

① Veröffentlichungsnummer: 0 438 066 A2

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91100164.2

(51) Int. Cl.5: **B21B** 1/46, B21B 1/26

2 Anmeldetag: 07.01.91

(12)

③ Priorität: 18.01.90 DE 4001288

Veröffentlichungstag der Anmeldung: 24.07.91 Patentblatt 91/30

Benannte Vertragsstaaten:
AT BE DE ES FR GB IT LU NL SE

Anmelder: SMS SCHLOEMANN-SIEMAG
AKTIENGESELLSCHAFT
Eduard-Schloemann-Strasse 4
W-4000 Düsseldorf 1(DE)

Erfinder: Rohde, Wolfgang, Prof. Dr. Heerstrasse 43 W-4047 Dormagen-Nievenheim(DE)

Vertreter: Müller, Gerd et al Patentanwälte HEMMERICH-MÜLLER-GROSSE-POLLMEIER--MEY-VALENTIN Hammerstrasse 2 W-5900 Siegen 1(DE)

Anlage zum Auswalzen von Warmbreitband.

Beschrieben wird eine Anlage zum Auswalzen von Warambreitband aus stranggegossenen Dünnbrammen mittels einer kontinuierlichen Fertigstraße 19, die mit drei vorgeschalteten Gießmaschinen bzw. Gießlinien 1, 2, 3 arbeitet, wobei die mittlere Gießmaschine bzw. Gießlinie 2 zur Fertigstraße 19 in Linie steht. Die Überführung der Dünnbrammen 24, 25, 26 aus den Gußsträngen 21, 22, 23 in die Fertigstraße 19 wird durch zwei als kombinierte Längs/Quer/Längs-Transportsysteme arbeitende Fähren 16 und 17 vorgenommen, indem diese beiden Fähren 16 und 17 wechselweise immer mit zwei benachbart nebeneinander laufenden Gußsträngen 21, 22 oder 22, 23 in Fluchtlage gestellt werden.

ANLAGE ZUM AUSWALZEN VON WARMBREITBAND

15

30

Die Erfindung betrifft eine Anlage zum Auswalzen von Warmbreitband aus stranggegossenen Dünnbrammen mittels einer kontinuierlichen Fertigstraße.

In neu entwickelten Produktionsanlagen werden als Vormaterial für die Fertigstraße stranggegossene Dünnbrammen eingesetzt, die eine Dicke von weniger als 70 mm, vorzugsweise von 50 mm, haben. Die Dünnbrammen werden dabei von einem in einer Stranggießmaschine erzeugten Gußstrang abgetrennt, und zwar jeweils mit einer Länge, die dem geforderten Coil-Gewicht für das fertige Warmbreitband entspricht.

Zur Aufrechterhaltung der nötigen Walztemperatur werden die Dünnbrammen einem Ofen zugeführt, welcher vorzugsweise als Rollenherdofen ausgeführt ist und dabei gleichzeitig als Transportsystem von der Stranggießmaschine zur Fertigstraße benutzt werden kann.

Die derzeitig erreichbaren Gießgeschwindigkeiten von Stranggießmaschinen für Dünnbrammen-Strangguß sind jedoch relativ gering, so daß eine Kapazitätsauslastung der nachgeordneten, kontinuierlichen Fertigstraße nicht erreicht werden kann.

Immerhin liegt die Einzugsgeschwindigkeit der kontinuierlichen Warmbreitband-Fertigstraßen etwa um den Faktor 2 bis 4 höher als die Gießgeschwindigkeit der für den Dünnbrammen-Strangguß geeigneten Gießmaschinen.

Es ist deshalb bereits vorgeschlagen worden, eine kontinuierliche Warmbreitband-Fertigstraße mit zwei parallelen Stranggießmaschinen zusammenarbeiten zu lassen, derart, daß Dünnbrammen abwechselnd von jedem der beiden Gußstränge abund anschließend ieweils getrennt Warmbreitband-Fertigstraße zur Auswalzung zugeführt werden. Mit Hilfe zweier Längs/Quer/Längs-Transportsysteme, sogenannter Fähren, werden die Dünnbrammen aus der jeweiligen Gießlinie bewegt und mit der Warmbreitband-Fertigstraße in Fluchtlage gebracht, damit sie dann in diese eingezogen werden können.

