(19)
(11) EP 0 442 510 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
21.08.1991  Patentblatt  1991/34

(21) Anmeldenummer: 91102120.2

(22) Anmeldetag:  14.02.1991
(51) Internationale Patentklassifikation (IPC)5B06B 1/02
(84) Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(30) Priorität: 14.02.1990 DE 4004541

(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT
D-80333 München (DE)

(72) Erfinder:
  • Rüttel, Martin
    W-8621 Grub a. Forst (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren und Einrichtung für die Ultraschall-Flüssigkeits-Zerstäubung


    (57) Ein Oszillator (12) mit Frequenzsteuereingang (14) gibt ein Ansteuersignal (s) mit einstellbarer Ansteuerfrequenz (f) an den zur Zerstäubung vorgesehenen Ultraschallwandler (8) in einer Flüssigkeit (4) ab. Um jeweils den optimalen Betriebspunkt (f*) einzuhalten, ist erfindungsgemäß ein Frequenz-Nachführzweig (20) vorgesehen, über den die Ansteuerfrequenz (f) in Abhängigkeit von dem am Ultraschallwandler (8) abgegriffenen Signal (U) nachgeführt wird. Dieser Frequenz-Nachführzweig (20) umfaßt bevorzugt einen Amplituden-Demodulator (22), ein Bandfilter (24) und einen Mikroprozessor (26). Letzterer dient auch zur Auslösung eines Testlaufs zu Beginn eines Zerstäubungsvorgangs, um festzustellen, ob die aktuelle Arbeitsfrequenz des Ultraschallwandlers (8) unterhalb oder oberhalb der optimalen Arbeitsfrequenz (f*) liegt.




    Beschreibung


    [0001] Die Erfindung bezieht sich auf ein Verfahren zur Ansteuerung eines Ultraschallwandlers zur Zerstäubung einer Flüssigkeit, wobei ein Ansteuersignal mit einstellbarer Ansteuerfrequenz dem Ultraschallwandler zugeleitet wird. Sie bezieht sich weiterhin auf eine Einrichtung zur Ansteuerung eines Ultraschallwandlers zur Zerstäubung einer Flüssigkeit mit einem steuerbaren Oszillator, der ein Ansteuersignal mit einstellbarer Ansteuerfrequenz abgibt und der ausgangsseitig an den Ultraschallwandler angeschlossen ist.

    [0002] Piezokeramische Ultraschallwandler zur Zerstäubung von Flüssigkeiten werden in verschiedenen Einrichtungen eingesetzt, zum Beispiel in Inhalationsgeräten oder in Luftbefeuchtern. In letzteren wird Wasser zur Luftbefeuchtung herangezogen. Bei all diesen Einrichtungen ist es von entscheidender Bedeutung, daß die Anregungs- oder Ansteuerfrequenz für den Ultraschallwandler optimal an diesen angepaßt ist. Als optimaler Betriebspunkt wird dabei der Betriebszustand bezüglich Speisestrom, Speisespannung und Ansteuerfrequenz verstanden, in dem bei einer bestimmten zugeführten elektrischen Leistung das pro Zeiteinheit zerstäubte Flüssigkeitsvolumen am größten ist. Normalerweise liegt dieser optimale Betriebspunkt auf einer Resonanzfrequenz des Ultraschallwandlers. Bedingt durch die Einbaugeometrie oder durch Abweichungen des Ultraschallwandlers von einer idealen vorgegebenen Bauform kann jedoch der genannte Punkt des größten Wirkungsgrades leicht verschoben sein. Dies kann durch die bisher bekannten Ansteuerprinzipien für den Ultraschallwandler nur unzureichend erkannt und korrigiert werden.

