

(1) Numéro de publication : 0 447 283 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 91400520.2

(51) Int. Cl.5: F42B 10/66

2 Date de dépôt : 26.02.91

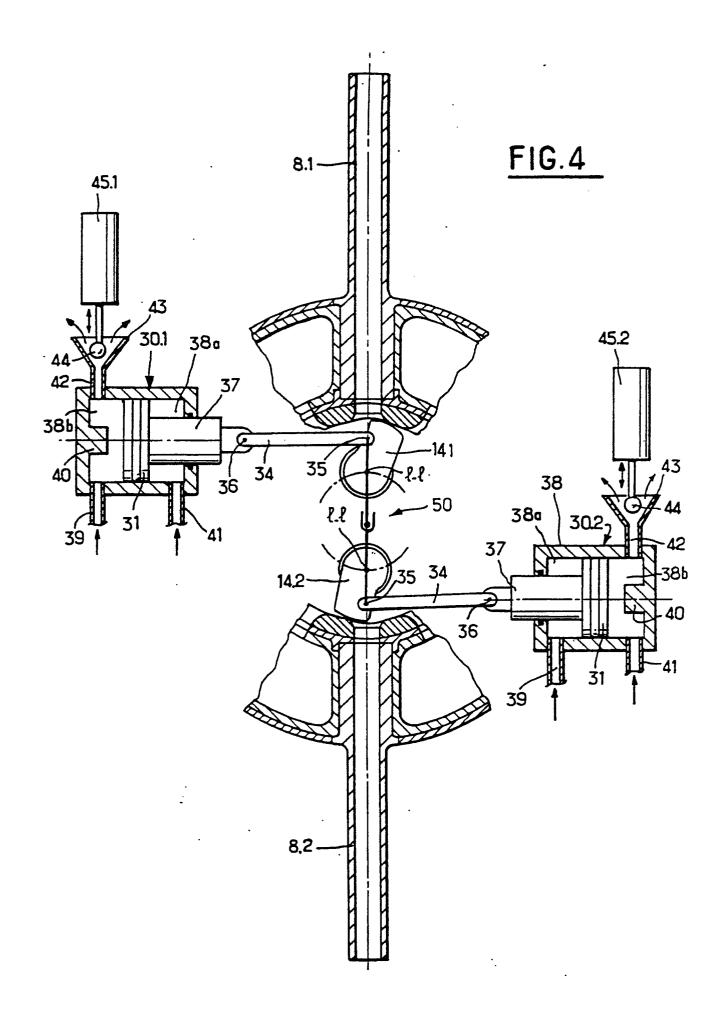
(30) Priorité: 14.03.90 FR 9003252

(43) Date de publication de la demande : 18.09.91 Bulletin 91/38

Etats contractants désignés :
 BE CH DE ES FR GB IT LI LU NL SE

(1) Demandeur : AEROSPATIALE SOCIETE
NATIONALE INDUSTRIELLE Société
Anonyme dite:
37, Boulevard de Montmorency
F-75016 Paris (FR)

(72) inventeur: Morgand, Jean-Pierre 22, rue du Moulinet F-75013 Paris (FR)


Mandataire: Bonnetat, Christian
CABINET BONNETAT 23, Rue de Léningrad
F-75008 Paris (FR)

- (54) Système pour le pilotage d'un missile au moyen de tuyères latérales.
- Système pour le pilotage d'un missile (1) au moyen de jets gazeux, comportant un générateur de gaz susceptible d'être relié à au moins une paire de tuyères latérales (8) par l'intermédiaire de moyens d'obturation rotatifs (14), mobiles sous l'action de moyens moteurs (30) et commandant le passage des gaz à travers lesdites tuyères.

Seion l'invention:

- à chaque tuyère (8) est associé un obturateur rotatif individuel (14);
- chaque obturateur (14) est commandé en rotation par un piston (31) partageant un vérin (30) en deux chambres (38a,38b) de sections différentes, lesdites chambres recevant chacune une partie du gaz engendré par ledit générateur de gaz et la position dudit piston étant commandée par le contrôle du débit dudit gaz à travers la chambre (38a) de plus grande section; et

— les deux obturateurs (14) sont liés l'un à l'autre par une liaison mécanique (50) telle que, lorqu'un obturateur tourne dans un sens, l'autre obturateur tourne dans le sens opposé, de la même amplitude angulaire.

SYSTEME POUR LE PILOTAGE D'UN MISSILE AU MOYEN DE TUYERES LATERALES

5

10

15

20

25

30

35

40

45

La présente invention concerne un système pour le pilotage d'un missile au moyen de jets gazeux latéraux et un missile comportant un tel système.

Il est déjà connu, notamment lorsqu'un missile doit être piloté avec de forts facteurs de charge, de prévoir à bord de ce missile des tuyères latérales, susceptibles d'être alimentées en gaz à partir soit d'un générateur de gaz du propulseur principal, soit d'un générateur de gaz spécialement prévu à cet effet. Ainsi, il en résulte des jets de gaz latéraux engendrant des forces propulsives transversales aptes à infléchir de façon rapide et importante la trajectoire du missile. On peut faire en sorte que les lignes d'action de telles forces transversales passent par le centre de gravité du missile, ou tout au moins au voisinage de ce centre de gravité et l'on dit alors que le missile est piloté en force, le temps de réponse à la commande étant alors particulièrement rapide. Cependant, ceci n'est pas une obligation et les lignes d'action desdites forces transversales peuvent passer en des points de l'axe du missile différents du centre de gravité. Les dites forces transversales créent alors, de façon semblable à des gouvernes aérodynamiques classiques, des moments permettant la commande du missile en attitude par rapport au centre de gravité.

Par le brevet américain US-A-4 531 693 et par le brevet français FR-A-2 620 812, on connaît déjà un système pour le pilotage d'un missile au moyen de jets gazeux latéraux, comportant un générateur de gaz susceptible d'être relié à au moins une paire de tuyères latérales par l'intermédiaire de moyens d'obturation rotatifs, mobiles sous l'action de moyens moteurs et commandant le passage des gaz à travers lesdites tuyères.

Dans le système du brevet américain US-A-4 531 693, à chacune desdites tuyères est associé un obturateur rotatif individuel, lui-même individuellement commandé par un oscillateur. Grâce à cette structure, chaque obturateur rotatif peut présenter une faible inertie, de sorte que le temps de réponse des moyens d'obturation, et donc du pilotage, peut être très faible.