Eine solche Auslegung der Anlagen zum Auswalzen von Warmbreitband aus stranggegossenen Dünnbrammen führt zwar schon zu einer deutlichen Verbesserung hinsichtlich der Auslastung der Fertigstraße und erhöht dadurch die Wirtschaftlichkeit der Gesamtanlage. Eine optimale Auslastung derselben ist jedoch auch hierdurch noch nicht erreichbar.

Die Erfindung zielt nun auf eine weitere Verbesserung der Auslastung für die Warmbreitband-Fertigstraße und damit auch der Wirtschaftlichkeit für die Gesamtanlage ab und liegt dabei darin, daß der Fertigstraße drei nebeneinander laufende, ein-

strängige Gießmaschinen bzw. Gießlinien vorgeordnet sind, von denen die mittlere mit der Fertigstraße fluchtet, daß von jedem der drei Gießstränge in im allgemeinen zeitversetzter Aufeinanderfolge einzelne Dünnbrammen abtrennbar sind, daß jede Dünnbramme auf eines von zwei den Gießmaschinen bzw. Gießlinien nachgeordneten und der Fertigstraße vorgeordneten sowie nebeneinander vorgesehenen Längs/Quer/ Längs-Transportsystemen dabei die beiden überführbar ist. daß Längs/Quer/Längs-Transportsysteme seitlichen Abstand voneinander einstellbar sind, der dem Abstand zwischen zwei benachbarten Gießmaschinen bzw. Gießlinien entspricht, daß beide Längs/Quer/Längs-Transportsysteme synchron miteinander oder untereinander gekoppelt über eine Strecke querverfahrbar sind, nach deren Durchlaufen entweder das eine oder das andere Längs/Quer/Längs-Transportsystem sowohl mit der mittleren Gießmaschine bzw. Gießlinie als auch mit der Fertigstraße in Fluchtlage steht, und daß der Fertigstraße jeweils von dem mit ihr in Fluchtlage stehenden Längs/Quer/Längs-Transportsystem die darauf befindliche Dünnbramme zuführbar ist, während gleichzeitig auf die jeweils mit einer seitlichen Gießmaschine bzw. Gießlinie fluchtende Längs/Quer/Längs-Transportvorrichtung die nachfolgend auszuwalzende Dünnbramme übergebbar ist.

Durch eine solche Auslegung der Anlage zum Auswalzen von Warmbreitband aus stranggegossenen Dünnbrammen ist eine wesentliche Verkürzung der Taktzeiten zur Beschickung der Warmbreitband-Fertigstraße mit Dünnbrammen erreichbar, wenn die Bedingungen eingehalten werden

- daß die Ladezeit für eine von einem Gießstrang abgetrennte Dünnbramme in das Längs/Quer/Längs-Transportsystem der Entladezeit einer solchen Dünnbramme aus dem Längs/Quer/ Längs-Transportsystem entspricht und
- daß die Walzzeit für die Auswalzung einer Dünnbramme jederzeit größer ist als die Fahrzeit der Längs/Quer/Längs-Transportsysteme zuzüglich dieser Lade-bzw. Entladezeit

Nach der Erfindung hat es sich dabei als wichtig erwiesen, daß jeder Gießmaschine bzw. Gießlinie vor den Längs/Quer/ Längs-Transportsystemen ein Ofen, ein Ausgleichsbereich und ein Pufferbereich zugeordnet sind, während den Längs/Quer/ Längs-Transportsystemen vor der Fertigstraße ein damit fluchtender Aufnahmeofen nachgeordnet ist.

Ebenso wichtig ist aber auch, daß die

45

Längs/Quer/Längs-Transportsysteme aus beheizbaren Fähren bestehen, die dabei als einen Längstransport enthaltende, quer verfahrbare Öfen, z.B. Rollenherdöfen, ausgelegt werden können.

Auch Ofen, Ausgleichsbereich und Pufferbereich hinter jeder Gießmaschine bzw. Gießlinie können erfindungsgemäß von einem ortsfesten Rollenherdofen gebildet werden.

