

① Numéro de publication : 0 440 517 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 91400114.4

(51) Int. Cl.5: **B63C 11/46**, B63G 8/00

(22) Date de dépôt : 18.01.91

30) Priorité: 02.02.90 FR 9001220

(43) Date de publication de la demande : 07.08.91 Bulletin 91/32

84 Etats contractants désignés : BE DK ES FR GB GR IT NL SE

71 Demandeur: Gastaud, Paul-Louis 39, avenue Paul Doumer F-75116 Paris (FR) 72 Inventeur : Gastaud, Paul-Louis 39, avenue Paul Doumer F-75116 Paris (FR)

Mandataire: Tanguy, Gilbert André
SOCIETE INTERNATIONALE 19, rue de la Paix
F-75002 Paris (FR)

Système de navigation du type à structure flottante permettant l'exploration du milieu sous-marin.

L'invention concerne un système de navigation du type à structure flottante, caractérisé en ce qu'il comporte, montée coulissant sur des moyens de glissière (2) au moins une cellule creuse étanche (3) susceptible d'être déplacée par des moyens d'actionnement (4) entre une position hors de l'eau (I) et une position sous l'eau (II, III).

SYSTEME DE NAVIGATION DU TYPE A STRUCTURE FLOTTANTE PERMETTANT L'EXPLORATION DU MILIEU SOUS-MARIN

10

20

25

30

35

40

45

50

Jusqu'à présent pour l'exploration du milieu sousmarin, on utilisait, en tant que dispositifs, des vaisseaux du type entièrement submersibles. L'utilisation de ces submersibles exige un entraînement spécialisé de l'équipage, ce qui jusqu'à présent a limité leur développement à l'échelon commercial grand public. De plus, de tels engins, du fait des dispositifs sophistiqués qu'ils exigent en fonctionnement, sont particulièrement onéreux et ne peuvent guère être utilisés que par les organismes étatiques, tels que la Marine Nationale ou bien les entreprises spécialisées dans les recherches sous-marines.

De nombreuses tentatives ont été faites dans la technique antérieure pour proposer des engins semisubmersibles avec nacelle rapportée. C'est ainsi que dans US-A-4.276.851 est décrit un engin flottant sur lequel est rapportée une poutre traversante télescopique à l'extrémité inférieure de laquelle est monté un habitacle susceptible d'être positionné en plongée. Ce positionnement est commandé à partir d'un dispositif couplé aux moyens moteurs actionnant l'hélice de propulsion de l'engin flottant en surface. Par ailleurs dans FR-A-2.606.359 est décrit un engin nautique semi-submersible comportant une nacelle montée entre deux flotteurs et susceptible de prendre une position juste sous la surface de l'eau grâce à un système articulé actionné par vérin. Dans un article de Marine Engineers Review de Novembre 1986, on fait état de l'utilisation d'un mini-submersible présentant un habitacle monté entre deux flotteurs à ballast. Dans WO-A-8.502.152 est décrit un engin flottant en partie submersible pourvu d'un système de bras articulés actionné par vérin. Par ailleurs dans GB-A-2.046.673 est également décrit un engin flottant semi-submersible pourvu d'un système connu de ballasts permettant à un habitacle central de prendre une position juste au dessous de la surface de l'eau.

Un objet de la présente invention est de réaliser un nouveau système de navigation qui, tout en permettant une exploration sous-marine, ne nécessite pas la mise en oeuvre de moyens ultra-sophistiqués comme dans les sous-marins et autres bathyscaphes connus dans la technique antérieure.

Un autre objet de l'invention est de réaliser un système de navigation présentant toutes les caractéristiques de sécurité, bien qu'il soit d'un prix de revient relativement bas par rapport aux autres dispositifs connus de la technique antérieure.

Encore un autre objet de l'invention est de réaliser un ensemble mécanique de plongée fixé sur un engin flottant et fonctionnant par réaction hydrodynamique avec asservissement mécanique ou électrique éventuel permettant à une nacelle étanche fixée sur un mât à glissière de descendre sous l'eau à une profondeur définie.

La présente invention a donc pour objet un système de navigation du type à structure flottante, caractérisé en ce qu'il comporte, montée coulissante sur des moyens de glissière, au moins une cellule creuse étanche susceptible d'être déplacée par des moyens d'actionnnement constitués par des gouvernails de profondeur coopérant avec les moyens moteurs destinés au déplacement du système de navigation, entre une position hors de l'eau et une position choisie sous l'eau.

