsion is melted for coating.

The compositions which have been preserved by the method of the present invention, is melted when necessary. The coating solution is coated on a widely known support by a widely known coating method. It is preferable that the preserved composition is dissolved as rapidly as possible avoiding local heat.

15 EXAMPLES

The embodiment of the present invention will be explained as follows.

EXAMPLE 1

20

An oil-drop-in-water type magenta coupler dispersion, the recipe of which is shown as follows, was prepared, and preserved at a temperature shown in Table 1 for 6 months. Then the temperature was raised as high as a room temperature, and the viscosity of the emulsion dispersion was measured with a Brook Field Viscometer.

25

Coupler dispersion

30	M-1	7.5g
30	CM-1	0.15g
	Tricresyl phosphate	бд
35	4% Gelatin solution	375ml
	Dispersing aid	
	Su-1 10% solution	25ml

40

Further, the dispersion was coated alone on a support and dried. The coated surface was observed with a magnifying glass so that the number of pinholes were counted, the results of which are shown in Table 1, wherein the figures in the table represent the number of pinholes per m².

45

Table 1

Preserving temperature ('C)	(Reference)	7	0	-5.5	-6.5	-10	-20
Number of pinholes	1	5	2	1	1	39	30
Viscosity	40	38	40	40	40	29	28

55

50

In the above table, "reference" represents the sample which was not preserved.

According to Table 1, it can be recognized that: when the preserving temperature was so low that the

dispersion was frozen, the number of pinholes were remarkably increased and the viscosity was decreased.

EXAMPLE 2

The following chemically ripened silver halide emulsion was preserved for 6 months at a temperature shown in the Table 2.

Silver halide emulsion:

The core/shell type of silver iodobromide, the average particle size of which is 0.38µm, was prepared by the double jet method, desalted by an ordinary method, and chemically sensitized with sodium thiosulfate and aurochloric so that the most optimum sensitivity could be obtained. The emulsion was optically sensitized in green region of spectrum by sensitizing dyes I and II, the amount of which were 5 X 10⁻⁴ mol and 1 X 10⁻⁴ mol per mol of silver contained in the emulsion, respectively. The freezing point of the emulsion was -6.5° C.

The emulsion was melted after preservation and the following dispersion and additives were added to prepare a coating solution.

A coupler dispersion was prepared according to the following formula and added to the above-described emulsion so that the amount of magenta coupler M-1 was 0.5 g per g of silver contained in the emulsion and the amount of colored magenta coupler was 0.01g per g of silver contained in the emulsion, wherein the dispersion was not preserved under the freezing condition, and further the following additives were added to prepare the emulsion coating solution.

Other additives

45

50

25	Thickener V-1	4% solution was added so as
		to make that the viscosity
30		to 32cp.
30	Coating assistant Su-2	1.2ml of the 1% solution was
		added per 200m l of the
35		above-described emulsion.

The coating solution was coated on a subbed triacetate film base. The coated samples were exposed and developed under the following conditions, and the specific sensitivity and specific fogging were found, the results of which are shown in Table 2.

Table 2

Preserving temperature (°C)	(Reference)	7	0	-4	-5	-10	-20
Specific sensitivity	100	95	98	99	99	99	99
Specific fog value	100	110	101	100	105	128	139

As shown in Table 2, when the preserving temperature is low, the decrease in sensitivity is small. Specifically, when the preserving temperature is not more than 0°C, the decrease in sensitivity is not more than 2%. As far as fogging is concerned, in the range of 1 to -5°C, the increase in fogging can be hardly observed. When the preserving temperature is lower than -5°C, the emulsion becomes frozen and fogging is sharply increased.

Sensitizing Dye I

$$\begin{array}{c|c} C_2H_5 & CH_3 \\ & CH=C-CH & CH_3 \\ & C \\ & (CH_2)_3SO_4 & (CH_2)_4SO_3 & (C_2H_5)_3 & NH \end{array}$$

Sensitizing Dye II

M-1

$$\begin{array}{c|c} CL & H \\ CH_3 & N & N \\ \hline N & N \\ \hline N & CH_2CH_2SO_2CH_2CH \\ \hline C_6H_{13} \\ \end{array}$$

CM-1

5
$$C_{2}H_{5}O \longrightarrow N=N \longrightarrow NH \longrightarrow CO \longrightarrow C_{17}H_{35}$$
10
$$Cl \longrightarrow Cl \longrightarrow CO \longrightarrow C_{17}H_{35}$$
10

Su-1

(n)
$$C_{12}H_{25}$$
— SO_3Na

Su-2

V-1

Example 3

50

55

A coating solution was prepared in the same manner as in Example 2 except that the emulsion without preservation was used.

A portion of the obtained coating solution was coated on a subbed triacetate film base and dried to prepare a control sample. The remainder of the emulsion was put under a reduced pressure, boiled, and rapidly cooled so that it could become a gel; then it was divided into several portions so that each portion was preserved in a refrigerator for 6 months at the temperature shown in Table 3. After the preservation.

each sample was taken out from the refrigerator, and melted and coated on a support and dried in the same manner as in the control sample.

