① Veröffentlichungsnummer: 0 433 819 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90123636.4

(51) Int. Cl.5: **B21B** 37/08

22 Anmeldetag: 08.12.90

(30) Priorität: 22.12.89 DE 3942452

(43) Veröffentlichungstag der Anmeldung: 26.06.91 Patentblatt 91/26

(84) Benannte Vertragsstaaten: AT DE GB IT SE

(71) Anmelder: SMS SCHLOEMANN-SIEMAG **AKTIENGESELLSCHAFT** Eduard-Schloemann-Strasse 4 W-4000 Düsseldorf 1(DE)

(72) Erfinder: Svargr, Alexander Sudermannstrasse 22

W-4010 Hilden(DE) Erfinder: Engel, Georg Am Hoverkamp 108

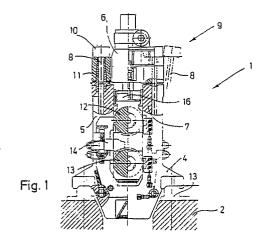
W-4044 Kaarst(DE)

Erfinder: Feldmann, Hugo, Dr.

Teutonenstrasse 11 W-5110 Alsdorf(DE)

(74) Vertreter: Müller, Gerd et al

Patentanwälte


HEMMERICH-MÜLLER-GROSSE-POLLMEIER--

MEY-VALENTIN Hammerstrasse 2

W-5900 Siegen 1(DE)

- (54) Ermittlung der Federkennlinie eines Vor- und Fertiggerüsts.
- (57) Zur Ermittlung der Federkennlinie eines Vor- und Fertiggerüsts sowie zu dessen Walzspalteinstellung vor dem Walzen, insbesondere zum Walzen von Leichtbauprofilen mit engen Toleranzen, wobei mindestens eine Horizontalwalze des Gerüsts vornehmlich elektromechanisch anstellbar ist, wird vorgeschlagen, daß bei einem Walzgerüst mit abnehmbarer oder verschwenkbarer, die Ständerholme 7 der Gerüstständer 5 verbindender Gerüstkappe 6, welche mit den Ständerholmen 7 mittels von einer hy-

draulischen Spanneinrichtung 10 vorgespannter Zuganker 8 verbunden ist wenigstens die obere der Horizontalwalzen 12 von der elektromechanischen Anstellung 16 der Walzen gegen die andere Walze gefahren wird und daß die zwischen den Walzenballen zu messenden Walzkräfte von der hydraulischen Spanneinrichtung aufgebracht werden und daß die elektromechanische Anstellung im entlasteten Zustand und unter Aufrechterhaltung der Walzenberührung um bestimmbare Anstellwege L verstellbar ist.

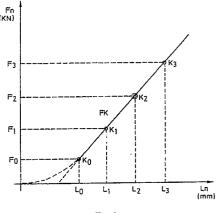


Fig.3

ERMITTLUNG DER FEDERKENNLINIE EINES VOR- UND FERTIGGERÜSTS

Die Erfindung betrifft ein verfahren zur Ermittlung der Federkennlinie eines Vor- und Fertigerüsts sowie Verfahren zu dessen Walzspalteinstellung vor dem Walzen, insbesondere zum Walzen von Leichtbauprofilen mit engen Toleranzen, wobei mindestens eine Horizontalwalze des Gerüsts vornehmlich elektromechanisch anstellbar ist.

Walzenständer in geteilter Bauart sind aus der DE-OS 20 57 960 bekannt und zwar mit abnehmbaren Ständerkappen und Zugankerverbindungen zwischen dem Ständer und den Ständerkappen, wobei die Zuganker durch hydraulisch wirkenden Kolben-Zylinder-Einheiten um im unteren Ständerteil angeordnete Drehachsen seitlich aus dem Walzgerüst ausschwenkbar sind. Außerdem sind die Zuganker für den Betriebszustand des Walzgerüstes durch an ihren Kopfenden angeordnete hydraulische Spanneinrichtungen spannbar bzw. vorspannbar, wobei der Vorspanndruck während des Walzbetriebes den Zugankerköpfen zugeschaltet bleibt. Bei dieser Zugankerverbindung steht die hydraulische Spanneinrichtung auf einem Zylinderteil, welcher die Dehnlänge des Zugankers erzielt und einer Gewindemutter, welche nachfolgend um die Dehnlänge nachgedreht wird. Der zylinderteil ist während des Betriebszustandes des Walzgerüstes wieder von dem Druckmedium entlastet. Gemäß der weiterbildenden DE-AS 26 06 842 ist das die Vorspannkräfte er zeugende Druckmedium den Spanneinrichtungen eines oder mehrerer Walzgerüste zentral und gemeinsam zu- und abschaltbar und abhängig von der Entlastung des Vorspanndruckes des Druckmediums sind die Zuganker eines oder mehrerer Walzgerüste zentral und gemeinsam mit Hilfe der hydraulisch wirkenden Kolben-Zylinder-Einheiten ausschwenkbar. Sind die Zuganker aus den Walzenständern ausgeschwenkt. dann können die oberen Ständerkappen nach oben abgehoben werden. Zum Walzenwechsel wird die die beiden Horizontalwalzen aufnehmende Kassette nach oben aus dem Gerüst mit Hilfe einer Krananordnung herausgehoben. Mit diesen Maßnahmen soll der zeitliche Aufwand beim Walzenwechsel verringert und weitgehend mechanisiert werden.