Dans une forme de réalisation préférée de l'invention, les moyens de glissière sont constitués par au moins un mât, qui peut être le mât proprement dit du système de navigation, conformé pour présenter une structure de glissière coopérant avec une structure de coulissement solidaire de la cellule habitacle, afin de permettre le déplacement de cette dernière.

Si ce système de navigation présente plusieurs cellules, il est clair qu'au moins une de ces cellules servira de cellule de pilotage, les commandes de navigation du navire étant alors doublées entre la cellule et le pont.

Chaque cellule présente la forme d'une bulle habitacle avec son siège, son dispositif de conditionnement d'air et éventuellement un dispositif de type Schnorchel permettant une prise d'air en surface en cas de défaillance du système d'aération accélérée par ventilation de la cellule.

Les moyens d'actionnement permettant le positionnement de la cellule constitués par des gouvernails de profondeur coopérant avec des moyens moteurs particuliers qui sont actionnés par les moyens moteurs permettant le déplacement du système de navigation, peuvent l'être également par des moyens autonomes, par exemple du type électrique actionnés par des batteries ou des cellules photovoltaïques.

La cellule ou bulle habitacle est constituée avantageusement, en tout ou en partie par un matériau transparent. La cellule peut également être équipée d'un périscope de façon à permettre une navigation en plongée à partir des commandes de pilotage spécifiques de la bulle. Par ailleurs le mât peut être conçu comme un ensemble télescopique, de façon à n'être point limité en plongée par la longueur d'un mât classique, auquel cas on peut également adjoindre au système de navigation une centrale hydraulique permettant l'actionnement dudit système télescopique. On peut également prévoir sur la structure flottante un système de contrepoids se déplaçant dans l'axe du système de navigation, de façon à compenser les sollicitations en déséquilibre auxquelles sera soumis le

10

système de navigation en fonction de la position de la cellule qui devra être obligatoirement lestée.

D'autres caractéristiques et avantages de la présente invention ressortiront à la lecture de la description suivante d'une forme de réalisation non limitative de système de navigation pour exploration sous-marine de l'invention, en référence au dessin annexe, dans lequel :

- la figure 1 est une vue latérale en élévation du système de navigation de l'invention;
- la figure 2 est une vue plus en détail de la cellule ou bulle habitacle représentée sur le système de navigation de la figure 1; et
- la figure 3 est une vue en perspective de la bulle montée sur le système de navigation;
- la figure 4 est une vue latérale en élévation de la bulle montée sur un catamaran ; et
- la figure 5 est une vue de dessus de l'agencement de la figure 4.

Sur la figure 1 est représentée une structure flottante 1 comportant un mât 2. Ce mât 2 est conformé pour servir de glissière à une bulle habitacle 3 en matière plastique transparente en coopérant avec une structure de coulissement 3a solidaire de ladite bulle. Cette bulle habitacle 3 est susceptible, sous l'action de moyens moteurs, de se déplacer le long du mât 2 d'une position I dans laquelle la base de la bulle 3 se trouve dans le plan du fond du bateau 1 en une position II dans laquelle la bulle se trouve immergée, puis en une position III où la bulle atteint son maximum d'immersion.

Le volume de la bulle 3 est d'environ 1 m3, ce qui se traduit par une poussée d'une tonne en état d'immersion, lorsque la bulle est complètement vide. Il faut donc prévoir de lester le fond de la bulle avec des matériaux présentant par exemple un poids spécifique de deux à trois fois celui de l'eau. Ce lest est avantageusement conçu sous la forme de tiroirs amovibles susceptibles de coulisser dans des structures prévues sur le fond de la bulle 3, à l'intérieur ou à l'extérieur de cette dernière, ces tiroirs pouvant être pourvus de structures de blocage ou d'encastrement, de façon à éviter leur perte par désengagement en fonctionnement du système.