Par ailleurs, du fait que l'on dispose d'un oscillateur pour chacun desdits obturateurs, il est aisé de commander l'ensemble desdits oscillateurs pour que, à chaque instant, la position de chacun desdits obturateurs (ouverture complète, obturation totale ou obturation partielle) corresponde exactement à la phase de pilotage et/ou à l'état dudit générateur de gaz. En revanche, à cause de la commande desdits obturateurs rotatifs par des oscillateurs, une position commandée d'un obturateur par rapport à la tuyère correspondante n'est pas atteinte directement, mais par un train d'oscillations. De plus, ces oscillations peuvent induire des oscillations parasites dans le mis-

sile, compliquant le pilotage de celui-ci.

En revanche, dans le système du brevet français FR-A-2 620 812, pour assurer le nécessaire couplage de commande entre lesdites tuyères, on prévoit un obturateur rotatif commun aux deux tuyères, cet obturateur étant commandé par le piston d'un vérin dont les deux chambres, de sections différentes, reçoivent une partie du gaz engendré par ledit générateur, la position du piston dudit vérin, et donc celle dudit obturateur, étant commandée par contrôle du débit dudit gaz dans celle desdites chambres du vérin qui présente la plus grande section. Grâce à une telle commande, l'obturateur rotatif peut atteindre sa position directement, sans oscillations. Toutefois, dans ce cas, l'obturateur rotatif est forcément important, de sorte que son inertie et son temps de réponse sont élevés.

L'objet de la présente invention est un système du type mentionné ci-dessus présentant, à la fois, des obturateurs à faible inertie et une commande d'obturateurs sans oscillations.

A cette fin, selon l'invention, le système pour le pilotage d'un missile au moyen de jets gazeux, comportant un générateur de gaz susceptible d'être relié à au moins une paire de tuyères latérales par l'intermédiaire de moyens d'obturation rotatifs, mobiles sous l'action de moyens moteurs et commandant le passage des gaz à travers lesdites tuyères est remarquable en ce que :

- à chaque tuyère est associé un obturateur rotatif individuel :
- chaque obturateur est commandé en rotation par un piston partageant un vérin en deux chambres de sections différentes, lesdites chambres recevant chacune une partie du gaz engendré par ledit générateur de gaz et la position dudit piston étant commandée par le contrôle du débit dudit gaz à travers la chambre de plus grande section;
- les deux obturateurs sont liés l'un à l'autre par une liaison mécanique telle que, lorsqu'un obturateur tourne dans un sens, l'autre obturateur tourne dans le sens opposé, de la même amplitude angulaire.

Ainsi, chaque obturateur peut présenter une faible inertie, et le positionnement de chaque obturateur est déterminé, sans oscillations, à la fois par le vérin correspondant, et par l'action de ladite liaison mécanique.

Afin de réduire au maximum l'inertie des obturateurs, chaque tuyère présente une section oblongue, au moins au voisinage de son col coopérant avec un obturateur. Ainsi, chaque obturateur peut être constitué par un arbre solidaire d'une palette radiale en saillie, dont la face longitudinale d'extrémité coopère

15

20

25

30

35

40

45

50

avec le col de la tuyère correspondante.

Avantageusement, afin de réduire le couple exercé par les gaz sur les obturateurs et tendant à s'opposer à l'ouverture de ceux-ci, la face latérale de la palette radiale, en regard du col de la tuyère en position d'ouverture dudit obturateur, est concave et courbe

De préférence, lesdits obturateurs sont montés dans un bloc rigide solidaire de la structure dudit missile.

Lorsque lesdites tuyères sont ménagées dans des ailes dudit missile solidaires de la peau de celuici, il est avantageux que les pieds desdites tuyères soient emboîtés à frottement polissant dans ledit bloc rigide. Ainsi, on découple les déformations desdites tuyères du reste du missile.

Le contrôle du débit de gaz à travers un vérin est de préférence obtenu à l'aide d'un moteur linéaire déplaçant une bille, dans un évasement prévu sur le circuit dudit débit de gaz. De préférence, les obturateurs des deux tuyères sont commandés par le même moteur.

De préférence, ladite liaison mécanique comporte deux bielles, respectivement solidaires en rotation d'un obturateur, lesdites bielles étant reliées l'une à l'autre par leurs extrémités libres en regard par l'intermédiaire d'une articulation, dont l'axe est susceptible de se déplacer longitudinalement par rapport à l'une desdites bielles. Une telle articulation peut être de tout type connu, par exemple à rotule ou à galet roulant dans une fente et est disposée à l'écart des flux gazeux émis par le générateur de gaz.

Avantageusement, chaque bielle est solidaire en rotation de l'arbre de l'obturateur correspondant et, à son extrémité opposée à ladite articulation avec l'autre bielle, chaque bielle est articulée au piston du vérin correspondant.

Dans le cas où les deux tuyères sont diamètralement opposées par rapport au corps du missile, il est avantageux que, en position neutre du système, les deux articulations des bielles auxdits vérins et l'articulation entre lesdites bielles soient alignées et que les deux obturateurs obturent à demi les tuyères correspondantes.

Pour la commande du système, on prévoit que, en aval de son col coopérant avec l'obturateur rotatif correspondant, chaque tuyère comporte une chambre de tranquillisation des gaz, reliée à ladite tuyère, du côté opposé audit col, par un étranglement tel que l'écoulement gazeux à l'intérieur de ladite tuyère est subsonique. Ainsi, il est possible de piloter le missile en fonction de la mesure de la pression à l'intérieur desdites chambres de tranquillisation.

A cet effet, un dispositif est prévu pour la mesure de la pression dans chaque chambre de tranquillisation.

Les figures des dessins annexés feront bien comprendre comment l'invention peut être réalisée.

Sur ces figures, des références identiques désignent des éléments semblables.

La figure 1 est une vue schématique d'un exemple de réalisation du missile selon l'invention, avec arrachement partiel.

La figure 2 est une coupe transversale partielle, à plus grande échelle, du missile selon l'invention, suivant la ligne II-II de la figure 1.

La figure 3 est une coupe longitudinale partielle du missile selon l'invention, les parties gauche et droite de cette figure correspondant respectivement aux lignes III-III et III'-III' de la figure 2.

La figure 4 illustre schématiquement les moyens d'actionnement de chaque organe d'obturation, lesdits organes d'obturation étant en position médiane.

La figure 5 montre un exemple de réalisation de la liaison mécanique de couplage entre lesdits organes d'obturation, en élévation avec arrachement et coupe partiels.

