

(1) Publication number: 0 447 138 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91301960.0

(51) Int. Cl.5: G03C 7/30

(2) Date of filing: 08.03.91

30) Priority: 14.03.90 JP 63615/90

(43) Date of publication of application: 18.09.91 Bulletin 91/38

84 Designated Contracting States:
DE GB IT NL

(1) Applicant: KONICA CORPORATION 26-2, Nishishinjuku 1-chome, Shinjuku-ku Tokyo 160 (JP) (72) Inventor : Shimazaki, Hiroshi Konica Corporation, 1 Sakura-machi

Hino-shi, Tokyo (JP) Inventor: Yamada, Yoshitaka

Konica Corporation, 1 Sakura-machi

Hino-shi, Tokyo (JP) Inventor: Shimba, Satoru

Konica Corporation, 1 Sakura-machi

Hino-shi, Tokyo (JP)

(74) Representative: Brock, Peter William et al URQUHART-DYKES & LORD 91 Wimpole Street London W1M 8AH (GB)

- (54) Color photographic light-sensitive material.
- A silver halide color photographic light-sensitive material is disclosed. The material comprises a support, and, coated thereon, a blue-sensitive silver halide emulsion layer, a green-sensitive silver halide emulsion layer and a red-sensitive silver halide emulsion layer, each layer containing a sensitizing dye, wherein the maximum sensitivity wavelength λ Rmax, maximum sensitivity SRmax and sensitivity at 610 nm SR₆₁₀ of the red-sensitive emulsion layer and the maximum sensitivity wavelength λ Gmax, maximum sensitivity SGmax, and sensitivity at 545 nm SG₅₄₅ of the green-sensitive emulsion layer satisfy the following requirements:

590 nm $\leq \lambda$ Rmax \leq 625 nm, SR₆₁₀ \geq 0.8SRmax 520 nm $\leq \lambda$ Gmax \leq 570 nm, SG₅₄₅ \leq 0.8SGmax

COLOR PHOTOGRAPHIC LIGHT-SENSITIVE MATERIAL

FIELD OF THE INVENTION

5

10

The present invention relates to a silver halide color photographic material, more specifically to a silver halide color photographic material capable of forming color photographic images which offers excellent color reproduction even under various conditions with different light sources.

BACKGROUND OF THE INVENTION

In recent years there have been noticeable image quality improvements in silver halide multiple-layered color photographic light-sensitive materials. Specifically, all of the three major factors of image quality, i.e., graininess, sharpness and color reproduction have reached a fair level. For example, prints and slide photographs obtained by users in ordinary color photography do not appear to be significantly unsatisfactory.

However, with respect to one of the three factors, namely color reproduction, there have been no significant improvements in the color reproduction of those colors which have conventionally been said to be difficult to reproduce photographically, though there have been improvements in color purity.

In other words, much remains unsatisfactory as to hue reproducibility. For example, the colors such as purple and bluish purple which reflect light of wavelengths longer than 600 nm and the green colors such as bluish green and yellowish green are sometimes reproduced into colors by far different from the original color, which may disappoint the user. Spectral sensitivity distribution and interlayer effect (interimage effect) have been reported as the major factors associated with color reproduction.

With respect to the interimage effect, it is effective on the improvement in color reproducibility parameters, particularly color purity, in silver halide multiple-layered color photographic light-sensitive materials. To obtain an interimage effect are available the recently commonly used method using a so-called diffusible DIR, which offers high mobility for inhibitor or its precursor, and the method which provides an effect similar to the interimage effect by using a colored coupler in an amount more than the amount to compensate the undesirable absorption in the case of color negative films.

However, when using a large amount of a colored coupler, the minimum film density increases and it becomes very difficult to make a proper judgment for printing color density correction, which may often result in print color quality degradation. In addition, the interimage effect is difficult to control with respect to its orientation, and is faulty in that it causes a hue change, though it offers an increased color purity. Control of interimage effect orientation is described in US Patent No. 4,725,529, for instance.

To solve these problems, there has been proposed a method based on a combination of spectral sensitivity distribution and interimage effect, which is disclosed in Japanese Patent Publication Open to Public Inspection No. 34541/1986, for instance.

In these proposals, an attempt has been made to improve hue reproduction for the above-mentioned colors which are difficult to reproduce using color films, and it appears effective to some extent. In a typical example of this method, it is intended to obtain an interimage effect not only from the major wavelength for each of the blue-, green-and red-sensitive layers as conventional but also from a wavelength other than the major wavelength of each color-sensitive layer.

This method appears to be effective to some extent in the improvement of hue reproduction for some colors. However, to ensure the interimage effect, an interimage effect ensuring layer and another kind of light-sensitive silver halide are needed in addition to the essential blue-, green- and red-sensitive layers. In addition, increases in the coating amount of silver and the number of production processes pose a problem of high production cost, and the obtained effect is not fully satisfactory.

On the other hand, to improve the color reproducibility, consideration must be given to minimization of hue change in color reproduction among light sources used in taking pictures.

With respect to this kind of problems, much attention has been paid to color reproducibility fluctuation due to changes in light source color temperature. As a means of solving this problem, US Patent No. 3,672,898, for instance, discloses an appropriate spectral sensitivity distribution to mitigate color reproducibility fluctuation among light sources used in taking pictures.

These approaches are based on the reduction in sensitivity fluctuation in each layer in relation to light source color temperature changes in taking pictures by approximating the spectral sensitivity distribution of the blue- and red-sensitive layers to that of the green-sensitive layer. In this case, however, color purity degradation occurs because the spectral sensitivity distributions overlap each other due to approximation of the three color-sensitive layers. In this regard, color purity degradation can be prevented to some extent by enhancing the

interimage effect using a so-called diffusible DIR or another appropriate means as commonly known.

It was found, however, that even any combination of the methods described above offers nothing more than extremely unsatisfactory color reproduction in the case of picture taking under fluorescent lamp or under mixed light of strobe light and fluorescent lamp. Specifically, when using a fluorescent lamp light source alone or even when using strobe light under the influence of a fluorescent lamp, the reproduced colors tend to be greenish, particularly the reproduced skin color lacks liveliness.

SUMMARY OF THE INVENTION

10

15

20

25

30

40

45

50

The object of the present invention is to provide a color photographic light-sensitive material with high sensitivity which offers exact color reproduction not only under daylight picture taking conditions but also under fluorescent lamp picture taking conditions.

DETAILED DESCRIPTION OF THE INVENTION

The present inventors made intensive investigations and found that the object of the invention described above can be accomplished by a silver halide color photographic light-sensitive material having at least one blue-sensitive silver halide emulsion layer, at least one green-sensitive silver halide emulsion layer and at least one red-sensitive silver halide emulsion layer on the support, wherein the maximum sensitivity wavelength λR_{max} , maximum sensitivity SR_{max} and sensitivity at 610 nm SR₆₁₀ of the red-sensitive emulsion layer and the maximum sensitivity wavelength λG_{max} , maximum sensitivity SG_{max} and sensitivity at 545 nm SG₅₄₅ of the green-sensitive emulsion layer satisfy the following requirements:

 $\begin{array}{l} 590\text{nm} \leqq \lambda \; R_{\text{max}} \leqq 625\text{nm} \; SR_{\text{610}} \geqq 0.8 \; SR_{\text{max}} \\ 520\text{nm} \leqq \lambda \; G_{\text{max}} \leqq 570\text{nm} \; SG_{545} \leqq 0.8 \; SG_{\text{max}} \end{array}$

The present invention is hereinafter described in more detail.

With respect to color reproduction in picture taking under different kinds of light sources, focus of discussion has been placed on light source color temperature, and a large number of proposals have been made for technical improvements. In recent years, however, there have been frequent occurrence of troubles in picture taking under fluorescent lamp lighting as fluorescent lamps have become commonly used lighting equipment in daily life.

A typical claim is that pictures taken in the presence of fluorescent lamp light are so greenish that the face of a person photographed lacks liveliness. This was found to be due to the spectral distribution of fluorescent lamp light consists of two components, one having a continuous smooth curve in the visible region and the other having a bright line (characteristic curve) in a particular wavelength region, and is sensed as strongly greenish, less reddish by color films while being felt white by human eyes. On a related note, there are numerous kinds of fluorescent lamps, and the so-called three-wavelength fluorescent lamp, which has recently gained wide popularity as ordinary household appliance, was found to expand the color shift described above in color photography because of the great contribution of the bright line.