    [0003] Bisher sind zwei Verfahren zur Frequenzabstimmung gebräuchlich:
    Das erste Verfahren bezieht den Ultraschallwandler selbst als frequenzbestimmendes Element in eine Schwingschaltung, zum Beispiel in einen Leistungsoszillator, ein. Dies Prinzip ist beispielsweise in einem käuflich erhältlichen Ultraschall-Flüssigkeits-Zerstäuber realisiert (Ultraschall-Zerstäuber EFE-HMV1R7M6E der Firma Matsushita Electric, Spezifikation der Firma Quick-Ohm GmbH, D-5600 Wuppertal). Hier wird ein puls-code-modulierter Sender mit eigenem Oszillator verwendet, der über den Ultraschallwandler Ultraschallwellen der Frequenz 1,7 MHz auf eine Wasseroberfläche strahlt. Das Auftreffen der Ultraschallwellen auf die Grenzschicht zwischen Wasser und Luft verursacht ein Aufsteigen der Flüssigkeit, was sich als feiner Wasserstaub oder Nebel bemerkbar macht. Der Ultraschallwandler wird hierbei am Unterteil eines Wassertanks befestigt. - Eine Möglichkeit zur Verwendung des Ultraschallwandlers als frequenzbestimmendes Element ist zum Beispiel auch die Anordnung des Ultraschallwandlers in der Rückkopplungsleitung eines Oszillators. Dies ist beispielsweise in der EP-A-O,240,360 beschrieben. Danach wird der Amplituden- und Phasenfrequenzgang des Ultraschallwandlers dazu benutzt, die vom Oszillator abgegebene Ansteuerfrequenz auf die Resonanzfrequenz des Ultraschallwandlers zu ziehen. Dieses Verfahren hat den Nachteil, daß die so erhaltene Arbeitsfrequenz auch von anderen Schaltungsbauteilen beeinflußt wird und somit merklich neben der optimalen Arbeitsfrequenz des Ultraschallwandlers liegen kann. Auch ist hier für eine sichere Funktion eine gewisse Schwinggüte des Ultraschallwandlers erforderlich, was an die Fertigungsgenauigkeit bei der Herstellung des Ultraschallwandlers hohe Anforderungen stellt.

    [0004] Bei dem zweiten Verfahren (dies wurde bisher von der Anmelderin praktiziert) wird mit Hilfe eines separaten Oszillators, der in seiner Frequenz einmalig eingestellt wird, eine stabile Arbeitsfrequenz über einen Leistungsverstärker auf den Ultraschallwandler gegeben. Durch eine Messung des vom Ultraschallwandler erzeugten Schalldrucks kann nun die optimale Arbeitsfrequenz ermittelt und am geräteeigenen Oszillator für den Ultraschallwandler einmalig fest eingestellt werden. Die optimale Arbeitsfrequenz liegt dabei vor, wenn der Schalldruck maximal geworden ist. Führt man den geräteeigenen Oszillator als quarzstabilisierten Frequenzsynthesizer aus, erhält man ein relativ stabiles Ansteuersystem mit gutem Wirkungsgrad. Nachteilig ist jedoch der hohe Aufwand in der Fertigung, der durch den geschilderten Abstimmvorgang verursacht ist. Bedingt durch die feste Frequenzeinstellung werden hierbei auch Frequenzabweichungen durch Alterung des Ultraschallwandlers nicht kompensiert. Dies kann eine Verschlechterung des Wirkungsgrades über die Lebensdauer bewirken.

    [0005] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art so auszugestalten, daß ein Arbeiten am optimalen Betriebspunkt möglich ist, und zwar unbeeinflußt von anderen Schaltungsbauteilen und von Alterungserscheinungen des Ultraschallwandlers. Insbesondere soll eine Nachführung der Ansteuerfrequenz des Ultraschallwandlers während des Betriebs ermöglicht werden derart, daß der Punkt des größten Zerstäubungs-Wirkungsgrades stets eingehalten wird.

    [0006] Die genannte Aufgabe wird bei dem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß die Ansteuerfrequenz in Abhängigkeit von dem am Ultraschallwandler abgegriffenen Signal nachgeführt wird.

    [0007] Bevorzugt wird dabei so vorgegangen, daß das am Ultraschallwandler abgegriffene Signal demoduliert und anschließend gefiltert wird, wonach aus dem demodulierten und gefilterten Signal ein aktuelles Mittelwertsignal gebildet wird, das zur Einstellung der Ansteuerfrequenz verwendet wird.