The freezing point of the coating solution was -5.1 °C. The coating solution preserved at a temperature of -5.5 °C was frozen and separated ice particles were observed. On the other hand, the coating solution preserved at a temperature of -4.5 °C was not frozen and maintained the state of a resilient gel.

The above-described photosensitive material samples were exposed to light through an optical wedge by a sensitometer and processed so that the sensitivity and fogging were measured. The processing conditions were as follows.

10 Processing Solution and Conditions

Process (38°C)

15	Color development	3min.	15sec.
	Bleaching	6min.	30sec.
20	Washing	3min.	15sec.
	Fixing	6min.	30sec.
	Washing	3min.	15sec.
25	Stabilizing	lmin.	30sec.
	Drying		

30 The composition of processing solution used in each process is shown as follows.

Color developer

35	4-amino-3-methyl-N-ethyl-N-(β -hydroxylethyl) aniline				
	sulfate	4.75g			
40	Sodium sulfite anhydride	4.25g			
	Hydroxylamine 1/2 sulfate	2.0g			
	Potassium carbonate anhydride	37.5g			
45	Potassium bromide	1.3g			
	Trisodium nitrilotriacate				
50	monohydride	2.5g			
	Potassium hydroxide	1.0g			
	Water to make	18			
55		pH = 10.02			

Bleaching solution

_	Ferric ammonium ethylenediamine	etetraacetate
5		100.0g
	Diammonium ethylenediaminetetra	acetate
10		10.0g
	Ammonium bromide	150.0g
	Glacial acetic acid	10.0g
15	Water make to	11
	pH of the solution was adjusted to 6	.0 by ammonia water.
20		
	Fixing solution	
	Ammonium thiosulfate	175.0g
25	Ammonium sulfite anhydride	8.6g
	Sodium metasulfite	2.3g
30	Water to make	11
	pH of the solution was adjusted to 6	.0 with acetic acid.

Stabilizing solution

Formalin (37% aqueous solution) 1.5ml

Koniducks (Konica Corporation) 7.5ml

Water to make 1l

The thus obtained results are shown in Tables 3. In the table, sensitivity and fogging of each sample are shown by the relative values to the reference sample in which the coating solution was not preserved for a long period of time. After development, Each processed sample was observed with a magnifying glass in order to count the number of pinholes. The number of pinholes is expressed in terms of number per square meter.

50

35

3 Table

Preserving temperature (°C) (Reference) 7 0 -4.5-5.5-20 Relative sensitivity 100 92 97 98 98 99 Relative fog value 100 120 102 101 129 138 10 Pinhole number/m² 1 5 2 1 30 23

The lower the preserving temperature was, the less the sensitivity was decreased. When the preserving temperature was not higher than 0°C, the decrease in sensitivity was kept to be within 3%. On the other hand, the preserving temperature was -5.5°C or lower, in other words when the solution was frozen, fog was remarkably increased and at the same time the number of pinholes was considerably increased. The experimental results show that the emulsion can be preserved for a long period of time when it is preserved at a temperature of 0 to -5°C. When an emulsion is preserved under the condition very close to the freezing temperature, the change of characteristics can be minimized.

EXAMPLE 4

30

35

55

5

Bacterium belonging to the genus of Pseudomonas were implanted to 1 liter of prepared coating 25 solution which was made in Example 3. The solution was divided to five portion and preserved for 6 months under the conditions shown in Table 4, the number of bacterium per mil was measured. The results are shown in Table 4.

Table

Preserving temperature (°C)	7	0	-4.5	- 5.5	-20
Number of bacterium	1020	1012	102	10 ²	70

As shown in the above table, breeding of bacterium was inhibited when the preserving temperature was lowered.

EXAMPLE 5

The viscosity of the prepared coating solution obtained in Example 3 and that of the coating solution 45 preserved for 6 months were measured by a Brook Field viscometer. The results are shown in Table 5.

Table 5 50

Preserving temperature (°C)	(Reference)	7	0	-4.5	-5.5	-20
Viscosity (cp)	32	30	32	32	10	21

When the temperature was lowered to -4.5° C, the viscosity decreasing could be avoided. However,

when the temperature was lowered below -5.5 °C at which the solution was frozen, the viscosity was extremely decreased.

Example 6

5

20

25

30

35

40

45

50

An emulsion of cubic silver bromide chloride having the average particle size is $0.85\mu m$, which was prepared by the double jet method, was chemically sensitized with sodium thiosulfate and chlorauric acid so that the most adequate sensitivity could be obtained. Color sensitizing dyes (III) and (IV) were added to 1 mol of silver of the emulsion described above by 4 X $10^{-4} mol$ and 1 X $10^{-4} mol$ respectively for spectral sensitization.