Aus der DE-AS 1 291 715 ist ein Walzwerksgerüst mit Kappenständern bekannt, aus denen nach Entfernen der Kappen die Einbaustücke der Walzen nach oben aushebbar sind. Die Kappen unterfassen mit an zwischen die Ständersäulen ragenden Teilen angeordneten Vorsprüngen die oberen Begrenzungsflächen von Ausnehmungen der Fensterwangen und sind durch zwischen ihnen und den Ständersäulen in Richtung der Anstellspindeln wirkende Spannmitteln an den Säulen festlegbar. Die Kappen sind seitlich verfahrbar. Hierzu weisen

die Kappenständer eine Schienenanordnung und die Kappen Fahrrollen auf. Sind die Kappen seitlich verfahren, ist das Gerüst nach oben offen, so daß der Walzenwechsel durch das oben offene Gerüst erfolgen kann. Ziel dieser Maßnahmen ist es, den Walzenwechsel zu vereinfachen und zu beschleunigen.

Aus der DE-OS 30 39 203 ist ein Universalgerüst mit Horizontal-und Vertikalwalzen in einer gemeinsamen vertikalen Achsebene bekannt, wobei Rahmen als kräftemäßig chlossenerRahmen für die Vertikalwalzen ausgebildet ist, in dessen Jochen Anstellspindeln für die Vertikalwalzen sitzen. Die Einbaustücke der Horizontalwalzen sind paarweise in einem oberen und unteren Querjoch abgestützt, wobei die Querjoche von im Rahmen axial unverschiebbar angeordneten Zugspindeln gehalten und zentrisch zur Walzlinie anstellbar sind. Die beiden oberen Querjoche sind jeweils seitlich zur Walzlinie symmetrisch ausschwenkbar, indem die Querjoche in der Schwenkachse sich über eine verlängerte Zusatzbüchse an den die Schwenkachsen bildenden Zugspindeln abstützen. Das Ausschwenken der Querjoche wurde vorgenommen, damit auf Hubmittel bspw. eine Krananordnung zum Ausheben der Querjoche verzichtet werden kann. Hierdurch sollen die Walzenwechselzeiten weiterhin verkürzt werden.

Den oben genannten Walzgerüsten mit Walzenständern in geteilter Bauart ist gemeinsam, daß durch verschiedene Gestaltung der die Walzenständer verbindenden Querjoche bzw. Kappen das Gerüst schnell nach oben geöffnet wird, damit der Walzenwechsel bzw. der Wechsel der Walzenkassetten möglichst schnell vorgenommen werden kann. Bei keiner der genannten Druckschriften ist angesprochen, daß mit den vorgespannten Kappengerüsten ein Walzen von Walzgut mit engen Toleranzen und hoher Maßgenauigkeit nur dann durchgeführt werden kann, wenn das Dehnverhalten des Gesamtgerüstes einschließlich der Walzen in jedem beliebigen Lastzustand genau bekannt ist und das Walzgerüst vor dem Walzen exakt eingestellt werden kann. Die Schnelligkeit des Walzenwechsels ist nicht das allein maßgebende Kriterium für die Güte einer Gerüstkonstruktion in geteilter Bauweise mit Ständerkappen.

Aufgabe der Erfindung ist es, bei einem vorspannbaren Kappengerüst, bzw. bei einem von einem Universalgerüst auf ein vorspannbares Duo-Gerüst umgebautes Walzgerüst ein Verfahren vorzugeben, mit dem die Federkennlinie des Gerüsts reproduzierbar ermittelt werden kann, so daß die Auffederung von Walzen und Gerüst beim maßhaltigen Walzen unter den verschiedensten Lastzu-

ständen einwandfrei berücksichtigt werden kann und das Walzgerüst vor dem Walzen entsprechend genau eingestellt werden kann.