Selbstverständlich sind die Transportgeschwindigkeiten aller zwischen den Gießmaschinen bzw. Gießlinien und der Warmbreitband-Fertigstraße vorgesehenen Längstransportsysteme innerhalb des einerseits durch die Gießgeschwindigkeit in den einzelnen Gießmaschinen bzw. Gießlinien und andererseits durch die Einzugsgeschwindigkeit der Warmbreitband-Fertigstraße bestimmten Bereichs so regelbar, daß sich zwischen der aufeinanderfolgenden Einführung zweier Dünnbrammen in die Warmbreitband-Fertigstraße Pufferzeiten herbeiführen lassen, die bspw. für die Durchführung von Walzenwechsel-Operationen ausreichend sind. Die Pufferspeicherung von Dünnbrammen kann in diesem Falle über den gesamten Abstandsbereich zwischen den Gießmaschinen bzw. Gießlinien und der Warmbreitband-Fertigstraße bewirkt werden, weil dieser insgesamt, also auch im Bereich der Längs/Quer/Längs-Transportsysteme bzw. Fähren von die Walztemperatur aufrechterhaltenden Öfen bzw. Heizvorrichtungen überbrückt ist.

In der Zeichnung ist die erfindungsgemäße Anlage zum Auswalzen von Warmbreitband aus stranggegossenen Dünnbrammen in einem Ausführungsbeispiel schematisch vereinfacht dargestellt. Es zeigen

Figur 1

die Gesamtanlage in der Situation vor einem Betriebsbeginn, während die

Figuren 2 bis 4

die gleiche Anlage im Betriebszustand während verschiedener, aufeinanderfolgender Arbeitsphasen wiedergeben.

In sämtlichen Figuren der Zeichnung ist zu sehen, daß drei Einstrang-Gießmaschinen bzw. Gießlinien 1, 2 und 3 nebeneinander aufgestellt sind.

Der Gießmaschine bzw. Gießlinie 1 ist in Fluchtlage ein Ofen 4, ein Ausgleichsbereich 7 und ein Pufferbereich 10 nachgeordnet. In Fluchtlage mit der Gießmaschine bzw. Gießlinie 2 befindet sich ein Ofen 5, ein Ausgleichsbereich 8 und ein Pufferbereich 11, während in Fluchtlage mit der Gießmaschine bzw. Gießlinie 3 ein Ofen 6, ein Ausgleichsbereich 9 und ein Pufferbereich 12 vorgesehen ist.

Jeder Ofen 4 bzw. 5 bzw. 6 ist mit dem ihm nachgeordneten Ausgleichsbereich 7 bzw. 8 bzw. 9 und Pufferbereich 10 bzw. 11 bzw. 12 als ein in Längsrichtung durchgehender Rollenherdofen 13 bzw. 14 bzw. 15 ausgeführt, der praktisch einen durchgehenden Längstransport bildet. Hinter den drei Rollenherdöfen 13, 14, 15 bzw. Längstransporten sind zwei sogenannte Fähren aufgebaut, deren jede als kombiniertes Längs/ Quer/Längs-Transportsystem arbeiten kann.

Wiederum im Anschluß an diese Fähren 16 und 17 ist in Fluchtlage mit der mittleren Gießmaschine bzw. Gießlinie 2 und dem mittleren Rollenherdofen bzw. Längstransport 14 ein Aufnahmeofen 18 erstellt, an den sich die Warmbreitband-Fertigstraße 19. wiederum in Fluchtlage, anschließt.

Jede der Gießmaschinen bzw. Gießlinien 1, 2 und 3 ist zur kontinuierlichen Herstellung eines - der Einfachheit halber nur angedeuteten - Gußstranges 21 bzw. 22 bzw. 23 ausgelegt.

Der Gußstrang 21 wird unmittelbar hinter der Gießmaschine bzw. Gießlinie 1 fortwährend in Dünnbrammen 24 unterteilt, die allmählich den Rollenherdofen 13 mit dem Ofenbereich 4, den Ausaleichsbereich 7 und dem Pufferbereich 10 durchlaufen. Entsprechende Dünnbrammen 25 werden auch hinter der Gießmaschine bzw. Gießlinie 2 vom Gußstrang 22 abgetrennt und in den Rollenherdofen 14 geführt, wo sie den Ofenbereich 5, den Ausgleichsbereich 8 und den Pufferbereich 11 nacheinander durchlaufen können. Schließlich wird auch unmittelbar hinter der Gießmaschine bzw. Gießlinie 3 der Gußstrang 23 fortwährend in Dünnbrmamen 26 unterteilt, die in den Rollenherdofen 15 gelangen und dort nacheinander durch den Ofenbereich 6. den Ausgleichsbereich 9 und den Pufferbereich 12 laufen.