La figure 6 est une coupe selon la ligne VI-VI de la figure 5.

La figure 7 est une vue semblable à la figure 4, l'un des organes d'obturation étant complètement fermé et l'autre complètement ouvert.

La figure 8 montre schématiquement l'application du système selon l'invention à un missile comportant deux couples de tuyères, dans des plans longitudinaux et orthogonaux.

La figure 9 montre une variante de réalisation du système de commande de la figure 8.

L'exemple de réalisation du missile 1 selon l'invention, montré schématiquement sur les figures 1 à 3, comporte un corps allongé 2 d'axe L-L pourvu d'ailes 3 et d'empennages 4. Les ailes 3 et les empennages 4 sont pourvus de gouvernes 5 et 6, respectivement. Les ailes 3 sont au nombre de quatre et elles sont deux à deux diamétralement opposées, les plans de deux ailes consécutives étant orthogonaux entre eux et passant par l'axe L-L. De même, les empennages 4 sont au nombre de quatre et ils sont deux à deux diamétralement opposés, les plans de deux empennages consécutifs étant orthogonaux entre eux et passant par l'axe L-L. De plus, les empennages 4 se trouvent dans les plans bissecteurs des ailes 3.

Au voisinage du centre de gravité G du missile 1, est prévu, dans le corps 2, un dispositif de pilotage en force 7 commandant quatre tuyères 8, deux à deux diamètralement opposées et disposées dans les ailes 3. Les tuyères 8 sont placées au voisinage de la chambre de combustion d'un générateur de gaz 9, par exemple à propergol solide, et sont reliées audit générateur 9, par des conduits 10.

Les tuyères 8 peuvent être mises en liaison avec les conduits 10 à travers un orifice d'entrée ou col 11 et elles débouchent à l'extérieur par un orifice de sortie 12, de plus grande section que l'orifice d'entrée 11, lesdits orifices 11 et 12 étant reliés par un divergent 13. Les orifices de sortie 12 se trouvent au niveau du

10

15

25

35

45

bord longitudinal 3a des ailes 3, de sorte que les jets gazeux traversant les tuyères 8 sont écartés du corps 2 du missile et n'interfèrent que peu avec l'écoulement aérodynamique autour de la peau 2a dudit corps 2.

Comme cela sera expliqué plus en détail par la suite, chacune des tuyères 8 est équipée, au niveau de son orifice d'entrée 11, d'un organe d'obturation ou obturateur rotatif 14 (non représenté sur la figure 1) permettant d'obturer ou au contraire de dégager au moins partiellement la tuyère 8 correspondante.

En vol sans facteur de charge important, l'action du dispositif de pilotage en force 7 n'est pas forcément nécessaire, car alors le missile 1 peut être piloté de façon classique grâce à ses gouvernes aérodynamiques 5 et 6. Par suite, si le générateur de gaz 9 est de type à fonctionnement commandé, il peut être à l'arrêt. Si le générateur de gaz 9 est du type à fonctionnement continu, les organes d'obturation 14 de deux tuyères opposées sont commandés pour que les jets de gaz qu'elles émettent exercent sur le missile des forces dont la résultante est nulle ; dans ce cas, comme on le verra ci-après, les organes d'obturation 14 des deux tuyères opposées sont constamment à demi ouverts pour laisser échapper les gaz produits par le générateur 9.

En revanche, en vol avec facteur de charge important imposant un brusque changement d'orientation de la trajectoire du missile, il est nécessaire de faire fonctionner à plein au moins l'une des tuyères 8, pour obtenir ce brusque changement d'orientation. Alors, l'organe d'obturation 14 de la ou des tuyères commandées au fonctionnement est totalement effacé, de sorte que le ou les jets gazeux latéraux et transversaux émis sont importants et obligent le missile 1 à changer brusquement de direction, alors que les organes d'obturation 14 de la ou des tuyères non commandées en fonctionnement obturent totalement les tuyères correspondantes.

On remarquera que, puisqu'elles sont incorporées aux ailes 3, les tuyères 8 présentent la forme d'un entonnoir aplati. L'orifice de sortie 12 est de forme oblongue, la grande dimension de sa section étant parallèle à l'axe longitudinal L-L du missile 1, tandis que la petite dimension de cette section est transversale audit axe L-L. Cette petite dimension transversale est avantageusement constante et les extrémités de l'orifice de sortie 12 peuvent être arrondies.

L'orifice d'entrée ou col 11, situé du côté intérieur du missile 1, est également de forme oblongue, de largeur constante et à extrémités arrondies. La section dudit col 11 est semblable à celle de l'orifice de sortie 12, mais plus petite que celle de cette dernière. Le divergent 13 se raccorde aux deux orifices 11 et 12 par une surface réglée.

Le rapport de section nécessaire pour détendre suffisamment les gaz de combustion provenant du générateur 9 s'obtient en grande partie par détermination des longueurs respectives des orifices 11 et 12.

Grâce à la structure oblongue des tuyères 8, les jets de pilotage latéraux présentent la forme de nappes ayant une faible dimension frontale pour l'écoulement aérodynamique. Par suite, les interactions entre lesdits jets de pilotage latéraux et ledit écoulement aérodynamique, déjà amoindries par l'écartement des orifices de sortie 12 de la peau 2a du corps 2, sont, sinon totalement supprimées, du moins encore plus réduites, de sorte que les éléments aérodynamiques 3, 4, 5 et 6 peuvent continuer à remplir leur fonction en coopérant avec l'écoulement aérodynamique, même lorsque les jets latéraux de pilotage sont utilisés à leur puissance maximale.

Comme cela est particulièrement visible sur la figure 3, le dispositif de pilotage en force 7 est composé de deux parties 7a et 7b, à savoir une partie 7a dans laquelle sont montés les organes d'obturation 14 et une partie 7b destinée à la commande desdits organes d'obturation.

La partie 7a du dispositif de pilotage en force 7 comporte un bloc rigide central 15, coaxial à l'axe L-L et formant boîtier à l'intérieur duquel sont disposés les organes d'obturation mobiles 14. Le bloc rigide 15 est relié rigidement à la structure interne au corps 2 du missile 1 par des viroles d'extrémité 16,17. Ce bloc rigide 15 est creux et comporte un évidement interne 18 en communication avec les conduits 10 par des ouvertures périphériques 19. Par ailleurs, le bloc rigide 15 comporte d'autres ouvertures périphériques, formant les cols de tuyère 11 et en communication avec l'évidement interne 18, sous la dépendance des organes d'obturation 14.