The present inventors found that the problem described above can be well overcome by setting the spectral sensitivity distribution at a minimum density (D_{min}) + 0.3 so that the green- and red-sensitive layers fall in the relationship described in the claim of the invention.

In a preferred mode of the present invention, it is more preferable that the sensitivity at 610 nm, SR_{610} exceed 90% of the maximum spectral sensitivity, SR_{max} in the spectral sensitivity distribution $SR(\lambda)$ of the redsensitive layer at a density of D_{min} + 0.3.

Also, to efficiently obtain the desired spectral sensitivity, it is preferable to adsorb the sensitizing dyes of the present invention contained in the green- and red-sensitive layers upon the chemical sensitization of the silver halide.

To obtain the spectral sensitivity distribution in the red-sensitive layer of the present invention, various means can be used, including the use of a spectral sensitizing dye. This constituent can be obtained by a combination of at least one sensitizing dye represented by the formula I and at least one sensitizing dye represented by the formula I is used in an amount of 10 to 90 mol%, preferably 60 to 90 mol%, based on the total amount of dyes used. It is also possible to combine at least one of the formula I, at least one of the formula II and at least one of the formula III.

The sensitizing dyes represented by formulas I, II and III are described below.

Formula I

 Z_{1} Z_{2} R_{3} X_{2} R_{3} X_{1} R_{3} X_{2} R_{3} X_{2} R_{3} X_{2} R_{5}

wherein R_1 represents a hydrogen atom, an alkyl group or an aryl group; R_2 , R_3 , R_4 and R_5 independently represent an alkyl group or an aryl group.

 Z_1 , Z_2 , Z_3 and Z_4 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an acyloxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonylamino group, a carbamoyl group, an aryl group, an alkyl group, a cyano group or a sulfonyl group.

 Z_1 and Z_2 and/or Z_3 and Z_4 respectively may link together to form a ring.

 X_1 represents an anion. n represents the integer 1 or 2; when the sensitizing dye forms an intramolecular salt, n represents 1.

Formula II

25

15

20

$$Z_{5}$$

$$Z_{6}$$

$$X_{1}$$

$$CH - C = CH$$

$$R_{5}$$

$$X_{2}$$

$$R_{8}$$

$$(X_{2}^{\Theta})_{n-1}$$

35

40

30

wherein R_6 represents a hydrogen atom, an alkyl group or an aryl group; R_7 , R_8 , R_9 and R_{10} independently represent an alkyl group or an aryl group.

 Y_1 and Y_2 independently represent a nitrogen atom, an oxygen atom, a sulfur atom or a selenium atom; when Y_1 is a sulfur atom, an oxygen atom or a selenium atom, it does not have the above R_7 . Also, both Y_1 and Y_2 do not represent a nitrogen atom or a sulfur atom.

 Z_5 , Z_6 , Z_7 and Z_8 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an acyloxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonylamino group, a carbamoyl group, an aryl group, an alkyl group, a cyano group, or a sulfonyl group. Z_5 and Z_5 and/or Z_7 and Z_8 respectively may link together to form a ring. Also, Z_8 represents an anion. In represents the integer 1 or 2; when the sensitizing dye forms an intramolecular salt, in represents 1.

Formula III

55

$$Z_{3}$$
 Z_{10}
 X_{3}
 Z_{11}
 Z_{12}
 Z_{12}
 Z_{12}
 Z_{13}

wherein R_{11} represents a hydrogen atom, an alkyl group or an aryl group; R_{12} and R_{13} independently represent an alkyl group or an aryl group. Also, Y_3 and Y_4 independently represent a sulfur atom or a selenium atom.

 Z_9 , Z_{10} , Z_{11} and Z_{12} independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an acyloxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonylamino group, a sulfonyl group, a carbamoyl group, an aryl group, an alkyl group or a cyano group. Z_9 and Z_{10} and/or Z_{11} and Z_{12} respectively may link together to form a ring. X_3^{\odot} represents an anion. n represents the integer 1 or 2; when the sensitizing dye forms an intramolecular salt, n represents 1.

Typical examples of the sensitizing dyes represented by formulas I, II and III are given below.

10

$$(I-1)$$

$$C_{2}II_{5} \qquad C_{2}II_{5}$$

$$C_{4}II_{5}OOC \qquad CII = CII - CII - CII - CII - COOC_{4}II_{5}$$

$$C_{4}II_{5}OOC \qquad COOC_{4}II_{5}$$

$$C_{4}II_{5}OOC \qquad COOC_{4}II_{5}$$

(1-2)

25

$$C_2 II_5$$

35

30

$$(I-3)$$

$$CII = CII - CII = CII_2)_3 SO_3 \circ (CII_2)_3 SO_3 II$$

CzIIs

45

$$(I-4)$$

50

55

(1-5)

5
$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$CH = CII - CII$$

$$CN$$

$$CII_{2})_{3}SO_{3} \circ (CII_{2})_{3}SO_{3}Na$$

(I-6)

(1-7)

35
$$C_{2}II_{5}$$

(8-1)

(1 - 9)

₁₅ (I—10)

$$C\varrho \longrightarrow C_{2}II_{5}$$

$$C\varrho \longrightarrow C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

(I—11)

25

$$C_{2}II_{5}$$

⁴⁰ (I−12)

55

(1-13)

5
$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

(1-14)

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

²⁵ (I – 15)

30
$$C\varrho \longrightarrow CII = CII - CII = CII_{2} CII_{2} CII_{2} CIICII_{3}$$

$$SO_{3} \circ$$

(1-16)

45
$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{5}II_{5}$$

$$C_{7}II_{7}$$

50

(I-17)

5
$$C\ell \longrightarrow CII = CII - CII \longrightarrow C\ell$$

$$Cll_2CII_2CONII_2 \longrightarrow Cll_3$$

$$Cll_2CII_2CONII_2 \longrightarrow Cll_3$$

15 (I—18)

C2 II 5 CII 2 CII 2 CII 2 CII 2 CII 2 CII 2 CII 3 COCCII 3

C1 CII = CH - CH - CH - CL

(CH₂)₃SO₃
$$\circ$$
 (CII₂)₃SO₃Na

(1-19)

35
$$C_{2}II_{5} \qquad C_{2}II_{5}$$

⁴⁰ (1 −20)

(1-21)

5

$$C_{2}II_{5}$$
 $C_{2}II_{5}$
 $C_{2}II_{5}$

(I—22)

$$C_{2}II_{5}$$

(I —23)

25

30
$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}H_{5}$$

$$C_{5}H_{5}$$

$$C_{6}H_{2}H_{5}H_{5}$$

$$C_{7}H_{5}H_{5}$$

$$C_{8}H_{5}H_{5}$$

$$C_{8}H_{5}H_{5}H_{5}$$

$$C_{8}H_{5}H_{5}H_{5}$$

$$C_{8}H_{5}H_{5}H_{5}$$

$$C_{8}H_{5}H_{5}H_{5}$$

$$C_{8}H$$

(1-24)

Cocil 3

$$C_2$$
 II 5

 C_2 II

55

(I-25)

5
$$CQ \qquad \qquad C_{2}II_{5}$$

$$CQ \qquad \qquad CII = CII - CII = \qquad N$$

$$CQ \qquad \qquad (CII_{2})_{3}SO_{3} \circ \qquad (CII_{2})_{3}SO_{3}II \cdot N(C_{2}II_{5})_{3}$$

(I —26)

$$C\ell \longrightarrow Cl = CH - Cl \longrightarrow Br$$

$$Cl \longrightarrow Cll = CH - Cll \longrightarrow Br$$

$$Cll_2)_3SO_3 \circ (Cll_2)_3SO_3Na$$

(I—27)

25

40 (I −28)

55

(I-29)

5
$$C\varrho \qquad \qquad C_{2}\text{H}_{5}$$

$$C \varrho \qquad \qquad C \text{II} = \text{CH} - \text{CH} \qquad \qquad C \text{OOCH}_{3}$$

$$C \varrho \qquad \qquad (\text{CH}_{2})_{3}\text{SO}_{3} \qquad \qquad C_{2}\text{H}_{5}$$

(I —30)

$$C_{2}II_{5}$$
 $C_{2}II_{5}$
 $C_{2}II_{5}$

(1-31)