Es sei angenommen, daß nach Inbetriebnahme der in Fig. 1 der Zeichnung gezeigten Gesamtanlage zum Auswalzen von Warmbreitband aus stranggegossenen Dünnbrammen die Gießmaschine bzw. Gießlinie 2 zuerst mit der Ausbringung des Gußstranges 22 begonnen hat, daran anschließend die Gießmaschine bzw. Gießlinie 3 ihren Gußstrang 23 liefert und zuletzt die Gießmaschine bzw. Gießlinie 1 mit der Lieferung ihres Gußstranges 21 begonnen hat.

Folglich wird die erste Dünnbramme 25 vom Gußstrang 22 abgetrennt und im Rollenherdofen 14 durch den Ofenbereich 5, den Ausgleichsbereich 8 und den Pufferbereich 11 transportiert.

Da die Gießmaschine bzw. Gießlinie 1 zuletzt mit der Ausbringung ihres Gußstranges 21 begonnen hat, wird also die Fähre 16 aus ihrer Grundstellung nach Fig. 1 in Querrichtung verfahren, bis sie in Fluchtlage mit dem Rollenherdofen 14 und dem Aufnahmeofen 18 gelangt, wie das in Fig. 2 der Zeichnung zu sehen ist. Die erste Dünnbramme 25 wird dann unmittelbar in Längsrichtung über die Fähre 16 in den Aufnahmeofen 18 transportiert und kann anschließend aus diesem in die Warmbreitband-Fertigstraße 19 eingezogen wer-

35

20

35

45

50

55

den. Gleichzeitig mit dem Abschieben der Dünnbramme 25 von der Fähre 16 in den Aufnahmeofen 18 wird eine Dünnbramme 26 aus dem Pufferbereich 12 des Rollenherdofens 15 auf die in ihrer Grundstellung verbliebene Fähre 17 verbracht, wie dies aus Fig. 2 der Zeichnung ersichtlich ist.

Nunmehr werden die beiden Fähren 16 und 17 gemeinsam bzw. synchron aus ihrer der Fig. 2 entsprechenden Betriebsstellung in die Betriebsstellung nach Fig. 3 gebracht. Dadurch gelangt die Fähre 16 aus ihrer Fluchtlage mit dem Rollenherdofen 14 in Fluchtlage mit dem Rollenherdofen 13, während die Fähre 17 aus der Fluchtlage mit dem Rollenherdofen 15 in Fluchtlage mit dem nachgeordneten Aufnahmeofen 18 gelagt. Während dann von der Fähre 17 die darauf ruhende Dünnbramme 26 in den Aufnahmeofen 18 transportiert wird, gelangt gleichzeitig die Dünnbramme 24 aus dem Pufferbereich 10 des Rollenherdofens 13 auf die Fähre 16.

Anschließend werden die beiden Fähren 16 und 17 wiederum gemeinsam bzw. synchron in entgegengesetzter Richtung quer verfahren, so daß die Fähre 17 unbeladen in Fluchtlage zum Rollenherdofen 15 zurückkehrt, während die mit der Dünnbramme 24 beladene Fähre 16 in Fluchtlage mit dem Aufnahmeofen 18 gelangt, um die Dünnbramme 24 in diesen einzufahren, während zugleich die Fähre 16 mit der nächsten Dünnbramme 25 beladen wird. Fähre 17 bleibt unbeladen. Beide Fähren 16 und 17 verbleiben über die Länge eines Walzzyklus in ihrer Lage. Danach wird die Dünnbramme 25 in den Aufnahmeofen 18 und die Dünnbramme 26 in die Fähre 17 eingefahren.

Nachdem die Fähre 17 mit der Dünnbramme 26 beladen ist, werden wiederum beide Fähren 16 und 17 synchron bzw. gemeinsam in die der Fig. 3 entsprechende Stellung verfahren.

Beim Betrieb der Gesamtanlage ist es dabei wichtig, daß die Ladezeit für die Dünnbrammen 24, 25, 26 aus den Pufferzonen 10, 11, 12 der Rollenherdöfen 13, 14, 15 der Entladezeit entspricht, welche für das Überführen der einzelnen Dünnbrammen 24, 25, 26 von den Fähren 16 bzw. 17 in den Aufnahmeofen 18 erforderlich ist.