Les organes d'obturation rotatifs 14 comportent chacun un arbre 20 d'axe 1-1, parallèle à l'axe L-L du missile, monté par rapport au bloc rigide 15 sur des paliers à faible frottement 21, par exemple des roulements. Chaque organe d'obturation 14 comporte une palette radiale 22, solidaire de l'arbre 20 correspondant et en saillie vers l'extérieur, par rapport à celui-ci. La face longitudinale extérieure 22a des palettes radiales 22 coopère avec le col de tuyère 11 correspondant soit pour obturer celui-ci (voir la position des organes d'obturation 14 de gauche et du haut sur la figure 2), soit pour dégager au moins partiellement ledit col de tuyère 11 (voir la position des organes d'obturation 14 de droite et du bas sur la figure 2).

Lorsque les organes d'obturation 14 sont dans cette position d'obturation, ils isolent l'évidement interne 18 des tuyères 8 et donc celles-ci des conduits 10. En revanche, lorsque les organes d'obturation 14 sont dans leur position de dégagement des cols 11, ils mettent en communication les tuyères 8 avec les conduits 10, à travers lesdits cols de tuyère 11, l'évidement interne 18 et les ouvertures périphériques 19.

Les axes 1-1 des organes d'obturation 14 sont

15

20

25

30

40

45

respectivement disposés dans le plan longitudinal médian des tuyères 8.

Afin de limiter le couple s'opposant à l'ouverture des cols de tuyères 11 par les organes d'obturation 14 (ce couple étant dû à la mise en vitesse des gaz et à la dépression qui en résulte au niveau desdits cols de tuyère 11), la face latérale 22b des palettes 22, en regard des cols de tuyère 11 en position ouverte desdits organes d'obturation 14, est concave et courbe, profilée pour former avec la paroi interne 18a de l'évidement interne 18 un convergent en direction desdits cols de tuyère 11. Ainsi, les faces latérales courbes 22a servent de faces d'appui pour la mise en vitesse des gaz et reportent la dépression engendrée à distance des axes de rotation 1-1 des organes d'obturation 14.

La saillie des palettes 22 par rapport aux arbres 20 est réduite de manière à ce que chaque organe d'obturation 14 présente une inertie de rotation et un débattement de manoeuvre très faibles, de façon à obtenir un temps de réponse très court avec une puissance de commande minimale. On voit ainsi que, grâce à un tel mode de réalisation des organes d'obturation 14, ceux-ci présentent une très faible inertie, ce qui leur permet d'avoir un temps de réponse très réduit, et limitent le couple qui s'oppose à l'ouverture des cols de tuyère, ce qui évite de prévoir des systèmes de compensation complexes.

Bien entendu, la face extérieure 22a des organes d'obturation 14, possède un jeu minimal par rapport à la paroi interne 18a du bloc 15, afin de réduire les fuites en position fermée, tout en autorisant les dilatations provoquées par la température élevée des gaz, par exemple lorsque ceux-ci proviennent d'un générateur de gaz 9 du type à poudre. Le choix des matériaux constitutifs du bloc 15 et des organes d'obturation 14, ainsi que le choix de leur forme peuvent contribuer également à la minimisation des frottements : on utilise par exemple du carbone, du molybdène, protégés ou non par des revêtements ou manchons de protection thermique.

Par ailleurs, comme cela est montré sur les figures 2 et 3, les pieds 8a des tuyères 8 sont emboîtés dans des empreintes 23, de forme correspondante, prévues dans la paroi externe du bloc rigide 15, de façon à ce que la liaison entre lesdites tuyères 8 et ledit bloc rigide 15 soit du type à ajustement glissant. Ainsi, les tuyères 8, qui sont solidaires de la peau 2a du corps 2, peuvent suivre les déformations de celleci. On dissocie ainsi les déformations entre la structure rigide interne du missile 1 et la peau externe 2a du corps 2, dues en partie au facteur de charge important auquel est soumis le missile 1 au cours des manoeuvres en pilotage en force, déformations qui engendreraient des perburbations de fonctionnement.

Comme cela est visible sur la figure 3, les arbres 20 des organes d'obturation 14 pénètrent à l'intérieur

de la partie 7b (seulement représentée par un contour en trait mixte) du dispositif de pilotage en force 7, destinée à la commande desdits organes d'obturation 14. Sur les figures 4 à 8, on a représenté schématiquement des modes de réalisation de cette partie de commande 7b.

Sur la figure 4, on a représenté une paire de tuyères 8 opposées, portant respectivement les références 8.1 et 8.2 et associées à des obturateurs respectifs 14.1 et 14.2. De même, les dispositifs respectivement associés auxdites tuyères 8.1 et 8.2 portent les mêmes références affectés des indices 1 ou 2 respectivement.

On peut voir, sur cette figure 4, qu'à chaque organe d'obturation 14.1 ou 14.2 est associé un vérin 30.1 ou 30.2, dont le piston 31 est relié audit organe 14.1 ou 14.2 par exemple par une biellette 34, respectivement articulée en 35 et 36 sur ledit organe d'obturation 14.1 ou 14.2 et sur la tige 37 dudit piston 31.

Le piston 31 de chaque vérin 30.1 ou 30.2 partage l'intérieur du cylindre 38 correspondant en deux chambres 38a et 38b de sections différentes. Dans la chambre 38a, de plus petite section, débouche un conduit 39, par exemple relié à un conduit 10, introduisant la pression du générateur 9 et tendant à repousser le piston 31 vers la chambre 38a de plus grande section, éventuellement jusqu'à une position telle que l'organe d'obturation 14.1 ou 14.2 obture alors le col 11 de la tuyère 8.1 ou 8.2 correspondante. Dans ce cas, le piston 31 peut venir en appui contre une butée 40, prévue dans la chambre de plus grande section 38a et délimitant le volume minimal que celle-ci peut occuper.