25

35
$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{6}II_{5}$$

$$C_{7}II_{5}$$

$$C_{8}II_{5}$$

40 (I —32)

55

(I - 33)

5
$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{5}$$

$$C_{8}H_{7}$$

$$C$$

15 (I —34)

$$CH_{2}CH_{2} \longrightarrow CH_{2}CH_{2} \longrightarrow CH_{$$

(I-I)

30
$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

40 (II − 2)

45
$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

(II - 3)

Se
$$CH-CH=CH$$
 $CH_{3}O$ $CH_{3}O$

(II — 4)

C₂H₅

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

(II - 5)

25

35
$$C_{2}II_{5}$$

$$N$$

$$CF_{3}$$

$$(CII_{2})_{3}SO_{3}Na$$

$$(CH_{2})_{4}SO_{3}^{\circ}$$

(I-6)

(II - 7)

5
$$C_{3}H_{7}(i)$$

$$N$$

$$C_{2}H_{5}$$

$$C_{1}H_{2}COOH$$

$$C_{3}H_{7}(i)$$

$$C_{2}H_{5}$$

$$C_{1}H_{2}COOH$$

$$C_{1}H_{2}COOH$$

(I-8)

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

(I — 9)

25

35
$$C_{2} \text{II}_{5}$$

$$C_{1} - \text{CII} - \text{CII} - \text{CII} - \text{CII} - \text{COOCH}_{3}$$

$$C_{1} \text{CII}_{2} \text{CII}_{3} \text{SO}_{3} \text{II} \qquad (C_{1} \text{H}_{2})_{4} \text{SO}_{3} \text{e}$$

40 (Ⅱ—10)

55

(II—11)

5 Se CII—CH = CII—
$$\frac{\text{CH}_3}{\text{N}}$$
 CQ (CII₂)₃SO₃II (CH₂)₃SO₃ Θ

(II —12)

$$C_{2}II_{+}OCII_{3}$$

$$C_{3}II_{5}OCII_{5}O$$

(Ⅱ—13)

25

35
$$C_{2}H_{4}OH$$

$$C_{11}-CH-CH-CH-CH}$$

$$C_{11}_{2}COOH$$

$$C_{11}_{2}COOH$$

$$C_{11}_{3}COOH$$

$$C_{11}_{3}COOH$$

55

(II-15)

5
$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{2}II_{5}$$

(II -16)

S

CI -CII - CII - CII - CII

O

(CII₂)₃SO₃H

(CII₂)₂CHSO₃

CH₃

(II—17)

25

Se
$$C_2 II_5$$

$$CH_3 O \qquad CH = CH - CH \qquad N$$

$$CD \qquad CO$$

$$CH_3 O \qquad CH_2 O \qquad CO$$

$$CH_2 O \qquad CH = CH - CH$$

(Ⅱ—18)

55

(II - 19)

5
$$C-CH=CH-CH=C$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{6}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{5}$$

(II —20)

(II —21)

25

35
$$C = CII = CII - CII = C$$

$$CII_3 O = CII - CII C$$

(II - 22)

SC-CII=CII-CII=C
$$\frac{C_2II_5}{N}$$
CII₂)₃SO₃ $\frac{C_2II_5}{N}$
(CII₂)₄SO₃Na

(II —23)

5
$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{6}II_{5}$$

$$C_{7}II_{5}$$

$$C_{8}II_{5}$$

(II —24)

CH₃

$$CH_3$$

$$CH_4$$

$$CH_3$$

$$CH_3$$

$$CH_4$$

$$C$$

(II—25)

25

30
$$C_2H_5$$
 C_2H_5 C_2H_5

(II —26)

SC-CII=CH-CII=C
$$\frac{C_2 II_6}{N}$$
 Cl
 $\frac{C_2 II_6}{N}$ Cl

55

(II - 27)

5
$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{6}II_{5}$$

$$C_{7}II_{5}$$

$$C_{8}II_{5}$$

(II —28)

$$C\ell = CH - CH = CH - CH = C C\ell$$

$$C\ell = CH - CH = CH - CH = C C\ell$$

$$C\ell = CH - CH = CH - CH = C C\ell$$

$$C\ell = CH - CH = CH - CH = C C\ell$$

$$C\ell = CH - CH = CH - CH = C C\ell$$

$$C\ell = CH - CH = CH - CH = C C\ell$$

(II—29)

25

35
$$C\ell \qquad CII = C - CII = C$$

$$C \in C_2 \text{ if 5}$$

40 (Ⅱ −30)

Cli – Cli = Cli –
$$Cli_3$$
 C_2li_5
 Cli_3
 Cli_3

55

(II —31)

5 $CII_{3}O$ $CII_{2}O_{3}SO_{3}II$ $CII_{2}O_{3}SO_{3}O$ $CII_{2}O_{3}SO_{3}O$

(II —32)

CH₃ CII_3 CII_2 CII_2 CII_2 CII_3 CII_3 CII_3 CII_2 CII_2 CII_3 CII_3

25 (II — 33)

15

40

50

30 CII = C - CII = C $C_2 II_5$ CI $CII_2 \setminus_3 SO_3 \circ (CII_2)_4 SO_3 Na$ $CII_2 \setminus_3 SO_3 \circ (CII_2)_4 SO_3 Na$

(**II** −34)

Coll = C-CII S

Coll = C-CII S

(CII₂)₃SO₃ Θ (CII₂)₃SO₃Na

(11 - 35)

5
$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

(I —36)

(I —37)

25

(II - 38)

45
$$C_{2}II_{6} \qquad OCII_{3}$$

$$C_{1}I_{2}CII_{2}CII_{3}OCII_{3}$$

$$CII_{2}CII_{2}OCII_{3$$

(II - 39)

5 $CQ \qquad CII = C - CII = C - CII$ $CU_{10} \qquad (CII_2)_4 SO_3 = (CII_2)_4 SO_3 Na$

(II —40)

 $CQ \qquad CII = C - CII - CQ$ $C_2II_5 \qquad (CII_2)_4 SO_3$

 $(\mathbf{II} - 1)$

25

35 CH_3 CH_3

40 (<u>II</u> − 2)

 $C_{2}II_{5}$ $C_{1}I_{2}II_{3}$ $C_{2}II_{5}$ $C_{2}II_{5}$ $C_{3}II_{2}II_{3}$

(II — 3)

5
$$CH_3$$
 CH_3 CH_3

(III-4)

15

25

50

55

$$C_{2}H_{5}$$

$$C_{1}H_{2}$$

$$C_{2}H_{5}$$

(III - 5) $C_2 II_6$ $C_1 II_6$ $C_2 II_6$

(II — 6)

CL
$$C_1 = C_2 I_5$$
 $C_2 I_5$ $C_3 I_5$ $C_4 I_5$ $C_5 I_5$ $C_6 I_5$ C_6 C_6

(m-7)

5 $CH_{3} CH = C - CH CH_{3}$ $CH_{3} SO_{3} CH = C - CH CH_{2}$ $CH_{3} SO_{3} CH_{3}$

(III — 8)

 $CII_3O \longrightarrow CII = C - CH \longrightarrow S OCII_3$ $CII_3O \longrightarrow CII = C - CH \longrightarrow S OCII_3$ $CII_3O \longrightarrow CII = C - CH \longrightarrow S OCII_3$

(II — 9)

25

50

30 CII = C - CII = C - CII $CII_2)_3 SO_3 \circ (CII_2)_3 SO_3 II$

(III — 10)

CII₂CII₂OII CII₂OII CII₂OII CII₂OI3

(III—11)

Se C_2 C_2 C_3 C_4 C_4 C_4 C_5 C_6 C_6 C

(III—12)

15

25

Se CII = C - CII $CII_2)_4 SO_3 \circ (CII_2)_4 SO_3 H$

(III—13)

S $C_{2}II_{5}$ $C_{3}II_{5}$ $C_{4}II_{5}$ $C_{5}II_{5}$ $C_{6}II_{5}$ $C_{7}II_{5}$ $C_{7}II_{5}$ $C_{8}II_{5}$ $C_{8}II_{5}$

40 (III—14)

Se C_{2} II_{5} S C_{11} C_{2} II_{5} S C_{11} C_{11} C

(111-15)

(III—16)

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

(III—17)

25

35
$$C_2H_5$$
 C_2H_5 C_2H_5

(Ⅲ—18)

45
$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

55

(m-19)