Comme cela apparaît mieux sur la figure 2, la cellule ou bulle 3 est pourvue de gouvernails de profondeur 4 à sa partie basse, ainsi que de projecteurs 5.
La bulle est également pourvue d'un périscope 6 de
façon à permettre à l'opérateur installé sur son siège
7 de piloter en profondeur par l'intermédiaire des
commandes C1 qui sont associées aux commandes
C2 montées sur la superstructure, tout en ayant une
vue panoramique en surface. En fonctionnement du
système de navigation selon la présente invention, il
suffit simplement lorsque le système de navigation,
par exemple un bateau du type catamaran, avance,
de réduire la vitesse avant de décrocher la cellule
habitacle qui se trouve alors en partie haute I et

d'orienter de façon appropriée les gouvernails de profondeur 4 qui aideront à faire descendre la bulle sous l'eau en des positions immergées II et III. La glissière 2 est équipée d'une butée de fin de course, destinée à bloquer la cellule 3 en partie basse III. A ce sujet, on a prévu un levier de blocage/déblocage qui permet de verrouiller la bulle en partie basse III et de la débloquer pour la faire remonter d'elle-même en fin de course

Il est évident qu'en position haute I, la bulle ou cellule 3 lestée aura un poids tendant à faire basculer le bateau vers l'avant. Par contre, lors de la plongée, cette bulle aura tendance à soulever l'avant du bateau. Pour établir en toutes positions de la bulle un équilibre stable du bateau, on a prévu un contrepoids 8 qui, par l'intermédiaire d'un système de glissière et de câble, se déplacera dans l'axe du bateau en fonction de la position de la bulle 3.

Bien que la mouvement de la bulle 3 peut être contrôlé à la fois par l'action de la gravité, la poussée d'Archimède et l'action des gouvernails de profondeur 4, il est également judicieux de prévoir un système de déplacement de la bulle commandée par des moyens moteurs ou des moyens manuels. C'est ainsi qu'on peut prévoir un système de moteur électrique actionné par un générateur, lui-même en prise avec le moteur du système de navigation, ou bien disposant d'une réserve d'énergie autonome du type batterie électrique ou batterie solaire.

Dans la forme de réalisation des figures 4 et 5, on a monté sur la structure centrale 9 d'un catamaran 10 un châssis 11 présentant un mât central 11a coopérant avec une structure de coulissement 12, avantageusement télescopique, à l'extrémité inférieure de laquelle est montée une nacelle 13 susceptible de se déplacer en hauteur sous l'eau selon les flèches f1 et f2 sous l'action de moyens moteurs, non représentés au dessin. Il est clair qu'une telle forme de réalisation est pourvue de tous les dispositifs du type gouvernails de profondeur, moyens manuels de déplacement de la cellule, périscope, contrepoids et autres dont il est question ici et dans ce qui suit.

Les moyens manuels seront avantageusement constitués par un dispositif à crémaillère actionné par manivelle. Il faut également prévoir un système de conditionnnement d'air ou de ventilation de la bulle, par exemple du type Schnorchel.

Pour la sécurité des passagers, la bulle ou cellule sera équipée d'une trappe d'ouverture facile à actionner par ouverture d'un verrouillage de sécurité, uniquement dans le cas où il est impossible de remonter la bulle. Le système de cellule habitacle de la présente invention peut s'adapter de façon simple, efficace, économique, esthétique, sur différents types de bateau et notamment très facilement sur les catamarans.

Les applications du système de navigation selon la présente invention sont très nombreuses, que ce