Dans ce volume minimal de la chambre de plus grande section 38a d'un vérin 30.1 ou 30.2 débouchent un conduit d'admission 41 de section calibrée et un conduit d'échappement 42 de section modulable. Le conduit d'admission 41 reçoit, comme le conduit 39, une partie, par exemple de l'ordre de 1%, du flux gazeux engendré par le générateur 9 en étant par exemple relié à un conduit 10. Le conduit d'échappement 42 est mis à l'air, en étant par exemple relié à l'extérieur du missile 1, de sorte qu'une légère pression po règne dans la chambre de plus grande section 38a. Pour pouvoir moduler de façon précise et rapide la section des conduits d'échappement 42, l'extrémité libre de ceux-ci est prolongée par une partie 43 évasée en entonnoir et une bille réfractaire 44 est prévue pour pouvoir se déplacer à l'intérieur de ladite partie évasée 43, dans l'axe de celle-ci. Un moteur 45.1 ou 45.2, par exemple un moteur électrique linéaire, est prévu pour un tel déplacement de ladite bille 44. On voit qu'avec un tel dispositif, la bille 44 est automatiquement centrée par rapport au conduit 42 en position d'oburation.

Lorsqu'un moteur 45.1 ou 45.2 est commandé pour rétracter la bille 44 et libérer complètement le conduit d'échappement 42 correspondant (voir la

20

30

35

45

50

figure 4), c'est-à-dire pour dégager entre ladite bille 44 et la paroi en regard de l'entonnoir 43 une section de passage au moins égale à la section du conduit d'échappement 42, le courant gazeux entrant par le conduit d'admission 41 s'échappe librement à travers ledit conduit d'échappement 42, de sorte que ce courant gazeux n'exerce que la légère pression po sur le piston 31, qui est repoussé en direction de la butée 40 par l'action du flux gazeux amené par le conduit 39 correspondant, de sorte que la biellette 34 associée tend à déplacer l'organe d'oturation correspondant 14.1 ou 14.2 vers la position pour laquelle il obture complètement le col de tuyère 11.

9

En revanche, si un moteur 45.1 ou 45.2 est commandé pour rapprocher la bille 44 du conduit d'échappement 42, ladite bille délimite avec la paroi en regard de l'entonnoir 43 une section de passage qui va en diminuant. Dès que cette section de passage devient inférieure à la section du conduit d'échappement 42, il y a obstacle à l'écoulement du courant gazeux entrant par le conduit d'admission 41, de sorte que la pression gazeuse augmente à l'intérieur de la chambre de plus grande section 38a, audelà de la valeur po. Dès que cette pression est suffisamment grande pour vaincre l'action du courant gazeux amené par le conduit 39, le piston 31 tend à se déplacer dans le sens pour lequel la biellette 34 fait tourner l'organe d'obturation correspondant 14.1 ou 14.2 dans le sens du dégagement du col de tuyère 11.

Si le rapprochement de la bille 44 du conduit d'échappement 42 continue, sous l'action du moteur 45.1 ou 45.2), la section de passage du courant gazeux entrant par le conduit d'admission 41 diminue encore et la pression à l'intérieur de la chambre 38a de plus grande section devient plus grande et l'organe d'obturation correspondant 14.1 ou 14.2 tend à prendre une position pour laquelle il dégage complètement le col 11 de la tuyère 8.1 ou 8.2 associée.

Si maintenant le moteur 45.1 ou 45.2 est commandé pour rétracter la bille 44, une section de passage de gaz est de nouveau disponible entre ladite bille 44 et la paroi en regard de l'entonnoir 43, de sorte que la pression diminue dans la chambre 38a de plus grande section et que la pression engendrée par le flux gazeux amené par le conduit 39 peut repousser le piston 31 pour que l'organe d'obturation 14.1 ou 14.2 tourne dans le sens de l'obturation du col 11.

Il résulte de ce qui vient d'être décrit que, par contrôle des moteurs 45.1 et 45.2, on peut commander la rotation relative des organes d'obturation 14.1 et 14.2 par rapport aux cols 11 des tuyères 8.1 et 8.2 respectives et donc piloter en force ledit missile, la position d'un organe d'obturation 14.1 ou 14.2 par rapport au col de tuyère 11 correspondant dépendant de l'équilibre des pressions fluides dans les chambres 38a et 38b.

Toutefois, les positions des organes d'obturation

14.1 ou 14.2 ne dépendent pas uniquement des pressions régnant dans les chambres 38a et 38b des vérins 30.1 et 30.2, car lesdits organes d'obturation sont mécaniquement couplés l'un à l'autre en rotation par une liaison mécanique 50, qui est montrée schématiquement sur la figure 4, mais dont un exemple de réalisation est illustré par les figures 5 et 6.

Comme on peut le voir, dans ce mode de réalisation, ladite liaison mécanique 50 comporte une bielle 51, solidaire en rotation de l'arbre 20 de l'organe d'obturation 14.1, et une bielle 52, solidaire en rotation de l'arbre 20 de l'organe d'obturation 14.2, lesdites bielles 51 et 52 étant dirigées l'une vers l'autre et articulées l'une à l'autre. A cet effet, par exemple, la bielle 52 comporte une chape 53 dans laquelle est engagée une extrémité 54 de la bielle 51. Cette extrémité 54 est percée d'une ouverture oblongue 55, dans laquelle peut rouler un galet 56, monté rotatif autour d'un axe 57, solidaire de la bielle 52 et traversant la chape 53, ledit axe 57 étant parallèle aux axes 1-1 des arbres 20.

A leurs extrémités libres 58 et 59, respectivement opposées à l'ouverture oblongue 55 et à la chape 53, les bielles 51 et 52 sont articulées respectivement sur les bielles 34 associées aux vérins 30.1 et 30.2 par des articulations 35, représentées sous la forme d'articulation à rotule.

On voit que l'ouverture oblongue 55 et le galet 56 forment, entre les bielles 51 et 52, une articulation dont l'axe 57 est susceptible de se déplacer longitudinalement par rapport à la bielle 51, lorsque les dites bielles tournent avec les arbres 20 associés.

Lorsque, comme cela est représenté sur la figure 4, les deux moteurs 45.1 et 45.2 sont dans leur position neutre pour laquelle leurs billes 44 respectives sont écartées de l'entonnoir 43 avec lesquels elles coopèrent et à égale distance de ceux-ci, les sections d'échappement des deux conduits 42 sont identiques, de sorte que dans les chambres 38a de grande section des vérins 30.1 et 30.2 règne la même pression, égale à la valeur po définie ci-dessus. Par ailleurs, les chambres 38b de petite section des vérins 30.1 et 30.2 reçoivent la même pression de gaz provenant du générateur 9, de sorte que, dans ces chambres également, règne la même pression, égale à celle du courant gazeux dérivé des conduits 10. Par suite, les pistons 31 des deux vérins 30.1 et 30.2 occupent des positions relatives identiques et chacune des tuyères 8.1 et 8.2 est à moitié ouverte. Dans cette position neutre représentée sur la figure 4, il est avantageux que la liaison mécanique 50 soit ellemême dans une position neutre pour laquelle les deux articulations 35 et l'axe 57 sont alignés, comme cela est représenté sur les figures 5 et 6.