5 $C_{2}H_{5} \qquad C_{2}H_{5} \qquad C_{2}H_{3}$ $C_{2}H_{5} \qquad C_{2}H_{3}$

₁₅ (Ⅲ—20)

Se CH = C - CH = C CH_3 CH_3

(M—21)

25

S $CH_{2}CH_{2}CH_{2}CH_{3}O_{3}O$ CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}

40 (III—22)

Se $C_2 ll_5$ Se $C_2 ll_5$ Se $C_2 ll_5$ Se $C_3 ll_5$ Se $C_4 ll_5$ Se $C_4 ll_5$ Se $C_5 ll_5$ Se $C_6 ll_5$ Se $C_7 ll_5$ S

55

(11 - 23)

5
$$CH_{3} = C - CH = C - CH = C$$

$$CH_{3} = C - CH = C - CH_{3} + CH_{3}$$

$$CH_{3} = C - CH_{2} + CH_{3} + CH_{3$$

(Ⅲ—24)

Se
$$CII_3$$
 CII_3 CII_4 CII_5 CII_5 CII_5 CII_5 CII_6 CII_7 CII_8 CII_8 CII_8 CII_8 CII_8

(II—25)

25

35
$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{2}$$

$$C_{1}H_{3}$$

$$C_{1}H_{3}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{3}$$

$$C_{1}H_{3}$$

$$C_{2}H_{5}$$

$$C_{1}H_{3}$$

$$C_{1}H_{3}$$

$$C_{1}H_{3}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{1}H_{3}$$

$$C_{1}H_{3}$$

$$C_{1}H_{3}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{1}H_{5}$$

40 (Ⅲ—26)

$$CH_{3}O = C - CII = C - CII = C - CII = C - CII_{3}$$

$$CH_{2}O_{3}SO_{3} = (CII_{2})_{4}SO_{3}H \cdot N(C_{2}II_{5})_{3}$$

55

(II-27)

5 $CH_{3} = C - CII = C - CII = 0$ $CH_{3} = C - CII = 0$ $CH_{2} = C - CII = 0$ $CH_{3} = C - CII = 0$ $CH_{4} =$

(III — 28)

 $C\ell = C - CII = C - CII = O$ $C(CII_2)_4 SO_3 = (CII_2)_4 SO_3 Ha$

(III—29)

25

CL = C - CH = C - CH = C $C(CH_2)_3 SO_3 \circ (CH_2)_3 SO_3 H$

40 (III—30)

CH₃ C - CH = C - CH = C $C_2 H_5$ C - CH = C - CH = C $C_2 H_5$ $C_2 H_5$ $C_2 H_5$

55

(11 - 31)

(III—32)

10

35

50

$$CII_{3} = C - CII - C - CII - O - CII_{2} - O - CII_{2} - O - CII_{2} - O - CII_{3} - O - CII_{4} - O - CII_{4}$$

²⁵ (II — 33)

30
$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{5}II_{5}$$

(Ⅲ—34)

45
$$CH_{2} = C - CII = C - CII = C$$

$$CH_{2} = C - CII = C - CII = C$$

$$CH_{2} = C - CII = C - CII = C$$

$$CH_{2} = C - CII = C - CII = C$$

(11-35)

25

50

5 $C_{2}II_{5}$ $C_{3}II_{5}$ $C_{4}II_{5}$ $C_{4}II_{5}$ $C_{4}II_{5}$ $C_{5}II_{5}$ $C_{5}II_{5}$ $C_{5}II_{5}$

(III – 36) $\begin{array}{c} \text{C} \\ \text{C}$

(III - 37) S = C - CH = C - CH = O $(CH_2)_4 SO_3 = (CH_2)_3 SO_3 Na$ 35

(III - 38)

 $C_{2}II_{5}$ $C_{2}II_{5}$ $C_{2}II_{5}$ $C_{2}II_{5}$ $C_{2}II_{5}$ $C_{2}II_{5}$ $C_{2}II_{5}$

(III - 39)

5
$$C - CII = C - CII = O$$

$$CH_{2})_{3}SO_{3} = CH_{2})_{2}COOII$$

(III —40)

(III—41)

25

50

30 Se
$$C_2H_5$$
 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5

45 (III - 42)(Cll₂)₃SO₃ \circ (Cll₂)₃SO₃Na

(III—43)

25

50

55

5
$$C-CII = C-CII = C$$

$$C_3II_7$$

$$C-CII = C$$

$$C_{10} = C$$

$$CII_2)_3 SO_3 II \cdot N(C_2 II_5)_3$$

35 (III -45)

SC-CH = C-CH = ON CL

(CH₂)₃SO₃ (CH₂)₃SO₃Na

40 (Ⅲ—46)

45
$$C - CII = C - CII = 0$$
 CII_2 CII_3 CII_2 CII_3 CII_2 CII_3 C

To obtain the constitution of the present invention described above for the spectral sensitivity in the greensensitive layer, any appropriate means can be used. For example, such a spectral sensitivity distribution can be obtained using a spectral sensitizing dye.

Typical examples of the sensitizing dye oxacabocyanine, oxabenzimidazolecyanine, thia-4' -cyanine or thia-2' -cyanine dyes, which can be used for the green-sensitive layer of the present invention is given below, but these are not to be construed as limitative on the invention.

The green-sensitive emulsion layer of the invention contains oxacabocyanine, oxabenzimidazolecyanine, thia-4' -cyanine or thia-2' -cyanine dyes in an amount of 50 to 80 mol% based on the total amount of a sedsitezing dye in it.

It is also possible to use the preceding sensitizing dyes represented by formula I or II which can be used to control the spectral sensitization distribution in the red-sensitive layer.

$$IV-1$$

$$C\ell = C - CH - C\ell$$

$$C\ell = C - CH - CH$$

$$C\ell = C - CH$$

$$CII = C - CII$$

$$C_2 H_5$$

$$CII_2 C - CII$$

$$CII_2 C - CII$$

$$CII_2 C - CII$$

$$CII_2 C - CII$$

N-3

$$CII_3O \longrightarrow CII = C - CII \longrightarrow OCII_3$$

$$(CII_2)_4SO_3 \circ (CII_2)_4SO_3II$$

30

5

10

15

20

25

$$IV - 4$$

35

$$\begin{array}{c|c} CII_3 & CII = C - CII & CII_3 \\ \hline CQ & CII_2)_4 SO_3 & (CII_2)_3 SO_3 II \cdot N(C_2 II_6)_3 \end{array}$$

40

$$IV - 5$$

45

$$CII_3 \qquad CII = C - CII \qquad C2 H_5$$

$$CII_3 \qquad CII_2)_3 SO_3 \circ \qquad C2 H_5$$

55

$$N - 9$$

5
$$CII = C - CII$$

$$(CH2)2SO3Θ$$

$$(CH2)2SO3H·N(C2H5)3$$

$$IV - 7$$

$$C\ell \longrightarrow Cll = C - CH \longrightarrow Cll_2 C00H$$

$$_{25}$$
 IV $- 8$

CH₃

$$C_2 = C - C_1 = C - C_1 = C_2 = C_3$$

$$C_2 = C - C_1 = C_1 = C_2 = C_2 = C_3$$

$$C_2 = C_1 = C_2 = C_1 = C_2 = C_3$$

$$C_2 = C_1 = C_2 = C_1 = C_2 = C_2 = C_3$$

$$C_2 = C_1 = C_2 = C_1 = C_2 = C_2 = C_2 = C_3 = C_2 = C_3 = C_2 = C_3 = C_3$$

$$IV - 10$$

$$C_{2}II_{5}$$

$$CII = C - CII$$

$$C_{2}II_{5}$$

$$CQ$$

$$CU_{2}II_{5}$$

$$CQ$$

$$CII_{2}II_{5}$$

$$CQ$$

$$CII_{2}II_{5}$$

$$CQ$$

$$CII_{2}II_{5}$$

$$CQ$$

$$CII_{2}II_{5}$$

IV - 11

5 CH = C - CH $CH_2)_4SO_3 = (CH_2)_4SO_3Na$

1V - 12

Collago Cilago Cilago

IV − 13

30 CH = C - CH C_2H_5 $CH_2)_3SO_3 \circ CH_2$ $CH_2)_3SO_3Na$

40

25

IV - 14 CU CH = C - CH CH_3 CU CU

55

10 - 15

5
$$CQ = C_{2}H_{5}$$

$$CQ = C_{1} - CH = C_{1}$$

$$CQ = C_{2}H_{5}$$

$$CQ = C_{1}$$

$$CQ = C_{2}H_{5}$$

$$CQ = C_{1}$$

IV - 16

10

20

35

45

$$Cil = C - Cil$$

$$Cll_2)_2 SO_3 \circ (CH_2)_3 SO_3 H$$

... IV − 17

1Y - 18

CH₂
$$C_2 II_5$$

CH₃

50

IV - 19

5 $C_{2}\text{II}_{5}$ CII = C - CII $CH_{2})_{2}\text{CHSO}_{3} \circ (CII_{2})_{3}\text{SO}_{3}\text{Na}$ CH_{3}