    [0008] Von Bedeutung ist, daß eine "Richtungsinformation", das heißt eine Information darüber, ob die aktuelle Arbeitsfrequenz oberhalb oder unterhalb der optimalen Arbeitsfrequenz (bei der sich optimale Zerstäubung ergibt) liegt, zumindest bei Betriebsaufnahme erhalten wird. Dies ist wichtig, weil ja die Ansteuerfrequenz entsprechend reduziert bzw. vergrößert werden muß. Um die "Richtungsinformation" zu erhalten und zu berücksichtigen, ist nach einer besonders vorteilhaften Weiterbildung vorgesehen, daß zumindest zu Beginn eines Zerstäubungsvorgangs versuchsweise die Ansteuerfrequenz von einem vorgegebenen Frequenzwert aus nach oben oder unten durchgestimmt wird, und daß das hierbei im Verlaufe der Zeit erhaltene Test-Mittelwertsignal auf das Vorliegen eines Maximums untersucht wird. Bei Vorliegen eines Maximums wird die "Richtungsinformation" erhalten, und die Ansteuerfrequenz wird dann unter Berücksichtigung der "Richtungsinformation" nach Maßgabe des aktuellen Mittelwertsignals im Frequenzbereich des Maximums nachgeführt. Das genannte Durchstimmen und Aufsuchen des Maximums sowie die Veränderung der Ansteuerfrequenz wird hierbei vorzugsweise mit Hilfe eines Mikro-Computers oder Mikroprozessors durchgeführt.

    [0009] Die genannte Aufgabe wird bei der Einrichtung zur Ansteuerung eines Ultraschallwandlers der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß ein Frequenz-Nachführzweig vorgesehen ist, der den Eingang des Ultraschallwandlers mit dem Frequenzsteuereingang des Oszillators verbindet.

    [0010] Bevorzugt umfaßt der Frequenz-Nachführzweig einen Amplituden-Demodulator und ein nachgeschaltetes Bandfilter. Dabei sollte dem Bandfilter ein Mikroprozessor nachgeschaltet sein, dessen Ausgang mit dem Frequenzsteuereingang des Oszillators verbunden ist.

    [0011] Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

    [0012] Das vorliegende Verfahren und die vorliegende Einrichtung basieren auf der Ansteuerung des Ultraschallwandlers mit einer Ansteuerfrequenz, die im Betrieb korrigiert werden kann. Das Wesentliche dabei ist, daß zur Frequenzabstimmung ein Signal benutzt wird, das direkt mit der Zerstäubungsleistung zusammenhängt und alle parasitären Einflüsse beinhaltet. Es ist dies das erwähnte, am Ultraschallwandler abgegriffene Signal, das die Reflektion der Ultraschallwellen an der Flüssigkeits-Oberfläche widerspiegelt. Der Ultraschallwandler, ein piezoelektrischer, vorzugsweise ein piezokeramischer Ultraschallwandler, wird ja sowohl zum Senden als auch zum Empfangen verwendet.

    [0013] Ausführungsbeispiele der Erfindung werden im folgenden anhand von drei Figuren näher erläutert. Es zeigen:
    FIG 1
    eine Ultraschall-Flüssigkeits-Zerstäubungseinheit, die zur Luftbefeuchtung vorgesehen ist,
    FIG 2
    das am Ultraschallwandler abgegriffene Signal bei Fehlabstimmung, das heißt ohne Zerstäubung, und
    FIG 3
    das am Ultraschallwandler abgegriffene Signal bei optimaler Zerstäubung.


    [0014] Nach Figur 1 befindet sich in einem Gefäß 2 eine zu zerstäubende Flüssigkeit 4, vorliegend Wasser. Die Flüssigkeitsoberfläche ist mit 6 bezeichnet. Am Boden des Gefäßes 2 ist ein piezoelektrischer, vorzugsweise ein piezokeramischer Ultraschallwandler 8 angeordnet. Er sendet im Betrieb Ultraschallwellen 10 in Richtung auf die Wasseroberfläche 6 aus. Die Abstrahlfläche des Ultraschallwandlers 8 ist gekrümmt. Er wird zum Aussenden der Ultraschallwellen 10, gleichzeitig aber auch zum Empfangen der an der Flüssigkeitsoberfläche 6 reflektierten Ultraschallwellen eingesetzt.