Si, à partir de la position neutre représentée sur la figure 4, l'un des deux moteurs 45.1 ou 45.2 est commandé (sur la figure 7, on a illustré la commande du moteur 45.2) la bille 44 correspondante est rappro-

25

30

35

40

45

50

chée de l'entonnoir associé, de sorte que la pression croît dans la chambre 38b correspondante et que le piston 31 est repoussé vers la chambre 38a. Par suite, l'organe d'obturation 14.2 tourne dans le sens pour lequel il dégage de plus en plus la tuyère 8.2 associée. Toutefois, à cause de la liaison mécanique 50 qui prend une position cassée, l'organe d'obturation 14.1 est lui-même obligé de tourner, mais dans le sens inverse. Ainsi, au fur et à mesure que l'organe d'obturation 14.2 ouvre la tuyère 8.2, l'organe d'obturation 14.1 ferme la tuyère 8.1. Une telle commande peut se poursuivre jusqu'à ce que l'un des obturateurs 14.2 soit complètement ouvert, alors que l'autre est complètement fermé. Cette dernière situation est représentée sur la figure 7, où l'organe d'obturation 14.2 est ouvert et l'organe d'obturation 14.1 est en position de fermeture.

Sur la figure 8, on a représenté schématiquement l'application du système des figures 4 et 7, au pilotage d'un missile 1 pourvu de quatre tuyères, deux à deux diamétralement opposées et réparties à 90° autour de l'axe L-L dudit missile. Sur cette figure, on retrouve les deux tuyères opposées 8.1 et 8.2 décrites ci-dessus, auxquelles ont été ajoutées deux tuyères identiques 8.3 et 8.4, croisées avec lesdites tuyères 8.1 et 8.2. Aux tuyères 8.3 et 8.4 sont respectivement associés des organes d'obturation 14.3 et 14.4 et des vérins 30.3 et 30.4. Les organes d'obturation 14.1 et 14.2 sont couplés par la liaison mécanique 50.12, tandis que les organes d'obturation 14.3 et 14.4 sont liés par la liaison mécanique 50.34. Bien entendu les liaisons mécaniques 50.12 et 50.34 sont semblables à la liaison 50, décrite ci-dessus. Elles se croisent au voisinage de leur articulation, et c'est pour cela qu'elles comportent un évidement central 60 (voir la figure 6).

Par ailleurs, à chaque couple d'organe d'obturation 14.1-14.2 et 14.3-14.4 est associé un organe de mesure de position d'un desdits organes d'obturation, portant respectivement les références 61.12 et 61.34. Ces organes de mesure de position peuvent être du type potentiomètre et ils sont destinés à communiquer, à la commande des organes d'obturation (non représentée), la position ex acte atteinte par lesdits organes d'obturation. On remarquera que, à cause des liaisons mécaniques 50.12 et 50.34. chaque organe de mesure de position 61.12 et 61.34 délivre des signaux représentatifs, à la fois, des positions des deux organes d'obturation associés.

De plus, au lieu de prévoir un moteur 45 par tuyère comme cela est représenté sur les figures 4 et 7, dans ce mode de réalisation on associe un seul moteur 45 pour deux tuyères diamétralement opposées : c'est ainsi que le moteur 45.12 commande les organes d'obturation 14.1 et 14.2, respectivement associés aux tuyères 8.1 et 8.2, tandis que le moteur 45.34 commande les organes d'obturation 14.3 et 14.4, respectivement associés aux tuyères 8.3 et 8.4. Chacun de ces moteurs 45.12 et 45.34 est par exem-

ple un moteur linéaire du type décrit dans le brevet FR-A-2 622 066, comportant un noyau allongé 62 mobile en translation parallèlement à lui-même. Une bille 44 est portée par chaque extrémité du noyau 62, pour pouvoir coopérer avec les entonnoirs 43 associés aux conduits d'échappement 42 des vérins 30.1 et 30.2, ou 30.3 et 30.4, correspondants, de façon que lorsqu'une bille 44 se rapproche de son entonnoir associé, l'autre bille 44 s'éloigne du sien et vice-versa.

On voit donc que, par la commande des moteurs 45.12 et 45.34, on neut obtenir toute poussée transversale désirée pour le pilotage en force du missile 1.

On remarquera que, pour la position neutre représentée sur la figure 4, la position des billes 44 peut être telle que l'effort fourni par un piston 31 est égal au couple qui tend à fermer chaque organe d'obturation 14. Ainsi, les liaisons mécaniques 50, qui garantissent la sécurité de fonctionnement, sont peu sollicitées. Par ailleurs, ces liaisons mécaniques 50, disposées dans la partie 7b du système, sont en dehors des flux gazeux (passant par la partie 7a), de sorte qu'elles sont soumises à des températures modérées. Les galets 56 peuvent présenter la forme d'un tonneau, de sorte que les liaisons mécaniques 50 tolèrent des flexions inverses.

L'asservissement en poussée transversale de pilotage peut se faire, de façon connue, par une boucle de retour (non représentée) assurant la mesure de la position de chaque couple d'organes d'obturation, à l'aide des organes 61.12 et 61.34. Le fonctionnement peut être stabilisé grâce à une régulation de vitesse des moteurs 45, muni à cet effet de génératrices tachymétriques (non représentées), sur l'écart entre positions demandée et réalisée.

Si, comme cela est illustré sur la figure 9, on prévoit une chambre de tranquillisation des gaz 63 entre les col de tuyères 11 et lesdites tuyères 8, ces chambres de tranquillisation 63 étant elles-mêmes reliées aux tuyères 8 par un étranglement 64 de section connue, on peut faire en sorte que l'écoulement gazeux dans lesdites tuyères soit subsonique. En mesurant, grâce à des dispositifs 65, la pression dans chaque chambre 63, on peut déterminer aisément la poussée de chaque tuyère 8 et la valeur résultante par couple de tuyères.