15 IV - 20

$$CII = C - CII$$

$$CII_{2})_{3}SO_{3}$$

$$CII_{2})_{3}SO_{3}H$$

N - 21

25

30
$$C\ell \longrightarrow CII = C - CII \longrightarrow C\ell$$

$$(CII_2)_4 SO_3 \oplus C_2 H_5$$

IV - 22 $C_{2} \text{II}_{5}$ $C_{3} \text{C}_{1} \text{C}_{1} \text{C}_{1} \text{C}_{2}$ $C_{4} \text{C}_{1} \text{C}_{1} \text{C}_{2} \text{C}_{3} \text{C}_{3} \text{C}_{4}$

55

IV - 23

$$CH_{2}CH = CH_{2}$$

$$CH_{2}CH = CH_{2}$$

$$CH_{2}CH_{3}SO_{3} \circ COOC_{2}H_{5}$$

$$CH_{2}CH_{3}SO_{3} \circ CH_{2}ASO_{3}Na$$

IV
$$-24$$

CH₃

CH₂

IV
$$-25$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}II_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}I_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{2}III_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II_{5}$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{5}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{5}$$

$$C_{7}II_{$$

IV
$$-26$$

$$CII_{2}CII_{2}OII$$

$$CII_{3}CII_{2}CII_{2}OII$$

$$CII_{3}CII_{2}CII_{2}OII$$

$$CII_{3}COOII_{2}$$

$$CII_{2}COOII$$

50 IV
$$-27$$

$$C_{2}II_{5}$$

$$C_{3}II_{5}$$

$$C_{4}II_{5}$$

$$C_{5}II_{5}$$

$$C_{6}II_{5}$$

$$C_{7}II_{5}$$

$$C_{8}II_{5}$$

$$C_$$

5
$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{6}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{5}$$

$$C$$

$$V - 29$$

$$C_{2} H_{5}$$

$$C_{3} H_{5}$$

$$C_{4} H_{5}$$

$$C_{5} H_{5}$$

$$C_{7} H_{5}$$

$$C_{8} H_{5}$$

$$C_{8} H_{5}$$

$$C_{8} H_{5}$$

$$C_{8} H_{5}$$

$$C_{8} H_{5}$$

CH = CH - CH $CH_{2})_{2}CHSO_{3} \circ C_{2}H_{5}$ CH_{3}

IV - 31

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

N - 32CH₃ 5 C2115 CH₂C00° IV - 3310 CH₂C00[©] IV - 34(CII2)3SO3Na 15 20 C₂ll₅ (CH₂)₄SO₃[©] IV - 3525 ·C₂II₅ CH₂C00® IV - 3630 C_2II_5 35 C₂II₅ CII₂COO[©] IV - 3740 45 (CII₂)₂S0₃⁹ (CH₂)₂SO₂NH₂[©] 10 - 3850 CQ. 55 (CII₂)₂0CII₃.

ĊII2CH = CIISO3 [©]

IV - 39

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{1}II = C - CII$$

$$C_{1}II_{2}II_{3} = C - CII$$

$$C_{2}II_{5}II_{5}$$

$$CII_{2}II_{3} = C - CII$$

$$CII_{2}II_{3} = C - CII$$

 $_{15}$ IV -40

$$CH = CH - CH = CH - CH = CH_{2} \cdot 150 \cdot 100 \cdot$$

IV - 41

25

35
$$CH_{2} \longrightarrow CH = CH - CII \longrightarrow CH_{2})_{3}SO_{3}H \cdot N(C_{2}II_{5})_{3}$$

$$(CH_{2})_{2}SO_{3} \oplus (CH_{2})_{3}SO_{3}H \cdot N(C_{2}II_{5})_{3}$$

IV - 42

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

$$C_{2}II_{5}$$

55

$$IV - 43$$

5 CH = C - CH = C -

₁₅ IV - 44

$$C\varrho \qquad CH = C - CH \qquad CH_2 > 3 \text{ SO}_3 \text{ Na}$$

IV - 45

25

40

45

50

30
$$C_{2}H_{5}$$

$$C_{II}=C-CII$$

$$C_{II_{2}}J_{3}SO_{3}^{\circ}$$

$$(CII_{2})_{3}SO_{3}Na$$

In addition to the sensitizing dyes above described, the benzothiazoles and quinolones described in Japanese Patent Examined Publication No. 24533/1982 and the quinoline derivatives described in Japanese Patent Examined Publication No. 24889/1982 can be added to the red-sensitive emulsion layer or the green-sensitive emulsion layer of the invention as supersensitizers if desired.

Known photographic additives which can be used for the present invention are also described in the following Research Disclosures.

The table below specifies where relevant description appears.

	[Item]	[page in RD308119] [RD]	.7643] [RD187	716]
	Antistaining agent	1002 VII-I	25 65	50 .
5	Dye image stabilizer	1001 VII-J	25	
	Whitening agent	998 V	24	
10	UV absorbent	1003 VIII-C, XIII C	25-26	
	Optical absorbent	1003 VIII	25-26	
	Light scattering	1003 VIII		
15	agent			
	Filter dye	1003 VIII	25-26	
	Binder	1003 IX	26 65	51
20	Antistatic agent	1006 XIII	27 65	50
	Hardener	1004 X	26 65	51
25	Plasticizer	1006 XII	27 6	50
	Lubricant	1006 XII	27 6	50
	Activator, coating	1005 XI	26-27 6	50
30	aid			
	Matting agent	1007 XVI		
35	Developer (contained	in the sensitive mater	ial)	
		1011 XX B		

Various couplers can be used for the present invention. Examples thereof are described in the above 40 Research Disclosures.

The table below specifies where relevant description appears.

50

45

	[Item]	[page in RD308119]	[RD17643]
	Yellow coupler	1001 VII-D	VII C-G
5	Magenta coupler	1001 VII-D	VII C-G
	Cyan coupler	1001 VII-D	VII C-G
10	Colored coupler	1002 VII-G	VII G
10	DIR coupler	1001 VII-F	VII-F
	BAR coupler	1002 VII-F	
15	Other couplers which	release useful residue	
	•	1001 VII-F	
	Alkali-soluble couple	er	
20			

The additives used for the present invention can be added by, for example, the dispersion method described in RD308119 XIV.

1001 VII-E

In the present invention, the supports described in the above RD17643, p. 28, RD18716 pp. 647-648 and RD308119 XVII.

The light-sensitive material of the present invention may be provided with auxiliary layers such as a filter layer and an interlayer as described in the above RD308119 VII-K.

The light-sensitive material of the present invention can have various layer structures such as ordinary layer structure, reverse layer structure and unit structure as described in the above RD308119 VII-K.

The present invention is applicable to various color light-sensitive materials represented by color negative films for ordinary or movie use, color reversal films for slides or televisions, color papers, color positive films, and color reversal papers.

The light-sensitive material of the present invention can be developed by the ordinary processes described in the above RD17643 pp. 28-29, RD18716 p. 647 and RD308119 XVII.

EXAMPLES

25

30

The present invention is hereinafter described in more detail by means of the following examples, but the modes of embodiment of the present invention are not limited to these examples.

In all the following examples, the amount added to the silver halide photographic light-sensitive material is expressed in gram per m², unless otherwise specified. Also, the amount of silver halide and colloidal silver is expressed on the basis of the amount of silver.