Ebenso wichtig ist aber auch, die Geschwindigkeit so zu bemessen, daß die Walzzeit für jede Dünnbramme 24, 25, 26 in der Warmbreitband-Fertigstraße 19 immer den Zeitraum überschreitet, welcher gemeinsam für die Ladezeit bzw. Entladezeit der Fähren 16 bzw. 17 und deren Fahrzeit zum Quertransport der Dünnbrammen 24, 25, 26 benötigt wird.

Ebenso wie die stationären Rollenherdöfen 13, 14, 15 und der stationäre Aufnahmeofen 18 sind auch die beiden jeweils als Längs/Quer/Längs-Transportsysteme betreibbaren Fähren 16 und 17 beheizbar ausgeführt. Vorzugsweise lassen sie sich

dabei als in Querrichtung verfahrbare Rollenherdöfen ausführen, damit deren Herdrollen zum zwangsweisen Längstransport der einzelnen Dünnbrammen 24, 25, 26 genutzt werden können.

Abweichend von dem vorstehend anhand der Fig. 1 bis 4 erläuterten Funktionsablauf können die beiden Fähren 16 und 17 situationsbedingt entweder ihre Position beibehalten oder aber zu einer jeweils komplementären Strangkombination verfahren. Entscheidend ist hierfür immer der Umstand, aus welchem der hergestellten Gußstränge 21, 22, 23 frühestens eine übernahmebereite Dünnbramme 24, 25, 26 erwartet werden kann. Alle Gußstränge 21, 22, 23 können von der Kombination der beiden Fähren 16 und 17 gleichwertig behandelt werden.

Die Folgezeiten der Dünnbrammen 24, 25, 26 können - abhängig von der jeweiligen Einzugsgeschwindigkeit der Warmbreitband-Fertigstraße 19 - entweder vergleichmäßigt oder aber zur Erzielung von Pufferzeiten für die Durchführung von Walzenwechseloperationen gezielt und symmetrisch gefahren werden. Hierzu müssen natürlich sämtliche Längstransporte, welche zwischen den Gießmaschinen bzw. Gießlinien 1, 2, 3 und der Warmbreitband-Fertigstraße 19 betrieben werden, hinsichtlich ihrer Transportgeschwindigkeit in Grenzen regelbar sein, die einerseits durch die Gießgeschwindigkeit der einzelnen Gußstränge 21, 22, 23 und andererseits durch die Einzugsgeschwindigkeit der Warmbreitband-Fertigstraße 19 betimmt sind.

Bezugszeichen

1, 2, 3	Gießmaschine bzw. Gießlinie
4, 5, 6	Ofenbereich
7, 8, 9	Ausgleichsbereich
10, 11, 12	Pufferbereich
13, 14, 15	Rollenherdofen/Längstransport
16, 17	Fahren bzw. Längs/Quer/Längs-
	Transportsystem
18	Aufnahmeofen
19	warmbreitband-Fertigstraße

Patentansprüche

1. Anlage zum Auswalzen von Warmbreitband aus stranggegossenen Dünnbrammen mittels einer kontinuierlichen Fertigstraße,

dadurch gekennzeichnet,

daß der Fertigstraße (19) drei nebeneinanderlaufende, einsträngige Gießmaschinen bzw. Gießlinien (1, 2, 3) vorgeordnet sind, von denen die mittlere Gießmaschine bzw. Gießlinie (2) mit der Fertigstraße (19) fluchtet, daß von jedem der drei Gießstränge (21, 22, 23) in vorgebbarer und zeitversetzter Aufeinanderfolge einzelne Dünnbrammen (24, 25, 26) abtrennbar sind, 15

25

30

35

45

50

55

daß jede Dünnbramme (24, 25, 26) auf eines von zwei den Gießmaschinen bzw. Gießlinien (1, 2, 3) nachgeordneten und der Fertigstraße (19) vorgeordneten sowie nebeneinander vorgesehenen Längs/Quer/Längs-Transportsystemen (16, 17) überführbar ist, daß dabei die beiden Längs/Quer/Längs-Transportsystemen (16, 17) guf einen seitlichen Abstantungs (16, 17) guf einen seitlichen gegen gegen