    [0015] Die Einrichtung zur Ansteuerung des Ultraschallwandlers 8 umfaßt einen steuerbaren Oszillator 12, der ein Ansteuersignal s mit einstellbarer Ansteuerfrequenz f abgibt. Es handelt sich bevorzugt um einen Sinusoszillator. Die Ansteuerfrequenz f liegt vorliegend im Bereich von 0,5 bis 5 MHz, vorzugsweise im mittleren Bereich von 2,5 MHz. Die Ansteuerfrequenz f kann durch ein Ansteuersignal p am Frequenzsteuereingang 14 des Oszillators 10 beeinflußt werden. Der Oszillator 12 ist ausgangsseitig an den Eingang eines Leistungsverstärkers 16 angeschlossen. Dessen Ausgang 18 wiederum ist an den Ultraschallwandler 8 angeschlossen.

    [0016] Gemäß Figur 1 ist weiterhin ein Frequenz-Nachführzweig 20 vorgesehen, der den Ausgang 18 des Leistungsverstärkers 16 und damit den Eingang des Ultraschallwandlers 8 mit dem Frequenzsteuereingang 14 des Oszillators 12 verbindet. Dieser Frequenz-Nachführzweig 20 umfaßt vorliegend einen mit dem Ausgang 18 verbundenen Amplituden-Demodulator 22, ein nachgeschaltetes Bandfilter 24 und einen diesem nachgeschalteten Mikroprozessor 26, dessen Ausgang mit dem Frequenzsteuereingang 14 des Oszillators 12 verbunden ist. Der Frequenzbereich des Bandfilters 14 liegt dabei im Bereich von 50 Hz bis 10 kHz. Es ist dazu vorgesehen, denjenigen Bereich unterhalb der Nutzfrequenz von etwa 2,5 MHz herauszufiltern, in dem das maximale Rauschen liegt, wenn Zerstäubung eintritt. Bei dem Demodulator 22 handelt es sich um eine Gleichrichterschaltung, insbesondere um eine Dioden-Schaltung.

    [0017] Im Betrieb wird der Ultraschallwandler 8 über die Leistungsstufe 16 mit dem Ansteuersignal s der einstellbaren Ansteuerfrequenz f aus dem steuerbaren Oszillator 12 versorgt. Der Ultraschallwandler 8 sendet dann Schallwellen 10 durch die Flüssigkeit 4 an deren Oberfläche 6. Dort werden die Ultraschallwellen reflektiert, und ein Teil dieser reflektierten Ultraschallwellen gelangt wieder zurück auf den Ultraschallwandler 8, wo sie in elektrische Signale umgesetzt werden. Diese Signale werden dem Steuersignal vom Leistungsverstärker 16 am Ausgang 18 zum Signal U überlagert. Das hier abgegriffene Signal U gelangt auf den Amplituden-Demodulator 22 und von dort auf das nachgeschaltete Bandfilter 24. Hier wird aus der Hüllkurve des Ausgangssignals U, das in den Figuren 2 und 3 bei Fehlabstimmung bzw. optimaler Abstimmung in Abhängigkeit der Zeit t dargestellt ist, eine Meßspannung oder ein "aktuelles Mittelwertsignal" m gewonnen. Dieses aktuelle Mittelwertsignal m wird zur Steuerung des Oszillators 12 verwendet. Liegt eine "Richtungsinformation" vor, welche vom Mikroprozessor 26 ermittelt wird, so kann daraus und aus dem Signal m das Signal p gebildet und dem Frequenzsteuereingang 14 aufgeschaltet werden.