45 Example 1

50

Layers having the following compositions were formed on a triacetyl cellulose film support in this order from the support side to yield a multiple-layered color photographic light-sensitive material sample No. 101. Sample No. 101

Layer 1: Anti-halation layer HC-1

	Black colloidal silver	0.2
	UV absorbent UV-1	0.15
55	High boiling solvent Oil-1	0.15
	Gelatin	1.4

Layer 2: First interlayer IL-1 Gelatin 1.3 UV absorbent UV-1 0.1

5 High boiling solvent Oil-1 0.1

Layer 3: Low speed red-sensitive emulsion layer RL

	Silver iodobromide emulsion Em-l	0.8
10	Sensitizing dye III-40	2.4×10^{-5}
15	Sensitizing dye III-6	1.9×10^{-4}
	Sensitizing dye II-40	1.9×10^{-4}
	Cyan coupler C-1	0.70
	Colored cyan coupler CC-1	0.10
20	DIR compound D-1	0.03
	DIR compound D-3	0.01
25	High boiling solvent Oil-1	0.64
	Gelatin	1.2
	Layer 4: Moderate speed red-sensitive emulsion layer RM	

30

	Silver iodobromide emulsion Em-2			0.7
	Sensitizing dye III-40	1.3	x	10 ⁻⁵
35	Sensitizing dye III-6	1.0	x	10-4
	Sensitizing dye II-40	1.0	x	10-4
40	Cyan coupler C-1			0.28
	Colored cyan coupler CC-1			0.05
	DIR compound D-1			0.02
45	High boiling solvent Oil-1			0.28
	Gelatin			0.6

Layer 5: High speed red-sensitive emulsion layer RH

	Silver iodobromide emulsion Em-3		0.9
55	Sensitizing dye III-40	0.8 x	10 ⁻⁵
	Sensitizing dye III-6	0.6 x	10^{-4}

= -

	Compilining July 77 40	4
	Sensitizing dye II-40	0.6×10^{-4}
5	Cyan coupler C-1	0.03
	Cyan coupler C-2	0.07
	Colored cyan coupler CC-1	0.03
10	DIR compound D-1	0.04
	High boiling solvent Oil-1	0.17
	Gelatin	1.2
15	Layer 6: Second interlayer IL-2	
	Gelatin 0.8	
20	Layer 7: Low speed green-sensitive emulsion layer GL	
	Cilvor iodobromido empleion Pm 1	
25	Silver iodobromide emulsion Em-1	0.8
25	Sensitizing dye IV-14	7.2×10^{-4}
	Sensitizing dye I-5	8.0×10^{-5}
30	Magenta coupler M-1	0.30
	Magenta coupler M-2	0.19
	Colored magenta coupler CM-1	0.10
35	DIR compound D-2	0.02
	DIR compound D-4	0.007
	High boiling solvent Oil-2	0.62
40	Gelatin	1.3
	Layer 8: Moderate speed green-sensitive emulsion layer GM	
45	Silver iodobromide emulsion Em-2	0.7
	Sensitizing dye IV-14	3.6×10^{-4}
50	Sensitizing dye I-5	4.0×10^{-5}
	Magenta coupler M-1	0.07

	Magenta coupler M-2	0.04
	Colored magenta coupler CM-1	0.04
5	DIR compound D-2	0.018
	High boiling solvent Oil-2	0.20
10	Gelatin	8.0
	Layer 9: High speed green-sensitive emulsion layer GH	
15	Silver iodobromide emulsion Em-3	0.9
	Sensitizing dye IV-14	2.2×10^{-4}
	Sensitizing dye I-5	2.4×10^{-5}
20	Magenta coupler M-2	0.04
	Magenta coupler M-3	0.04
25	Colored magenta coupler CM-2	0.04
	DIR compound D-2	0.008
	High boiling solvent Oil-2	0.15
30	Gelatin	0.9
	Layer 10: Yellow filter layer YC	
35	Yellow colloidal silver 0.12 Anti-color staining agent SC-1 0.1 High boiling solvent Oil-2 0.13 Gelatin 0.8	
4 0	Formalin scavenger HS-1 0.09 Formalin scavenger HS-2 0.07	
	Layer 11: Low speed blue-sensitive emulsion layer BL	
45	Silver iodobromide emulsion Em-l	0.35
	Silver iodobromide emulsion Em-2	0.15

= -

	Sensitizing dye SD-l	6.1 x	10-4
	Yellow coupler Y-1		0.65
5	Yellow coupler Y-2		0.12
	DIR compound D-1		0.05
10	High boiling solvent Oil-2		0.16
•	Gelatin		1.1
	Formalin scavenger HS-1		0.08
15	Layer 12: High speed blue-sensitive emulsion layer BH		
	Silver iodobromide emulsion Em-4		0.6
20	Sensitizing dye SD-1	1.8 x	10-4
	Yellow coupler Y-1		0.18
25	Yellow coupler Y-2		0.02
	High boiling solvent Oil-2		0.04
	Gelatin		1.1
30	Formalin scavenger HS-1		0.05
	Formalin scavenger HS-2		0.12
35	Layer 13: First protective layer Pro-1		
	Fine grains of silver iodobromide emulsion	(avera	age
40	grain size 0.08 μ m, AgI content 1 mol%)		0.2
	UV absorbent UV-1		0.07
45	UV absorbent UV-2		0.10
45	High boiling solvent Oil-1		0.06
	High boiling solvent Oil-3		0.06
50	Formalin scavenger HS-1		0.13
	Formalin scavenger HS-2		0.37
	Gelatin	1.3	L

Layer 14: Second protective layer Pro-2

Alkali-soluble matting agent $(average\ grain\ size\ 2\ \mu m) \qquad 0.07$ Polymethyl methacrylate $(average\ grain\ size\ 3\ \mu m) \qquad 0.03$ Lubricant WAX-l 0.04 Gelatin 0.6

15

20

25

30

The emulsions used to prepare the sample described above are as follows:

Emulsion containing monodispersed (individual grain silver iodide content relative standard deviation 18%) silver iodobromide grains having an average grain size of 0.35 μ m, an average silver iodide content of 6.0 mol% and a core of 35 mol% Aql.

Em-2

Emulsion containing monodispersed (individual grain silver iodide content relative standard deviation 19%) silver iodobromide grains having an average grain size of 0.5 μ m, an average silver iodide content of 6.8 mol% and a core of 35 mol% AgI.

Em-3

Emulsion containing monodispersed (individual grain silver iodide content relative standard deviation 18%) silver iodobromide grains having an average grain size of 0.65 μ m, an average silver iodide content of 8.0 mol% and a core of 35 mol% AgI.

Em-4

Emulsion containing monodispersed silver iodobromide grains having an average grain size of 0.8 μ m, an average silver iodide content of 8.0 mol% and a twin plane of an aspect ratio of 3.5.

The compounds used to prepare the sample described above are as follows:

35
$$C-I$$
 OII OII NHCONH—CQ

(t)C₅H₁₁ OCIICONII CN

C - 2 OII

$$C_{5}H_{11}(t)$$

The second constant of the const

M-1 0 $C\ell$ $C\ell$ M-2 CH_3 N N CH_2 $2S0_2CH_2CH$ C_8H_{17} C_8H_{13} M-3

30 Y - 1 CQ
H₃CO — COCHCONII — COOC₁₂H₂₅

CII₂—

45 Y-2 CL C_4H_5 C_{4H_5} C_{50} $C_{12}H_{25}$

*5*5

5 CC-1 $CONII(CH_2)_4O - C_5II_{11}(t)$ OH NHCOCH.

$$N = N$$

$$NaO_3 S$$

$$SO_3 Na$$

CM - 1

45

$$H_{3}CO \longrightarrow N = N \longrightarrow NHCO \longrightarrow NHCOCH_{2}O \longrightarrow C\ell$$

$$C\ell \longrightarrow C\ell$$

$$C_{6}H_{1}(t)$$

$$C_{5}H_{1}(t)$$

50

55

CL

D - 1

-0C14H29 -CII₂S

10 D-2

. 5

15

CH₃ CONHCH 2 CH 2 COOCH 3

C111123 20

25 D - 3

CONH-0C14ll25 30 -Cll₂S ·Cll₃

35

40 D-4

CONHCH 2 COOCH 3 45 C111123

50

 $0i\ell-1$ C00CaH17 5 C00CaH17 O i 2 - 2 10 O i ℓ - 3 15 ell, 2002--C00C4IIs 20 SC-1C18H37(sec) 25 u v−1 30 C.H.(t) 35 U V - 2 40 C₂H₅

45

50

· Weight average molecular weight Mw = 3,000

su-1 su-2

NaO₃S - CHCOOC₈II₁₇ C₃H₇(iso) C₃H₇(iso)

CH₂COOC₈II₁₇

C₃H₇(iso) SO₃Na

HS-1 HS-2

NII 2 CONII NII

SD-1

S CII 3 O CII 3 O CII 3 O CII 2) 3 SO 3 II • N (C 2 II 6) 3

H - 1 H - 2

40

50

ONa $(CII_2 = CHSO_2CH_2)_20$

ST-1

10

5 OII

15 A F - 1

HS - N-N

20

A F -2CH CH₂

N
0
n

n: Degree of polymerization

In addition to these compositions, a coating aid Su-1, a dispersing agent Su-2, a viscosity regulator, hardeners H-1 and H-2, a stabilizer ST-1, an antifogging agent AF-1 and two kinds of AF-2 having an average molecular weight of 10,000 or 1,100,000, respectively, were added.