daß dabei die beiden Längs/Quer/Längs-Transportsysteme (16, 17) auf einen seitlichen Abstand voneinander einstellbar sind, der dem Abstand zwischen zwei benachbarten Gießmaschinen bzw. Gießlinien (1, 2 bzw. 2, 3) entspricht, daß beide Längs/Quer/Längs-Transportsysteme (16, 17) synchron miteinander oder untereinander gekoppelt über eine Strekke querverfahrbar sind, nach deren Durchlaufen entweder das eine oder das andere Längs/Quer/ Längs-Transportsystem (16 oder 17) sowohl mit der mittleren Gießmaschine bzw. Gießlinie (2) als auch mit der Fertigstraße (19) in Fluchtlage steht,

und daß der Fertigstraße (19) jeweils von dem mit ihr in Fluchtlage stehenden Längs/Quer/Längs-Transportsystem (16 oder 17) die darauf befindliche Dünnbramme (24, 25, 26) zuführbar ist,

während auf das jeweils mit einer seitlichen Gießmaschine bzw. Gießlinie (1 bzw. 3) fluchtende Längs/Quer/Längs-Transportsystem die nachfolgend auszuwalzende Dünnbramme (24, 25, 26) übergebbar ist.

2. Anlage nach Anspruch 1,

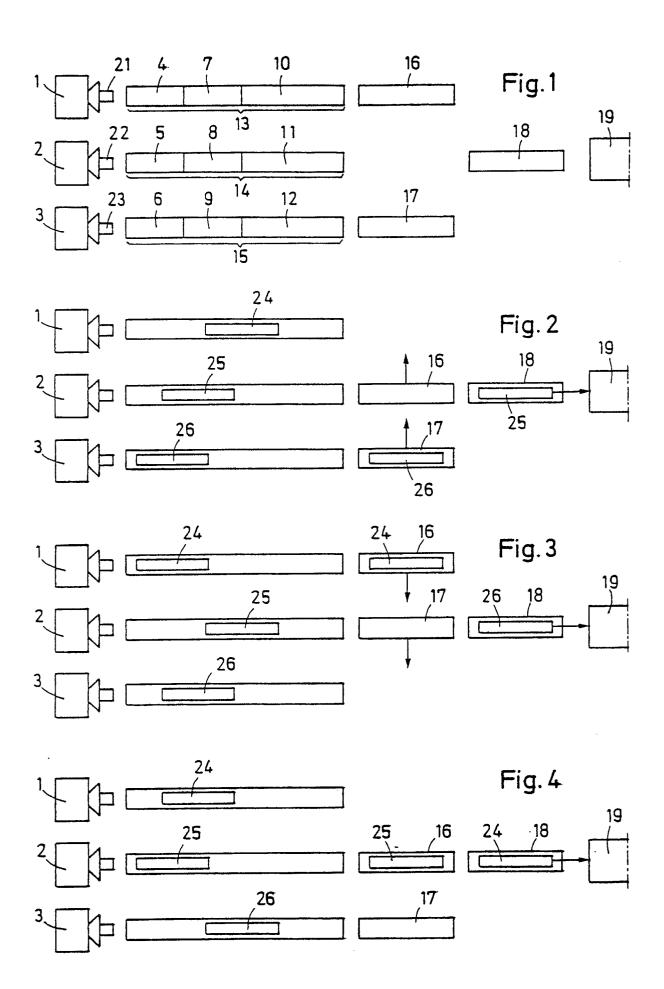
dadurch gekennzeichnet,

daß jeder Gießmaschine bzw. Gießlinie (1, 2, 3) vor den Längs/Quer/Längs-Transportsystemen (16 und 17) ein Ofenbereich (4, 5, 6), ein Ausgleichsbereich (7, 8, 9) und ein Pufferbereich (10, 11, 12) zugeordnet sind, während den Längs/Quer/Längs-Transportsystemen (16 und 17) vor der Fertigstraße (19) ein damit fluchtender Aufnahmeofen (18) nachgeordnet ist.

3. Anlage nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet,

daß die Längs/Quer/Längs-Transportsysteme (16 und 17) aus beheizbaren Fähren bestehen.

4. Anlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,


daß die Fähren (16 und 17) als einen Längstransport enthaltende, quer verfahrbare Öfen, z.B. Rollenherdöfen, ausgelegt sind.

5. Anlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,

daß jeweils ein ortsfester Rollenherdofen (13, 14, 15) einen Ofenbereich (4 bzw. 5 bzw. 6),

einen Ausgleichsbereich (7 bzw. 8 bzw. 9) und einen Pufferbereich (10 bzw. 11 bzw. 12) umfaßt.

5