Revendications

1 - Système pour le pilotage d'un missile (1) au moyen de jets gazeux, comportant un générateur de gaz (9) susceptible d'être relié à au moins une paire de tuyères latérales (8) par l'intermédiaire de moyens d'obturation rotatifs (14), mobiles sous l'action de moyens moteurs (30) et commandant le passage des gaz à travers lesdites tuyères, caractérisé en ce que :

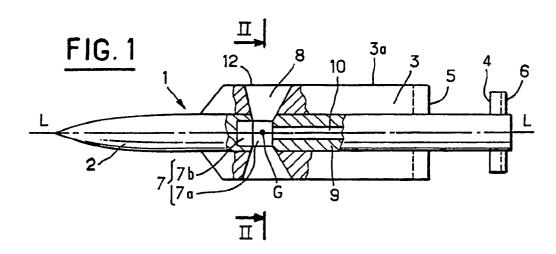
25

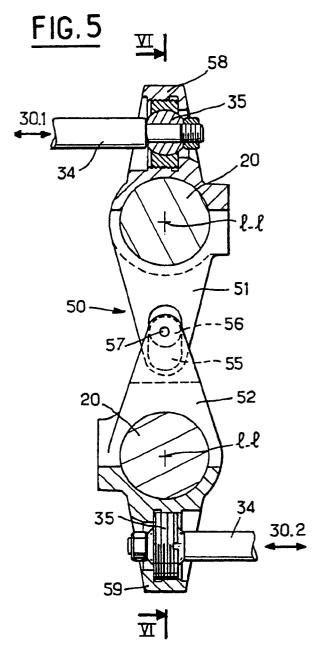
30

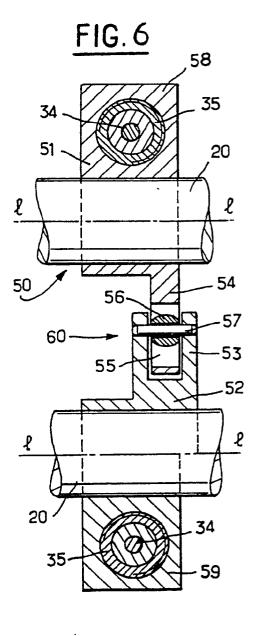
- 35

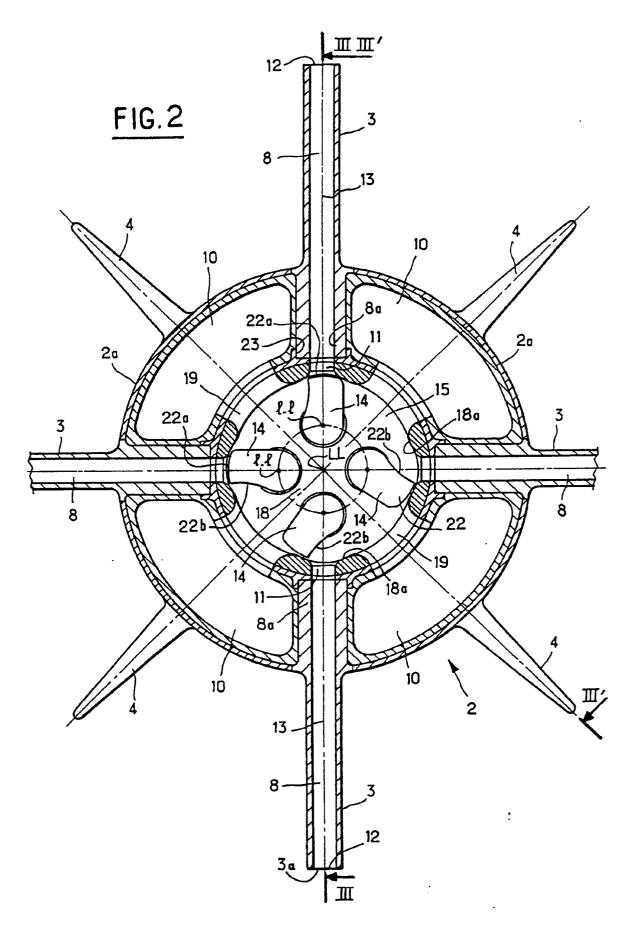
40

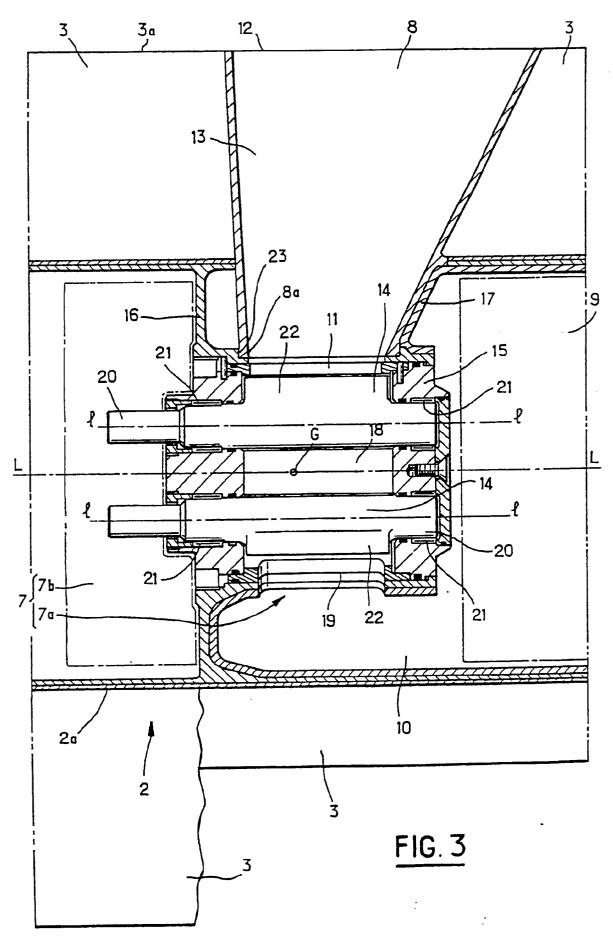
- à chaque tuyère (8) est associé un obturateur rotatif individuel (14);
- chaque obturateur (14) est commandé en rotation par un piston (31) partageant un vérin (30) en deux chambres (38a,38b) de sections différentes, lesdites chambres recevant chacune une partie du gaz engendré par ledit générateur de gaz (9) et la position dudit piston étant commandée par le contrôle du débit dudit gaz à travers la chambre (38a) de plus grande section, le contrôle desdits débits à travers les chambres de plus grande section des deux vérins d'une paire de tuyères latérales étant tel que, à un instant donné, un seul desdits débits est susceptible d'être restreint, éventuellement jusqu'à l'obturation totale ; et
- les deux obturateurs (14) sont liés l'un à l'autre par une liaison mécanique (50) telle que, lorsqu'un obturateur tourne en ayant tendance à obturer la tuyère associée, l'autre obturateur tourne, de la même amplitude angulaire, en ayant tendance à dégager la tuyère associée.
- 2 Système selon la revendication 1, caractérisé en ce que, au moins au niveau de son col (11) coopérant avec un obturateur (14), chaque tuyère (8) présente une section oblongue.
- 3 Système selon la revendication 2, caractérisé en ce que chaque obturateur comporte un arbre (20) solidaire d'une palette radiale (22) en saillie, dont la face longitudinale d'extrémité (22a) coopère avec le col (11) de la tuyère (8) correspondante.
- 4 Système selon la revendication 3, caractérisé en ce que la face latérale (22b) de la palette radiale (22), en regard du col (11) de la tuyère (8) en position d'ouverture dudit obturateur (14), est concave et courbe.
- 5 Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits obturateurs sont montés dans un bloc rigide (15) solidaire de la structure dudit missile (1)
- 6 Système selon la revendication 5, dans lequel lesdites tuyères (8) sont ménagées dans des ailes (3) dudit missile solidaires de la peau (2a) de celui-ci, caractérisé en ce que les pieds (8a) desdites tuyères (8) sont emboîtés à frottement glissant dans ledit bloc rigide (15).
- 7 Système selon l'une des revendications 1 à 6, caractérisé en ce que le contrôle du débit de gaz à travers un vérin est obtenu à l'aide d'un moteur linéaire (45) déplaçant une bille (44) dans un évasement (43) prévu sur le circuit dudit débit de gaz.
- 8 Système selon la revendication 7, caractérisé en ce que les obturateurs des deux tuyères sont commandés par le même moteur (45.12 ou 45.34).
- 9 Système selon l'une quelconque des revendications 1 à 8,