The average grain size of silver halide in the emulsions used for the sample described above is expressed as a cube diameter.

Each emulsion was optimally sensitized with gold and sulfur.

Next, sample Nos. 102 through 106 were prepared in exactly the same manner as in sample No. 101 except that the sensitizing dyes for Layers 3, 4, 5, 8 and 9 were altered to those listed in Table 1. The total addition amount of sensitizing dyes listed in Table 1 in each layer is the same in sample Nos. 101 through 106.

Thus, the total amount differences among samples are based on combinations of sensitizing dyes and molar ratios thereof.

Each emulsion contained in sample Nos. 101 through 106 was optimally chemically sensitized with a gold and sulfur sensitizer by an ordinary method.

To determine the spectral sensitivity distribution, color development was conducted by the process described below, followed by spectral exposure, and each parameter of spectral sensitivity distribution was measured at a density of D_{min} + 0.3.

The results are given in Table 1.

In the process, running was carried out until the replenisher was fed in an amount 3 times the capacity of the stabilization tank.

55

50

35

40

Processing Processing Processing Amount of procedure time temperature replenisher Color 3 minutes 38°C 540 ml development 15 seconds 38°C 155 m£ Bleaching 45 seconds Fixation 1 minute 38°C 500 ml 45 seconds Stabilization 90 seconds 38°C 775 ml 40 - 70°C l minute Drying

Note: Figures for the amount of replenisher are values per m² light-sensitive material.

Stabilization was conducted by the 3-vessel counter current method, wherein the replenisher was fed to the final stabilizer tank and the overflow solution flew into the tank before the final tank.

Also, a part (275 m ℓ /m²) of the overflow solution from the stabilization tank after the fixation tank was returned into the stabilization tank.

The composition of the color developer used is as follows:

	Potassium carbonate	30 g	
	Sodium hydrogen carbonate	2.7	g
30	Potassium sulfite	2.8	g
	Sodium bromide	1.3	g
35	Hydroxylamine sulfate	3.2	g
	Sodium chloride	0.6	g
40	4-amino-3-methyl-N-ethyl-N-(β -hydroxyethyl)anil	ine	
	sulfate	4.6	g
	Diethylenetriamine pentaacetate	3.0	g
45	Potassium hydroxide	1.3	g

Water was added to make a total quantity of 1ℓ , and potassium hydroxide or 20% sulfuric acid was used to obtain a pH of 10.01.

50 The composition of the color developer replenisher used is as follows:

55

5

10

15

	Potassium carbonate	40 g
5	Sodium hydrogen carbonate	3 g
J	Potassium sulfite	7 g
	Sodium bromide	0.5 g
10	Hydroxylamine sulfate	3.2 ġ
	4-amino-3-methyl-N-ethyl-N-(β -hydroxyethyl)anil	ine
	sulfate	6.0 g
15	Diethylenetriamine pentaacetate	3.0 g
	Potassium hydroxide	2 g

Water was added to make a total quantity of 1ℓ , and potassium hydroxide or 20% sulfuric acid was used to obtain a pH of 10.12.

The composition of the bleacher used is as follows:

25	Disodium ethylenediaminetetraacetate	2	g
	Ammonium bromide	150	g
	Glacial acetic acid	40	m£
30	Ammonium nitrate	40	g

Water was added to make a total quantity of 1ℓ , and aqueous ammonia or glacial acetic acid was used to obtain a pH of 4.5.

35 The composition of the bleacher replenisher used is as follows:

	Ferric ammonium 1,3-diaminopropanetetraacetate	0.40 mol	
40	Disodium ethylenediaminetetraacetate	2 g	
	Ammonium bromide	170 g	
	Ammonium nitrate	50 g	
45	Glacial acetic acid	61 m£	

Water was added to make a total quantity of 1ℓ , and aqueous ammonia or glacial acetic acid was used to obtain a pH of 3.5, with proper adjustment made to maintain a given pH level of the bleacher tank solution.

50 The composition of the fixer and fixer replenisher used is as follows:

	Ammonium thiosulfate	100	g
	Ammonium thiocyanate	150	g
5	Anhydrous sodium bisulfite	.20	g
	Sodium metabisulfite	4.	0 g
10	Disodium ethylenediaminetetraacetate	1.	0 g

Water was added to make a total quantity of 700 m ℓ , and glacial acetic acid and aqueous ammonia were used to obtain a pH of 6.5.

The composition of the stabilizer and stabilizer replenisher used is as follows:

Water was added to make a total quantity of 1ℓ , and potassium hydroxide and 50% sulfuric acid were used to obtain a pH of 7.0.

Sample	Sensitizing dyes	dyes	Sensitizin forlayers	Ing dyes	×	SR610	λGmax	Sg545 /Sgmay	Grey balandrescent law	Grey balance under fluo- rescent lamp lighting ¹⁾	Print color features ²⁾	Remark
Š	and 5 (dye addi- tion amount, molt)	addi- mol*)	9 (dye adamount,		(E)	3	EC)	3	ΔΔS _R	ΔΔs _G		
	III-40	9	IV-14	96	633	7.5	553	87	-0.20	+0.12	Skin color with marked	
101	9-111	47	1-5	10							•maay6 mernto	Comparative
	11-40	47										
	9-III	60	IV-14	06	628	82	553	87	-0.12	+0.12	Skin color with bluish	Comparative
102	1-5	40	1-5	2							ness.	
3	9-III	30	IV-14	8	615	97	553	87	-0.02	+0.12	Skin color with green,	Comparative
n n	1-5	70	I-5	10							Tackling Liveliness.	
	9-III	30	IV-14	80	615	6	556	94	-0.02	+0*02	Naturalistic skin color	,
104	I -5	7.0	1-5	20							difference from strobe	Inventive
	III-6	30	IV-14	7.0	615	97	563	65	-0.02	+0.01	Naturalistic skin	
105	I -5	10	1-5	30					·		slight yellow in strobe Light print.	Inventive
	111-6	09	IV-14	08	628	82	556	76	-0.12	+0.05	Skin color with blue,	Comparative
9	1-5	40	1-5	20							lacking liveliness.	

1) As the light source, a strobe light or a three-wavelength fluorescent lamp was used. The light-sensitive material was subjected to exposure through an optical wedge and then to the developing procedure described above, and the sensitivity point of D_{min} + 0.3 (logE) was determined. The sensitivity differences $\triangle S_B$, $\triangle S_G$, and $\triangle S_R$ between the sensitivity point (logE₁) obtained with the strobe light source and the sensitivity point (logE₂) obtained with the three-wavelength fluorescent light source were calculated. $\triangle \triangle S_G$ and $\triangle \triangle S_R$ were calculated using the following equations:

$$\triangle \triangle S_G = \triangle S_G - \triangle S_B$$
$$\triangle \triangle S_R = \triangle S_R - \triangle S_R$$

The more approximate to zero both $\triangle \triangle S_G$ and $\triangle \triangle S_R$ are, the more near to the color balance obtained with the strobe light source, which can serve as parameters of the evaluation of color shift in actual prints.

2) Photographs of a Macbeth color checker and a person subject were taken using a strobe light or a fluorescent lamp EX-N as the light source.

A sample was prepared photographing using fluorescent lamp EX-N under such printing conditions that when using the strobe light, the grey portions showed the same grey density as that of the color checker on the print, and then, a print of the sample was prepared. The reproducibility of a skin color chart on the print above obtaind was visually evaluated.

As seen in Table 1, sample Nos. 101 through 103 and 106 were found to offer skin color reproduction with undesirable green and blue tones lacking liveliness.