Diese Aufgabe wird mit den Maßnahmen des Patentanspruchs 1 bzw. 2 gelöst. Besondere Ausgestaltungen zur Ermittlung der Federkennlinie bzw. zur Einstellung des Walzgerüstes sind in den Ansprüchen 3 bis 7 angegeben.

Nach Patentanspruch 1 wird zur aufgabengerechten Lösung vorgeschlagen, daß bei einem Walzgerüst mit abnehmbarer oder verschwenkbarer, die Ständerholme der Gerüstständer verbindender Gerüstkappe, welche mit den Ständerholmen mittels von hydraulischen Spanneinrichtungen vorgespannter Zuganker verbunden ist, wenigstens die obere der Horizontalwalzen von der elektromechanischen Anstellung der Walzen gegen die andere Walze gefahren wird und daß die zu messenden Walzkräfte F zwischen den Walzenballen von der hydraulischen Spanneinrichtung aufgebracht werden und daß die elektromechanische Anstellung im entlasteten Zustand und unter Aufrechterhaltung der Walzenberührung um bestimmbare Anstellwege L verstellbar ist. Dieses erfindungsgemäße Verfahren zur Ermittlung der Federkennlinie bei einem Kappengerüst wird nach Anspruch 2 auch bei einem von einem Universalgerüst auf ein Duo-Gerüst in Zugankerbauweise umgerüstetes Walzgerüst vorgeschlagen. Mit der hier aufgezeigten Bestimmung der Federkennlinie eines Kappengerüsts bzw. eines auf ein Duo-Gerüst umgebautes Universalgerüst ist es in einem Profilwalzwerk vorteilhafterweise möglich, die von Profil zu Profil stets unterschiedlichen Walzkräfte und die jeweilige Auffederung des Gerüstes so zu berücksichtigen, daß Profile mit sehr hoher Maßhaltigkeit gewalzt werden können. Sofern neue Walzen mit anderen Kalibern in das Gerüst eingesetzt werden sollen, wird die gegebenenfalls neue Federkennlinie der neuen Walzen und die der Gerüstständer ebenso einfach und schnell ermittelt. Von besonderem Vorteil ist, daß die elektromechanische Anstellung nur im von Kräften entlasteten Zustand verstellt wird, was zu einer erheblichen maschinentechnischen Vereinfachung führt. Auch ermöglicht die erfindungsgemäß ermittelte Gerüstkennlinie ein Walzen mit vorgespannten Walzen von Walzprofilen mit höchster Güte und engen Toleranzen, in dem sich das Gerüst vor dem Walzen äußerst genau auf die hierzu erforderliche Vorspannkraft einstellen läßt.

In Weiterbildung der Erfindung nach den Patentansprüchen 1 oder 2 wird vorgeschlagen, daß die obere Horizontalwalze von der elektromechanischen Anstellung mit abnehmender Geschwindigkeit gegen die untere Horizontalwalze gefahren wird, wobei die Anstellgeschwindigkeit im Moment des Aufsetzens der Walzen zu Null wird. Die Walzen werden also bis zum Aufsetzmoment, d.h. bis

zum sogenannten "roll kissing" programmiert gegeneinander gefahren, um Beschädigungen der Walzenoberfläche bzw. an den Walzenkalibern zu vermeiden. Der Augenblick des roll kissing kann bspw. mit Hilfe von einen Druckanstieg registrierenden Druckaufnehmern verfolgt werden, von denen die Anstellbewegung der Walzen gestoppt wird.