A coating solution was prepared in such a manner that the following coupler dispersion was mixed with the emulsion by the ratio of, Y-1 3.08g, ST-1 1.15g and ST-2 0.77g per grain of the emulsion.

The freezing point of this coating solution was -4.8° C. After this coating solution was preserved at a temperature shown in Table 6 for 6 months, coated samples were made from the coating solution. The samples were exposed and processed in the manner after-mention to evaluate the characteristics of them.

Coupler dispersion recipe

Y-1 26.7g ST-1 10.0g ST-2 6.67g

Dinonyl phthalate 6.67g

10% Gel solution 220ml

Dispersion assistant (Su-3) 20% solution 7ml

Table 6

Preserving						
temperature (°C)	(Reference)	7	0	-4.5	-5.5	-20
Specific						
sensitivity	100	85	92	97	97	99
Specific fog						
value	100	121	102	101	128	145
Pinhole	1	6	2	1	28	20

In the same manner as Example 3, the occurrence of pinholes and fogging could be inhibited by preserving the coating solution in the temperature range of 1 to -5°C, so that the coating solution can be preserved for a long period of time without deteriorating its performance.

Sensitizing dye III

5
$$CL$$
 CH_2) $_3SO_3$
 CH_2COOH

10

Sensitizing dye IV

Y-1

OCH₃

$$(CH_3)_3CCOCHCONH$$
NHCOCHCH₂SO₂C₁₂H₂₅

$$N - C_4H_9$$
CH₂

³⁵ ST-1

$$C_4H_9(t)$$
HO COO C₅H₁₁(t)
 $C_4H_9(t)$ C₅H₁₁(t)

ST-2

$$C_2H_5$$
 $C_5H_{11}(t)$
 C_2H_5
 $C_5H_{11}(t)$
 $C_5H_{11}(t)$

SU-3

$$SO_3Na$$

	Process	Temperature	Time
_	Coloring development	35.0 ± 0.3°C	45sec
5	Bleaching and fixing	35.0 ± 0.5°C	45sec
	Stabilization	30 to 34°C	90sec
10	Drying	60 to 80°C	60sec
15	Color developer		
75	Pure water		800ml
	Triethanol amine		10g
20	N,N diethyl hydroxylami	.ne	5g
	Potassium bromide		0.02g
25	Potassium chloride		2g
20	Potassium sulfite		0.3g
	1-hydroxyl ethylidene-1	,1-diphosphonic acid	1.0g
30	Ethylenediaminetetraace	tic acid	1.0g
	Disodium catechol-3,5-d	liphosphonate	1.0g
35	N-ethyl-N- β methanesulf	onamide	
30	ethyl-3-butyl-4-amino a	niline sulfate	4.5g
	Whitening agent (4,4'-d	iamino stilbene	
40	sulfonio	c acid derivative)	1.0g
	Potassium carbonate		27g
45	Water to make 11 in ord	er to adjust pH = 10,1	.0
70			

Bleach-fixer

_	Ferric ammonium ethylenediaminetetraacetic	
5	acid dihydride	60g
	Ethylenediaminetetraacetic acid	3g
10	Thioammonium sulfite (70% aqueous solution)	100ml
	Ammonium sulfite (40% aqueous solution)	27.5ml
15	Water to make 11, and pH is adjusted with pota	assium
. •		

carbonate or glacial acetic acid so that pH = 5.7.

20 Stabilizer

	5-chloro-2-methyl-4-isothiazoline-3-one	1.0g
25	Ethylene glycol	1.0g
	1-hydroxyl ethylidene-1,1-diphosphonic acid	2.0g
	Ethylenediaminetetraacetic acid	1.0g
30	Ammonium hydroxide (20% aqueous solution)	3.0g
	Whitening agent (4,4'-diamino stilbene	
35	sulfonic acid derivative)	1.5g

Water to make 1 ℓ , and pH is adjusted with sulfuric acid or potassium hydroxide so that pH = 7.0.

Claims

- 1. A method for preserving a composition for silver halide photographic light-sensitive material wherein a composition for silver halide photographic light-sensitive material is preserved at a temperature within the range of from 0° C to the freezing point of said composition.
 - 2. The method of claim 1, wherein said composition is an oil-in-water type dispersion.
 - **3.** The method of claim 2, wherein said dispersion comprises dispersed drops of an organic high-boiling solvent in which a color forming coupler is dissolved.
- **4.** The method of claim 1, wherein said composition is a silver halide emulsion essentially consisting of silver halide grains, a binder and water.
 - 5. The method of claim 4, wherein said silver halide emulsion is chemically or optically sensitized.

6. The method of claim 1, wherein said composition is a coating solution of emulsion prepared to be

		coated in the photographic and physical properties thereof.
5	7.	The method of claim 6, wherein said coating solution contains an oil-in-water type dispersion.
	8.	The method of claim 7, wherein said dispersion comprises dispersed drops of an organic high-boiling solvent in which a color forming coupler is dissolved.
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		