    [0018] Zu Beginn eines Zerstäubungsvorgangs wird versuchsweise die Ansteuerfrequenz f mit Hilfe des Mikroprozessors 26 von einem vorgegebenen Frequenzwert fo aus nach oben oder unten zeitlich verändert (Testlauf). Als Signal m erhält man dann im Verlaufe der Zeit t ein Test-Mittelwertsignal m'. Dieses wird vom Mikroprozessor 26 auf das Vorliegen eines Maximums untersucht. Der Mikroprozessor 26 ermittelt dabei auch, ob der ursprünglich vorgegebene Frequenzwert fo oberhalb oder unterhalb derjenigen Frequenz f* liegt, bei der das Maximum des Test-Mittelwertsignals m' auftritt. Dies ist die oben erwähnte "Richtungsinformation". Abhängig von dieser Information und vom Signal m verändert der Mikroprozessor 26 das Ansteuersignal p so, daß das genannte Maximum - diesem entspricht der Punkt des größten Zerstäubungs-Wirkungsgrades -eintritt und anschließend festgehalten wird. Mit anderen Worten: Bei Vorliegen des Maximums in der gewählten Richtung (nach oben oder unten) wird die Ansteuerfrequenz f nach Maßgabe des aktuellen Mittelwertsignals m im Frequenzbereich des Maximums nachgeführt. Der Mikroprozessor 26 ist also imstande festzustellen, daß das Maximum überschritten wurde, und er ist so eingerichtet, daß das Ansteuersignal p die Ansteuerfrequenz f in Richtung auf die optimale Frequenz f* führt.

    [0019] Es wurde bereits erwähnt, daß ein Teil der an der Oberfläche 6 reflektierten Ultraschallwellen wieder auf den Ultraschallwandler 8 zurückgelangt. In der Flüssigkeit 4 bilden sich stehende Wellen aus. Da der Ultraschallwandler 8 nicht nur elektrische Energie in Ultraschall, sondern auch umgekehrt Ultraschall in elektrische Energie umwandeln kann, wirkt sich der reflektierte Ultraschall unmittelbar auf das Ausgangssignal am Ausgang 18 aus. Je nach Amplitude und Phasenlage der Reflektionen ergibt sich am Innenwiderstand des Leistungsverstärkers 16 ein Spannnungsabfall U, der sich aus der Addition des Ausgangssignals des Verstärkers 16 mit dem reflektierten Signal ergibt.

    [0020] Solange die Ansteuerfrequenz f weit vom optimalen Arbeitspunkt f* des Ultraschallwandlers 8 entfernt liegt, bleibt die Flüssigkeitsoberfläche 6 ruhig. Das Wellenfeld 10 wird dann nicht gestört, und das Signal U unterliegt keiner zeitlichen Änderung. Dies ist in Figur 2 gezeigt. In diesem Fall liefert der Amplituden-Demodulator 22 eine reine Gleichspannung, und die Meßspannung m hinter dem Bandpaßfilter 24 ist nahezu Null. In Figur 2 ist das Signal s - abweichend von der bevorzugten sinusförmigen Ausbildung - als Dreieckssignal gezeigt.

    [0021] Wird nun vom Mikroprozessor 26 die Ansteuerfrequenz f des Ansteuersignals s in Richtung auf die optimale Arbeitsfrequenz f* des Ultraschallwandlers 8 verschoben, wird die Flüssigkeitsoberfläche 6 zunehmend unruhiger. Durch diese Bewegung an der Flüssigkeitsoberfläche 6 wird das Wellenfeld 10 gestört. Der reflektierte Signalanteil wird dadurch mit einem niederfrequenten Rauschen moduliert, das insbesondere im Bereich von 50 Hz bis 10 KHz liegt. Dieses Rauschen ist durch die Hüllkurven hl und h2 in Figur 3 verdeutlicht. Aus diesem so verrauschten Signal U wird über den Demodulator 22 und das Bandpaßfilter 24 das aktuelle Mittelwertsignal m gebildet, das nun nicht mehr Null ist, sondern einen durchaus meßbaren Wert aufweist. Es könnte als "Rauschsignal" bezeichnet werden.

    [0022] Bei weiterer Annäherung an den optimalen Arbeitspunkt f* (Punkt des größten Wirkungsgrades) wird dieses Mittelwert- oder Meßsignal m größer. Bei Einsetzen der Zerstäubung nimmt neben der Amplitude dieses Rauschsignals m auch dessen Bandbreite zu. Im optimalen Arbeitspunkt, der charakterisiert wird durch die Arbeitsfrequenz F*, tritt maximales Rauschen auf. Bei passender Dimensionierung des Bandpaßfilters 24 kann ein sehr genaues Abstimmverhalten erzielt werden. Das aktuelle Mittelwertsignal oder Rauschsignal m wird dabei vom Mikroprozessor 26 als Steuersignal p zur Frequenzsteuerung des Oszillators 12 verwendet.