In bevorzugter Ausgestaltung der Erfindung wird vorgeschlagen, daß bei einer Spannmutter als Spanneinrichtung nachfolgende Maßnahmen in genannter Folge und in einem widerholbaren Zyklus n durchgeführt werden. Die jedem Zuganker zugeordnete hydraulische Spannmutter, nämlich zwei pro Gerüstständer, wird entspannt; anschließend wird die elektromechanischeAnstellung um einen vorgegebenen Anstellweg Ln zugefahren mit der Maßgabe, daß die Gerüstkappe und die Ständerholme lose beabstandet sind. Dann werden alle hydraulischen Spannmuttern des Gerüsts wieder vorgespannt, wobei die hierdurch aufgebrachte Kraft als Walzkraft Fn zwischen den Walzenballen gemessen wird. Der Anstellweg Ln der elektromechanischen Anstellung und die zwischen den Walzen gemessene Walzkraft Fn werden einer Rechnereinheit zur Bestimmung des zugehörigen Auffederungskennwertes Kn und damit zur Bestimmung der Federkennlinie des Gerüsts aufgeschaltet. Hierbei bedeuten n = 1 bis n = x die Anzahl der Zyklen, die nach Wahl durchgeführt werden können, um durch mehrere Auffederungskennwerte K1, K2, K3...Kx eine möglichst repräsentative Federkennlinie durch die einzelnen errechneten Auffederungskennwerte K1, K2, K3 usw. zu legen. Das Einleiten der Kräfte in das Kappengerüst mit Hilfe der Spanneinrichtungen ergibt wegen des Anliegens der Kappen auf den Holmen eine mechanische Synchronisation der eingeleiteten Kräfte. Würden solche großen Kräfte nach dem Stand der Technik mit Hilfe einer hydraulischen Walzenanstellung in das Gerüst eingeleitet, würden die Walzen verkanten, so daß nur eine ungenaue Einstellung des Gerüsts auf neue Profile erfolgen könnte. Ferner bestünde die Gefahr, daß Walzen und Walzensanstellung mechanisch festlaufen und nur unter erheblichem Aufwand wieder freibeweglich zu bekommen wären. Diese technische Problematik entfällt bei dem vorgeschlagenen Verfahren.

Unter den oben genannten Gesichtspunkten ermöglicht eine weitere Ausbildung der Erfindung, daß der erste Auffederungskennwert K_o durch eine über dem Vorspanndruck eingestellte Druckerhöhung in den hydraulischen Spannmuttern unter gleichzeitiger Messung der entsprechenden Walzkraft zwischen den Walzenballen und des entsprechenden Anstellweges ermittelt wird und daß mindestens ein weiterer Kennwert K_n dadurch bestimmt wird, daß die hydraulischen Spannmuttern entspannt werden und die elektromechanische An-

stellung um einen vorgegebenen Anstellweg Ln zugefahren wird mit der Folge, daß die Gerüstkappe und die Ständerholme lose beabstandet sind. Anschließend werden die hydraulischen Spannmuttern wieder vorgespannt, wobei die hierdurch aufgebrachte Kraft als Walzkraft Fn zwischen den Walzenballen gemessen wird. Wie zuvor beschrieben, werden die Anstellwege L1, L2 usw. und die gemessenen Walzkräfte F1, F2 usw. einer Rechnereinheit zur Bestimmung der zugehörigen Auffederungskennwerte K1, K2 usw. und damit zur Bestimmung der Federkennlinie des Gerüsts einer Rechnereinheit aufgeschaltet. Das Ergebnis dieser Rechenoperation kann gegebenenfalls auf einem dem Rechner zugeordneten Display in Form einer Grafik dargestellt werden.

Ist der Zuganker des Kappengerüsts mittels einer Spanneinrichtung vorgespannt, die im Walzbetrieb vom hydraulischen Druck entlastet ist bspw. mit Hilfe von einsetzbaren Druckstücken, werden davon ausgehend folgende Maßnahmen vorgeschlagen. Die hydraulischen Spanneinrichtungen aller Zuganker werden mit einem Druck beaufschlagt, der über dem Vorspanndruck eingestellt ist mit der Folge, daß die elektromechanische Anstellung kräftemäßig entlastet ist. Anschließend wird die elektromechanische Anstellung unter Aufrechterhaltung der Walzenberührung um einen Anstellweg Ln verstellt; dann werden die hydraulischen Spanneinrichtungen wieder entspannt und es werden die hierdurch an den Walzenballen aufgebrachten Walzkräfte Fn gemessen. Schließlich wird der Anstellweg Ln und die gemessene Walzkraft Fn einer Rechnereinheit zur Bestimmung des zugehörigen Auffederungskennwertes Kn und damit zur Bestimmung der Federkennlinie des Gerüsts aufgeschaltet. Zur Bestimmung mehrerer AuffederungskennwerteK1, K2 usw. können diese Maßnahmen im genannten Zyklus mehrfach wiederholt werden, um eine repräsentative Federkennlinie zu erhalten.

Gemäß einem weiteren Vorschlag kann die mit den oben genannten Maßnahmen ermittelte Feder-kennlinie des Kappengerüsts beim Walzen von Profilen mit aufeinander gefahrenen und unter Vorspannung stehenden Walzen angewendet werden, wobei die Vorspannkraft stets größer als die Walzkraft ist. Die zu diesem Profilwalzen erforderlichen Walzkräfte werden also mit Hilfe der sowieso vorhandenen Spanneinrichtungen aufgebracht, so daß zusätzliche hydraulische Zylinder entfallen können.