45

5

10

15

20

25

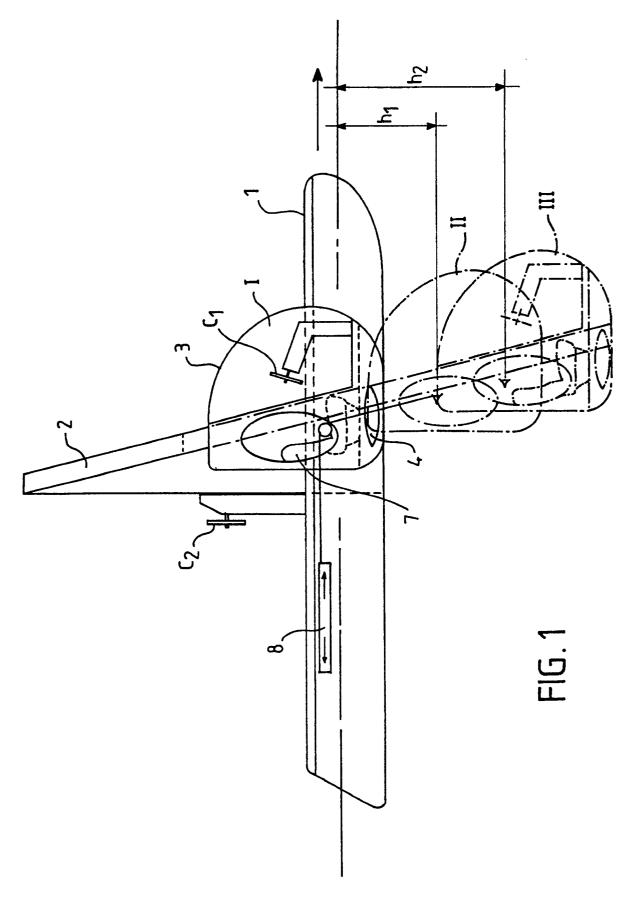
30

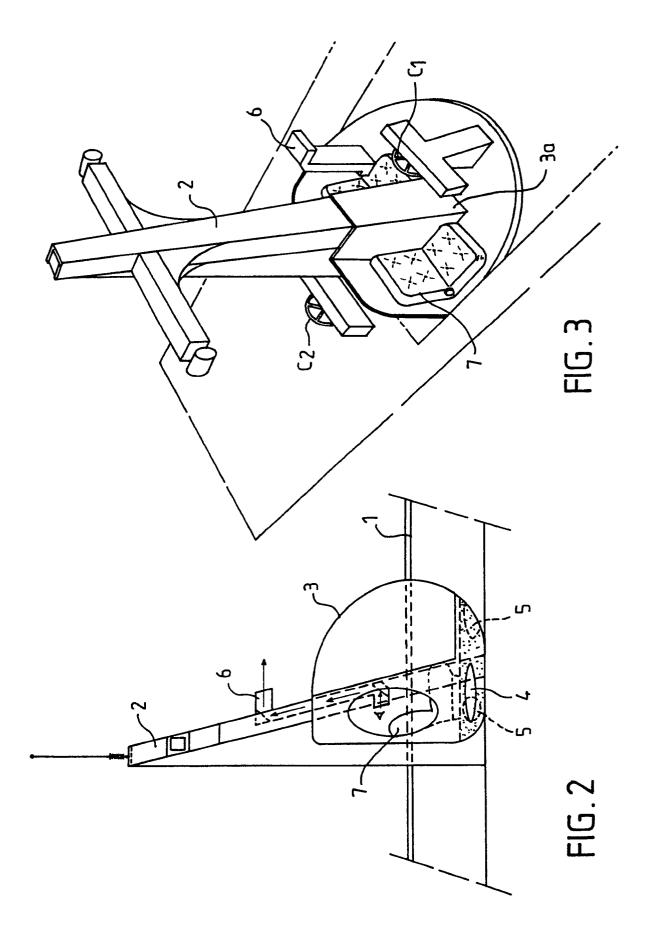
45

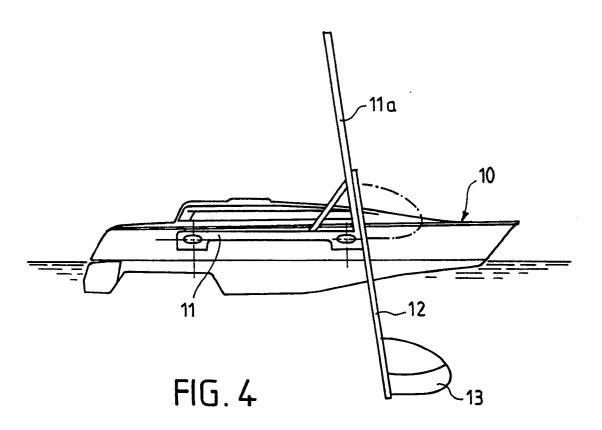
50

55

soit dans le domaine des loisirs ou bien des activités professionnelles, notamment pour la surveillance en école de plongée, le repérage d'épaves, la recherche sous-marine, la visite des ports, la vérification des coques des navires, celle des piles de phares et de ponts, dans les clubs de vacances, les flottes de location, les flottes personnelles et analogues.