On the other hand, the inventive sample Nos. 104 and 105 provided a good skin color reproduction and favorable grey reproduction even under fluorescent lamp lighting.

In addition, it was found that even within the constitution of the present invention, the appearance of yellow color is suppressed upon reproduction of skin color under strobe light and thus better skin color reproduction is obtained by keeping the λG_{max} not too high.

Claims

5

10

15

20

25

30

35

40

45

1. A silver halide color photographic light-sensitive material comprising a support, and, coated thereon, a blue-sensitive silver halide emulsion layer, a green-sensitive silver halide emulsion layer and a red-sensitive silver halide emulsion layer, each layer containing a sensitizing dye, wherein the maximum sensitivity wavelength λ Rmax, maximum sensitivity SRmax and sensitivity at 610 nm SR₆₁₀ of the red-sensitive emulsion layer and the maximum sensitivity wavelength λ Gmax, maximum sensitivity SGmax, and sensitivity at 545 nm SG₅₄₅ of the green-sensitive emulsion layer satisfy the following requirements:

590 nm
$$\leq \lambda$$
 Rmax \leq 625 nm, SR₆₁₀ \geq 0.8SRmax 520 nm $\leq \lambda$ Gmax \leq 570 nm, SG₅₄₅ \leq 0.8SGmax

2. The material of claim 1, wherein said λ Rmax, SRmax, SR₆₁₀, λ Gmax, SGmax and SG₅₄₅ satisfy the following requirements at a density of Dmin + 0.3:

590 nm
$$\leq \lambda$$
 Rmax \leq 625 nm, SR₆₁₀ \geq 0.8SRmax 520 nm $\leq \lambda$ Gmax \leq 570 nm, SG₅₄₅ \leq 0.8SGmax

 The material of claim 1, wherein said λ Rmax, SRmax, SR₆₁₀, λ Gmax, SGmax and SG₅₄₅ satisfy the following requirements at a density of Dmin + 0.3:

590 nm
$$\leq \lambda$$
 Rmax \leq 625 nm, SR₈₁₀ \geq 0.9SRmax 520 nm $\leq \lambda$ Gmax \leq 570 nm, SG₅₄₅ \leq 0.8SGmax

4. The material of claim 1, wherein the red-sensitive emulsion layer comprises a sensitizing dye represented by the following formulae I and III, and the green-sensitive emulsion layer comprises oxacabocyanine, oxabenzimidazolecyanine, thia-4'-cyanine or thia-2'-cyanine dyes:

50

formula I

$$Z_{1}$$

$$Z_{2}$$

$$R_{3}$$

$$X_{1}$$

$$R_{1}$$

$$R_{1}$$

$$R_{3}$$

$$X_{1}$$

$$R_{3}$$

$$R_{5}$$

10

15

5

wherein R₁ represents a hydrogen atom, an alkyl group or an aryl group; R₂, R₃, R₄ and R₅ independently represent an alkyl group or an aryl group; Z₁, Z₂, Z₃, and Z₄ independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an acyloxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonylamino group, a carbamoyl group, an aryl group, an alkyl group, a cyano group or a sulfonyl group; Z_1 and Z_2 and Z_3 and Z_4 may link together to form a ring; X_1 represents an anion; n represents an integer 1 or 2, provided that, when the sensitizing dye forms an intramolecular salt, n represents 1.

20

formula II

25

$$Z_{10} = C = C = C = C = Z_{12}$$

$$Z_{10} = Z_{12}$$

$$Z_{10} = C = C = C = Z_{12}$$

$$Z_{10} = Z_{12}$$

$$Z_{10} = Z_{12}$$

$$Z_{10} = Z_{12}$$

30

35

wherein R₁₁ represents a hydrogen atom, an alkyl group or an aryl group; R₁₂ and R₁₃ independently represent an alkyl group or an aryl group; Y₃ and Y₄ independently represent a sulfur atom or a selenium atom; Z₉, Z₁₀, Z₁₁, and Z₁₂ independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an acyloxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonylamino group, a carbamoyl group, an aryl group, an alkyl group, a cyano group or a sulfonyl group; Z_9 and Z_{10} and Z_{11} and Z_{12} may link together to form a ring; X3 represents an anion; n represents an integer 1 or 2, provided that, when the sensitizing dye forms an intramolecular salt, n represents 1.

- 40
 - 5. The material of claim 4, wherein the red-sensitive emulsion layer contains the sensitizing dye represented by formula I in an amount of 10 to 90 mol% based on the total amount of a sensitizing dye in the red-sensitive emulsion laver.
- 6. The material of claim 4, wherein the red-sensitive emulsion layer contains the sensitizing dye represented by formula I in an amount of 60 to 90 mol%, based on the total amount of a sensitizing dye in the red-sen-45 sitive emulsion layer.
- 7. The material of claim 4, wherein the green-sensitive emulsion layer contains said oxacabocyanine, oxabenzimidazolecyanine, thia-4' -cyanine or thia-2' -cyanine dyes in an amount of 50 to 85 mol% based on the total amount of a sensitizing dye in the green-sensitive emulsion layer. 50
 - 8. The material of claim 4, wherein the red-sensitive emulsion layer further comprises a sensitizing dye represented by the following formula II:

formula I

$$Z_{5}$$
 Z_{6}
 X_{1}
 X_{2}
 X_{2}
 X_{3}
 X_{4}
 X_{2}
 X_{2}
 X_{3}
 X_{4}
 X_{5}
 X_{5}

wherein R_6 represents a hydrogen atom, an alkyl group or an aryl group; R_7 , R_8 , R_9 and R_{10} independently represent an alkyl group or an aryl group; Y_1 and Y_2 independently represent a nitrogen atom, an oxygen atom, a sulfur atom or a selenium atom, provided that, when Y_1 is an oxygen atom, a sulfur atom or a selenium atom, the sensitizing dye does not contain R_7 ; Y_1 and Y_2 are not nitrogen atoms or surfur atoms simultaneously; Z_5 , Z_7 , and Z_8 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acyloxy group, an acyloxy group, an aryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonyl group, a carbamoyl group, an aryl group, an alkyl group, a cyano group or a sulfonyl group; Z_5 and Z_6 and Z_6 and Z_8 may link together to form a ring; Z_7 represents an anion; Z_8 represents an integer 1 or 2, provided that, when the sensitizing dye forms an intramolecular salt, Z_8 represents 1.

9. The material of claim 4, wherein the gree-sensitive emulsion layer further comprises a sensitizing dye represented by the following formula I:

formula [

$$Z_{1}$$

$$Z_{2}$$

$$R_{3}$$

$$(X_{1}^{\Theta})_{n-1}$$

$$R_{5}$$

$$R_{4}$$

$$Z_{3}$$

$$Z_{4}$$

wherein R_1 represents a hydrogen atom, an alkyl group or an aryl group; R_2 , R_3 , R_4 and R_6 independently represent an alkyl group or an aryl group; Z_1 , Z_2 , Z_3 , and Z_4 independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an acyloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an alkoxycarbonylamino group, a carbamoyl group, an aryl group, an alkyl group, a cyano group or a sulfonyl group; Z_1 and Z_2 and Z_3 and Z_4 may link together to form a ring; Z_1 represents an anion; Z_2 represents an integer 1 or 2, provided that, when the sensitizing dye forms an intramolecular salt, Z_3 represents 1.

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 1960

	DOCUMENTS CONSIDI		k 	
ategory	Citation of document with indic of relevant passa	ation, where appropriate, ges	Relevant to claim	CLASSIFICATION OF TH APPLICATION (Int. CL5)
K,Y	JP-A-621604499 (FUJI)		1-9	G03C7/30
	* the whole document *			
,	EP-A-0115304 (FUJI) * page 19, line 3 - page 3	32, 11ne 2 *	1-9	
,	US-A-4028115 (HINATA ET AL * column 2, line 24 - column)	1-9	
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)
				G03C
	The present search report has been o	Irawn up for all claims		
	Place of scarck	Date of completion of the search		Examiner
1	THE HAGUE	10 APRIL 1991	MAGR	rzos s.
X : partic Y : partic docum	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category tological background written disclosure	T: theory or principle E: earlier patent docu after the filing dat D: document cited in L: document cited for	mant hut willia	invention hed on, or
D: non-1 P: interr	written disclosure mediate document	& : member of the san document	ne patent family,	corresponding

EPO FORM 1503 03.82 (P0401)