Die Erfindung wird anhand von schematischen Zeichnungen näher erläutert. Es zeigen:

Figur 1 ein Walzgerüst mit zwei horizontalen Kaliberwalzen in Kappenbauweise mit vorgespannten Zugankern,

Figur 2 eine Draufsicht auf das Walzgerüst nach Fig. 1, und

Figur 3 die Federkennlinie des Walzgerüsts nach Fig. 1 und 2.

In Fig. 1 ist ein Walzgerüst 1, teilweise im Schnitt, dargestellt, welches auf einem Fundament 2 und einer Sohlplatte 3 abgestützt ist. Die Abstützpratzen 4 sind den Sohlplatten 3 angepaßt und haben Durchgangsbohrungen für herkömmliche Verbindungsmittel wie Schrauben oder dergleichen. Das Walzgerüst ist ein geteiltes Gerüst. Die Walzenständer 5 sind durch Gerüstkappen 6 miteinander verbunden. Die Gerüstkappen übergreifen die Ständerholme 7 eines jeden Walzenständers.

An jedem Ständerholm ist ein Zuganker 8 angeordnet, der im unteren Bereich eines jeden Ständerholms derart angelenkt ist, daß ein mechanisch gesteuertes Ausschwenken des Zugankers möglich ist. Die ausgeschwenkte Position des Zugankers ist mit der Bezugsziffer 9 versehen. Eine nicht näher dargestellte hydraulische Spannmutter 10 herkömmlicher Bauart ist in dem Zugankerkopf angeordnet. Mit Hilfe der hydraulischen Spannmutter 10 und mit Hilfe der Zuganker 8 werden die Gerüstkappen 6 und die Walzenständer 5 mit hoher Spannkraft miteinander verbunden, so daß ein Walzgerüst mit der Charakteristik von geschlossenen Walzenständern entsteht. In dem Walzgerüst sind in Einbaustücken gelagerte horizontale Kaliberwalzen 12, 13 angeordnet; ferner sind die Führungsarmaturen 14 für das Walzgut zu sehen.

Die Draufsicht auf das Kappengerüst 1 gemäß Fig. 2 zeigt die Walzenständer 5 und deren Abstützpratzen 4; in den Ständerholmen 7 sind die Zuganker 8 angeordnet, deren Zugankerkopf mit Spannmutter mit der Bezugsziffer 10 bezeichnet ist. Die Verschwenkbarkeit der Gerüstkappen 6 ist mit dem strichpunktierten Pfeil 15 angedeutet; die ausgeschwenkte Stellung der Gerüstkappen 6 ist gestrichelt dargestellt. Die Schwenkbarkeit der Gerüstkappen 6 wird durch eine Lagerhülse 11 unterstützt, die zwischen Zuganker 8 und Gerüstkappe 6 angeordnet ist (Fig. 1). Sind die Ständerkappen 6 ausgeschwenkt, wozu die hydraulischen Spannmuttern 10 gelöst sind und die Zuganker 8 auf der einen Seite eines Gerüstständers 5 in die Position 9 (Fig. 1) geschwenkt sind, ist das Gerüst nach oben offen, so daß die Walzenkassette mit den horizontalen Kaliberwalzen 12, 13 nach oben von einer Krananlage aus dem Gerüst gehoben werden kann; in kurzer Zeit und mit geringem Montageaufwand können neue Kaliberwalzen in das Gerüst eingesetzt werden.

Das beschriebene Kappengerüst mit zwei horizontalen Kaliberwalzen soll als Vor- und Fertiggerüst bspw. für die Herstellung von Leichtbauprofilen mit hoher Oberflächengüte und engen Toleranzen eingesetzt werden. Hierzu ist es erforderlich, daß der Walzwerker die Federkennlinie des Gerüsts für den jeweiligen Betriebszustand und bei unter-

25

30

schiedlichen Kaliberwalzen kennt, um die Auffederung des Gerüsts beim Walzen der Profile berücksichtigen zu können.