    Ansprüche

    1. Verfahren zur Ansteuerung eines Ultraschallwandlers (8) zur Zerstäubung einer Flüssigkeit (4), wobei ein Ansteuersignal (s) mit einstellbarer Ansteuerfrequenz (f) dem Ultraschallwandler (8) zugeleitet wird, dadurch gekennzeichnet, daß die Ansteuerfrequenz (f) in Abhängigkeit von dem am Ultraschallwandler (8) abgegriffenen Signal (U) nachgeführt wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das am Ultraschallwandler (8) abgegriffene Signal (U) demoduliert und anschließend gefiltert wird.
     
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß aus dem demodulierten und gefilterten Signal (m) ein aktuelles Mittelwertsignal (p) gebildet wird, das zur Einstellung der Ansteuerfrequenz (f) verwendet wird.
     
    4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß zumindest zu Beginn eines Zerstäubungsvorgangs versuchsweise die Ansteuerfrequenz (f) von einem vorgegebenen Frequenzwert aus nach oben oder unten durchgestimmt wird, daß das hierbei im Verlaufe der Zeit (t) erhaltene Test-Mittelwertsignal auf das Vorliegen eines Maximums untersucht wird, um eine Richtungs-Information zu erhalten, daß bei Vorliegen eines Maximums aus dem aktuellen demodulierten und gefilterten Signal (m) und aus der Richtungs-Information das aktuelle Mittelwertsignal (p) qebildet wird, und daß die Ansteuerfrequenz (f) dann nach Maßgabe des aktuellen Mittelwertsignals (p) im Frequenzbereich des Maximums nachgeführt wird.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das dem Ultraschallwandler (8) zugeleitete Ansteuersignal (s) sinusförmig ist.
     
    6. Einrichtung zur Ansteuerung eines Ultraschallwandlers (8) zur Zerstäubung einer Flüssigkeit (4) mit einem steuerbaren Oszillator (12), der ein Ansteuersignal (s) mit einstellbarer Ansteuerfrequenz (f) abgibt und der ausgangsseitig an den Ultraschallwandler (8) angeschlossen ist, dadurch gekennzeichnet, daß ein Frequenz-Nachführzweig (20) vorgesehen ist, der den Eingang (18) des Ultraschallwandlers (8) mit dem Frequenzsteuereingang (14) des Oszillators (12) verbindet.
     
    7. Einrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Frequenz-Nachführzweig (20) einen Amplituden-Demodulator (22) und ein nachgeschaltetes Bandfilter (24) umfaßt.
     
    8. Einrichtung nach Anspruch 7, dadurch gekennzeichnet, daß dem Bandfilter (24) ein Mikroprozessor (26) nachgeschaltet ist, dessen Ausgang mit dem Frequenzsteuereingang (14) des Oszillators (12) verbunden ist.
     
    9. Einrichtung nach einem der Ansprüche 6 bis 87 dadurch gekennzeichnet, daß zwischen dem Oszillator (12) und dem Ultraschallwandler (8) ein Leistungsverstärker (16) angeordnet ist, an dessen Ausgang (18) der Frequenz-Nachführzweig (20) angeschlossen ist.
     
    10. Einrichtung nach einem der Ansprüche 6 bis 97 dadurch gekennzeichnet, daß der Ultraschallwandler (8) ein piezoelektrischer, vorzugsweise ein piezokeramischer Ultraschallwandler ist.
     
    11. Einrichtung nach einem der Ansprüche 6 bis 107 dadurch gekennzeichnet, daß der Oszillator (12) ein Sinusoszillator ist.
     
    12. Einrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die vom Oszillator (12) abgegebene Frequenz im Bereich von 075 bis 5 MHz und daß der Frequenzbereich des Bandfilters (24) im Bereich von 50 Hz bis 10 KHz liegt.
     




    Zeichnung







    Recherchenbericht