La cellule habitacle en elle-même peut être constituée en n'importe quelle matière supportant d'être plongée dans un milieu liquide et de résister aux pressions inhérentes aux déplacements de fluides. On utilisera par exemple des matières plastiques transparentes du type polycarbonates. On peut également concevoir une bulle ou cellule habitacle en polystratifiés partiellement ou totalement transparents. De même, à la place du mât glissière, on peut utiliser un mât télescopique dont une zone d'extrémité est fixée à la superstructure du système de navigation, tandis que l'autre extrémité est solidaire de la bulle ou cellule habitacle. Il est également clair que par système de navigation à structure flottante, on entend tout navire, bâtiment, bateau, catamaran, trimaran, mono et multicoques de différents types, radeaux, pontons et analogues, sur lesquels le mât et la bulle peuvent être adaptés et qui peuvent reprendre leur fonction normale lorsque la bulle est soit en position haute, soit démontée du mât.


Revendications


- Système de navigation du type à structure flottante, ce système comportant, montée coulissante sur des moyens de guidage (2) au moins une cellule creuse étanche (3) susceptible d'être déplacée par des moyens d'actionnement (4) constitués par des gouvernails de profondeur (4) coopérant avec les moyens moteurs destinés au déplacement du système de navigation, entre une position hors de l'eau (I) et une position choisie sous l'eau (II, III).
- 2. Système selon la revendication 1, dans lequel les moyens de guidage comprennent un moyen de glissière est constitué par au moins un mât (2) conformé pour présenter une structure de glissière coopérant avec une structure de coulissement (3a) solidaire de la cellule habitacle (3), afin de permettre le déplacement de cette dernière.
- Système selon l'une quelconque des revendications 1 à 2, dans lequel au moins une des cellules
 est une cellule de pilotage.
- 4. Système selon l'une quelconque des revendications 1 à 3, dans lequel chaque cellule présente la forme d'une bulle habitacle (3) constituée partiellement ou totalement par un matériau transpa-

rent, par exemple une matière plastique du type polycarbonate.

- 5. Système selon la revendication 1 ou la revendication 5, dans lequel les moyens d'actionnement constitués par des gouvernails de profondeur (4) coopèrent avec des moyens moteurs particuliers, actionnés soit par les moyens moteurs permettant le déplacement du système de navigation, soit par des moyens moteurs autonomes, par exemple du type électrique actionné par batteries ou cellules photovoltaïques (5).
- 6. Système selon l'une quelconque des revendications 1 à 5, dans lequel sont en outre prévus des moyens manuels permettant le déplacement de la cellule (3) le long du mât (2), ces moyens étant du type à manivelle associée à un dispositif de crémaillère.
- Système selon l'une quelconque des revendications 1 à 6, dans lequel la cellule habitacle (3) est équipée d'un périscope (6).
- 8. Système selon l'une quelconque des revendications 1 à 7, dans lequel les moyens de guidage comprennent un dispositif de mât télescopique, dont une zone d'extrémité est fixée à la superstructure du système de navigation, tandis que l'autre zone d'extrémité est solidarisée à la cellule habitacle (3).
- Système selon l'une quelconque des revendications 1 à 8, dans lequel en ce qu'est prévu un contrepoids (8) susceptible de se déplacer selon l'axe longitudinal axial du système de navigation afin d'assurer à chaque instant l'équilibre de ce dernier, quelle que soit la position de la cellule habitacle (3).
 - 10. Application du système de navigation à structure flottante selon l'une des revendications 1 à 9, à tout navire, bâtiment, bateau, catamaran, trimaran, mono et multicoques de différents types, radeaux, pontons et analogues, sur lesquels le mât et la bulle peuvent être adaptés et qui peuvent reprendre leur fonction normale lorsque la bulle est soit en position haute, soit démontée du mât.

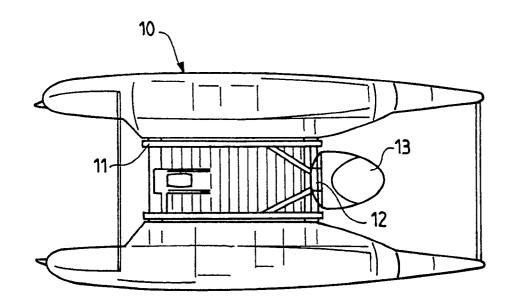


FIG. 5