Zur Ermittlung der Federkennlinie des beschriebenen Kappengerüsts mit horizontalen Kaliberwalzen, von denen zumindest die obere Horizontalwalze 12 anstellbar ist, wird diese Horizontalwalze von der elektromechanischen Anstellung 16 der Walzen mit abnehmender Geschwindigkeit gegen die untere horizontale Kaliberwalze 13 gefahren, wobei die Anstellgeschwindigkeit im Moment des Aufsetzens der beiden Walzen zu Null wird. Dann werden alle hydraulischen Spannmuttern 10 entspannt, damit die elektromechanische Anstellung im entlasteten Zustand und unter Aufrechterhaltung der Walzenberührung verstellbar ist. Die elektromechanische Anstellung 16 wird um einen gewählten Anstellweg L zugefahren mit der Folge, daß die Gerüstkappe und die Ständerholme lose beabstandet sind. Dann werden alle hydraulischen Spannmuttern 10 bspw. mit einer Kraft von 100 Tonnen vorgespannt, wobei die Kappen 6 auf den Holmen 7 aufliegen und hierdurch zwangsläufig eine mechanische Synchronisation aller Kräfte vorgenommen wird. Die mit Hilfe der Spannmuttern in das Gerüst eingeleiteten Kräfte werden zwischen den Walzenbailen als Walzkraft F auf herkömmliche Weise gemessen. Der Anstellweg L1 und die gemessene Walzkraft F1 können unabhängig von der Rechnereingabe und der Berechnung durch den Rechner in ein Kraft-Weg-Diagramm gemäß Fig. 3 eingetragen werden, wodurch sich der erste Auffederungskennwert K1 ergibt. Zur Bestimmung des zweiten Auf federungskennwertes K2 werden die oben genannten Maßnahmen in einem zweiten Zyklus wiederholt, nämlich: Alle hydraulischen Spannmuttern werden ein zweites mal entspannt und die elektromechanische Anstellung wird um einen weiteren vorgegebenen Stellwert L2 zugefahren mit der Folge, daß die Gerüstkappe 6 und die Ständerholme 7 wieder lose beabstandet sind. Dann werden die Spannmuttern ein zweites mal bspw. mit einer Kraft von 500 Tonnen vorgespannt, wobei die hierdurch aufgebrachten Kräfte als Walzkraft F2 zwischen den Walzenballen gemessen wird; dann wird der Anstellweg L2 und die gemessene Walzkraft F2 in dem Kraft-Weg-Diagramm gemäß Fig. 3 eingetragen, wodurch sich der Auffederungskennwert K2 einstellt. Zur Ermittlung eines möglicherweise erforderlichen dritten Auffederungskennwertes K3 wird die oben beschriebene Maßnahmenfolge ein drittes mal wiederholt. Die Kennwerte K1, K2 und gegebenenfalls K3 werden miteinander verbunden und dienen der Bestimmung der Federkennlinie FK des Kappengerüstes. Das in Fig. 3 dargestellte Diagramm kann selbstverständlich auf einem Display wiedergegeben werden, welches mit der Rechnereinheit zur Bestimmung der einzelnen Auffederungskennwerte K_n verbunden ist. Die Walzkräfte F und die Stellwege L der elektromechanischen Anstellung werden mit herkömmlichen Druckaufnehmern bzw. herkömmlichen Weggebern oder dergleichen gemessen.

Ist die Federkennlinie FK des Kappengerüsts auf die vorgeschlagene Weise ermittelt worden, kann der Walzkraft die entsprechende Auffederung des Gerüsts genau zugeordnet werden und bei dem Stichplan zur Herstellung eines bestimmten maßgenauen Walzprofils entsprechend berücksichtigt werden. Die ermittelte Federkennlinie kann insbesondere Anwendung finden beim Walzen von Profilen mit aufeinander gefahrenen und unter Vorspannung stehenden Walzen, wobei die Vorspannkraftbspw. F3 stets größer als bspw. die Walzkraft F2 ist und sich die maßgebende Anstellung L3 aus dem Kraft-Weg-Diagramm gemäß Fig. 3 ablesen läßt.

Das beschriebene Verfahren zur Ermittlung der Federkennlinie bei einem Kappengerüst der beschriebenen Bauart kann mit gleichen Vorteilen angewendet werden bei einem von einem Universalgerüst auf ein Duo-Gerüst in Zugankerbauweise mit Spannmuttern umgerüsteten Walzgerüst.

Liste der Bezugszeichen

- 1 Walzgerüst
- 2 Fundament
- 3 Sohlplatte
- 4 Abstützpratzen
- 5 Gerüstständer
- 6 Gerüstkappe
- 7 Ständerholm
- 8 Zuganker
- 9 Ausschwenkposition
- 10 Hydraulische Spanneinrichtung (angeordnet mit Zugankerkopf)
- 11 Lagerhülse
- 12 Obere Horizontal-Kaliberwalze
- 13 Untere Horizontal-Kaliberwalze
- 14 Führungsarmaturen
- 15 Pfeil
- 16 elektromechanische Anstellung

Ansprüche

Verfahren zur Ermittlung der Federkennlinie eines Vor-und Fertiggerüsts sowie Verfahren zu dessen Walzspalteinstellung vor dem Walzen, insbesondere zum Walzen von Leichtbauprofilen mit engen Toleranzen, wobei mindestens eine Horizontalwalze des Gerüsts vornehmlich elektromechanisch anstellbar ist,

dadurch gekennzeichnet,

daß bei einem Walzgerüst mit abnehmbarer oder verschwenkbarer, die Ständerholme (7)

50

20

25

35

40

45

50

55

der Gerüstständer (5) verbindender Gerüstkappe (6), welche mit den Ständerholmen (7) mittels von einer hydraulischen Spanneinrichtung (10) vorgespannter Zuganker (8) verbunden ist, wenigstens die obere der Horizontalwalzen (12) von der elektromechanischen Anstellung (16) der Walzen gegen die andere Walze (13) gefahren wird und daß die zu messenden Walzkräfte (F) zwischen den Walzenballen von der hydraulischen Spanneinrichtung (10) aufgebracht werden und daß die elektromechanische Anstellung (16) im entlasteten Zustand und unter Aufrechterhaltung der Walzenberührung um bestimmbare Anstellwege (L) verstellbar ist.

Verfahren zur Ermittlung der Federkennlinie eines Vor-und Fertiggerüsts sowie Verfahren zu dessen Walzspalteinstellung vor dem Walzen, insbesondere zum Walzen von Leichtbauprofilen mit engen Toleranzen, wobei mindestens eine Horizontalwalze des Gerüsts vornehmlich elektromechanisch anstellbar ist,

dadurch gekennzeichnet,

daß bei einem von einem Universalgerüst auf ein Duo-Gerüst in Zugankerbauweise mit Spanneinrichtung umgerüstetes Walzgerüst wenigstens die obere der Horizontalwalzen (12) von der elektromechanischen Anstellung (16) der Walzen gegen die andere Walze (13) gefahren wird und daß die zu messenden Walzkräfte (F) zwischen den Walzenballen von der hydraulischen Spanneinrichtung (10) aufgebracht werden und daß die elektromechanische Anstellung (16) im entlasteten Zustand und unter Aufrechterhaltung der Walzenberührung um bestimmbare Anstellwege (L) verstellbar ist.

Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,

daß die obere Horizontalwalze (12) von der elektromechanischen Anstellung (16) mit abnehmender Geschwindigkeit gegen die untere Horizontalwalze (13) gefahren wird, wobei die Anstellgeschwindigkeit im Moment des Aufset-

zens der Walzen zu Null wird.

4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet,

daß die Spanneinrichtung (10) eine im Betrieb unter hydraulischem Druck stehende Einrichtung vorzugsweise eine Spannmutter ist und nachfolgende Maßnahmen in genannter Folge in einem wiederholbaren Zyklus (n) mit n = 1, 2 ... durchgeführt werden:

- die hydraulischen Spannmuttern (10) werden entspannt;
- die elektromechanische Anstellung (16)

- wird um einen vorgegebenen Anstellweg (L_n) zugefahren mit der Maßgabe, daß die Gerüstkappe (6) und die Ständerholme (7) lose beabstandet sind;
- die hydraulischen Spannmuttern (10) werden vorgespannt, wobei die hierdurch aufgebrachte Kraft, vorzugsweise als Walzkraft (F_n) zwischen den Walzenballen gemessen wird;
- der Anstellweg (L_n) und die gemessene Walzkraft (F_n) werden einer Rechnereinheit zur Bestimmung des zugehörigen Auffederungskennwertes (K_n) und damit zur Bestimmung der Federkennlinie des Gerüsts aufgeschaltet.

Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet.

daß der erste Auffederungskennwert (K_o) durch eine über dem Vorspanndruck eingestellte Druckerhöhung in den hydraulischen Spannmuttern unter gleichzeitiger Messung der entsprechenden Walzkraft (F_o) zwischen den Walzenballen und des entsprechenden Anstellweges (L_o) ermittelt wird und daß mindestens ein weiterer Kennwert (K_n) mit n=1, 2.... folgendermaßen bestimmt wird:

- die hydraulischen Spannmuttern (10) werden entspannt;
- die elektromechanische Anstellung (16) wird um einen vorgegebenen Anstellweg (Ln) zugefahren mit der Maßgabe, daß die Gerüstkappe (6) und die Ständerholme (7) lose beabstandet sind;
- die hydraulischen Spannmuttern (10) werden vorgespannt, wobei die hierdurch aufgebrachte Kraft, vorzugsweise als Walzkraft (F_n) zwischen den Walzenballen gemessen wird;
- der Anstellweg (L_n) und die gemessene Walzkraft (F_n) werden einer Rechnereinheit zur Bestimmung des zugehörigen Auffederungskennwertes (K_n) und damit zur Bestimmung der Federkennlinie des Gerüsts aufgeschaltet.

6. Verfahren nach den Ansprüchen 1, 2 oder 3, dadurch gekennzeichnet,

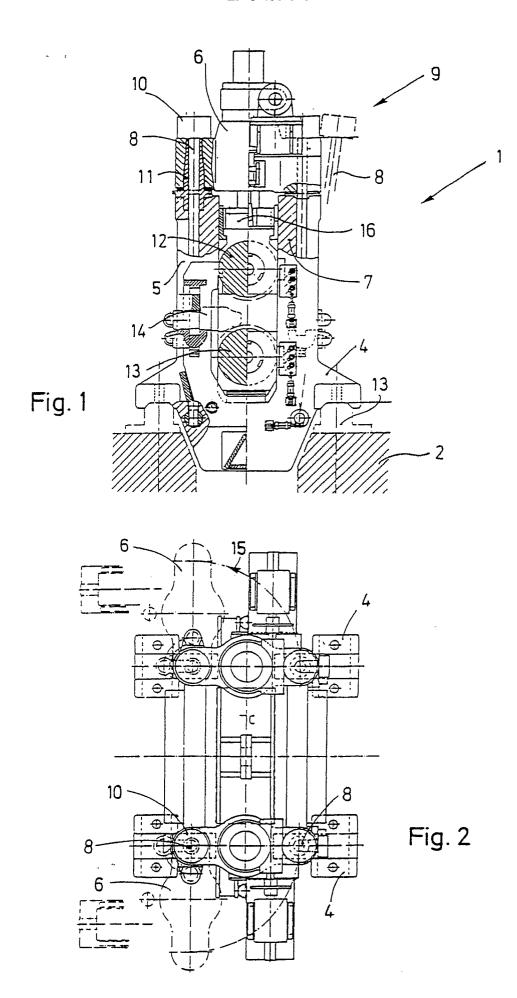
daß die Spanneinrichtung (10) eine im Betrieb vom hydraulischen Druck entlastete Einrichtung, beispielsweise mit einsetzbaren Druckstücken ist, und nachfolgende Maßnahmen in einem wiederholbaren Zyklus (n) mit n = 1, 2 durchgeführt werden:

 die hydraulischen Spanneinrichtungen (10) werden mit einem Druck beaufschlagt, der über dem Vorspanndruck eingestellt ist;

- die elektromechanische Anstellung (16) wird unter Aufrechterhaltung der Walzenberührung um einen Anstellweg (L_n) verstellt;
- die hydraulischen Spanneinrichtungen (10) werden entspannt, wobei die hierdurch an den Walzenballen aufgebrachte Walzkraft (F_n) gemessen wird;
- der Anstellweg (L_n) und die gemessene Walzkraft (F_n) werden einer Rechnereinheit zur Bestimmung des zugehörigen Auffederungskennwertes (K_n) und damit zur Bestimmung der Federkennlinie des Gerüsts aufgeschaltet.
- 7. Anwendung der mit dem Verfahren nach den Ansprüchen 1 bis 6 ermittelten Federkennlinie des Vor- und Fertiggerüsts beim Walzen von Profilen mit aufeinandergefahrenen und unter Vorspannung stehenden Walzen, wobei die Vorspannkraft stets größer als die Walzkraft ist.

20

25


30

35

40

45

50

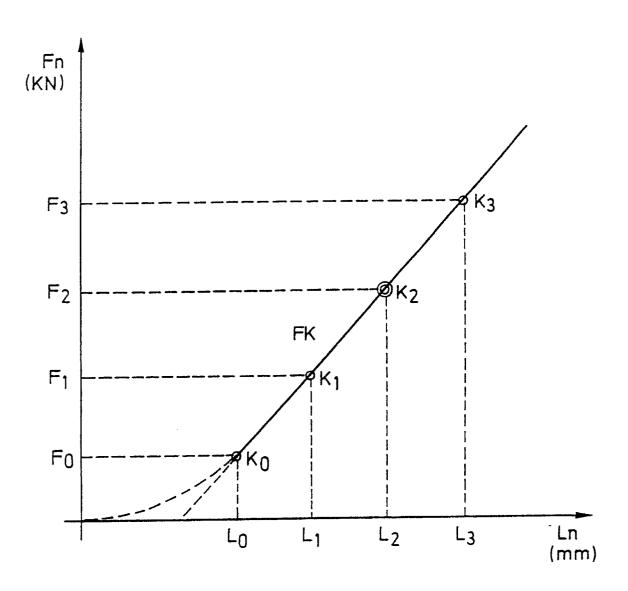


Fig.3