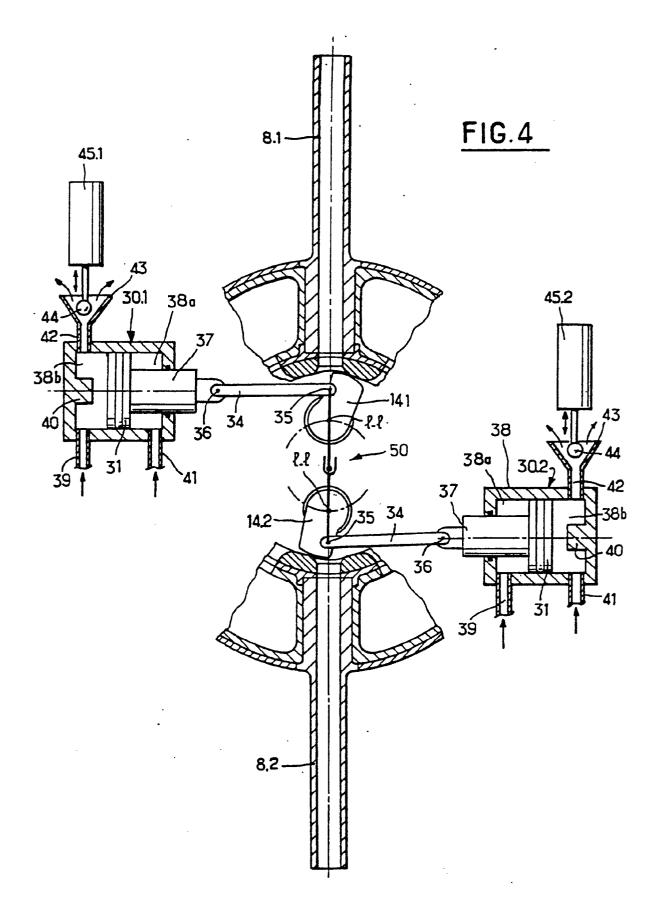

caractérisé en ce que ladite liaison mécanique (50) comporte deux bielles (51,52), respectivement solidaires en rotation d'un obturateur (14), lesdites bielles étant reliées l'une à l'autre par leurs extrémités libres en regard par l'intermédiaire d'une articulation (55,56,57), dont l'axe est susceptible de se déplacer longitudinalement par rapport à l'une desdites bielles.

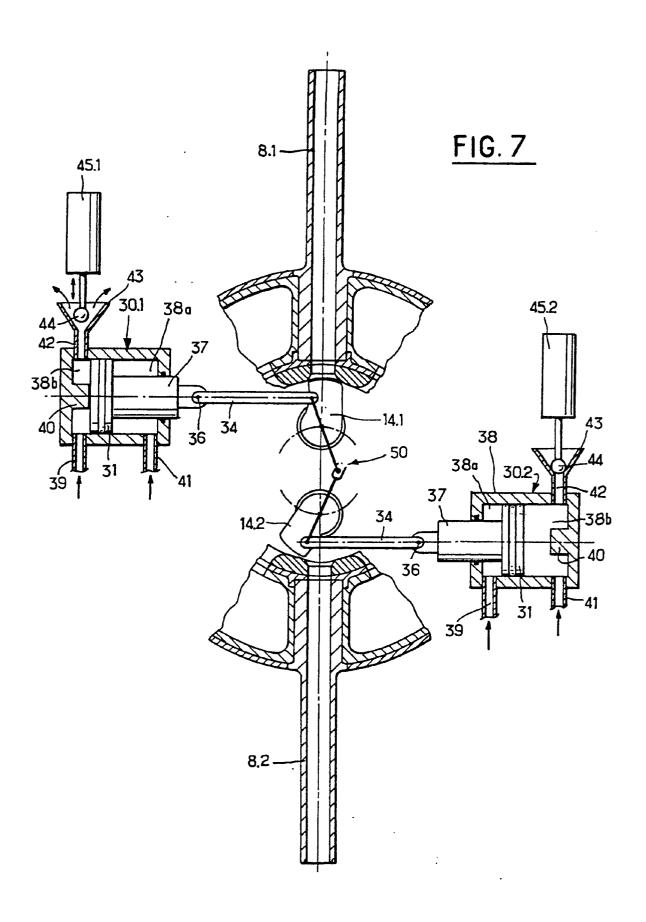

- 10 Système selon la revendication 9, caractérisé en ce que ladite liaison mécanique (50) est disposée à l'écart des flux gazeux émis par ledit générateur de gaz (9).
- 11 Système selon l'une des revendications 9 ou 10, caractérisé en ce que chaque bielle est solidaire en rotation de l'arbre (20) de l'obturateur (14) correspon-

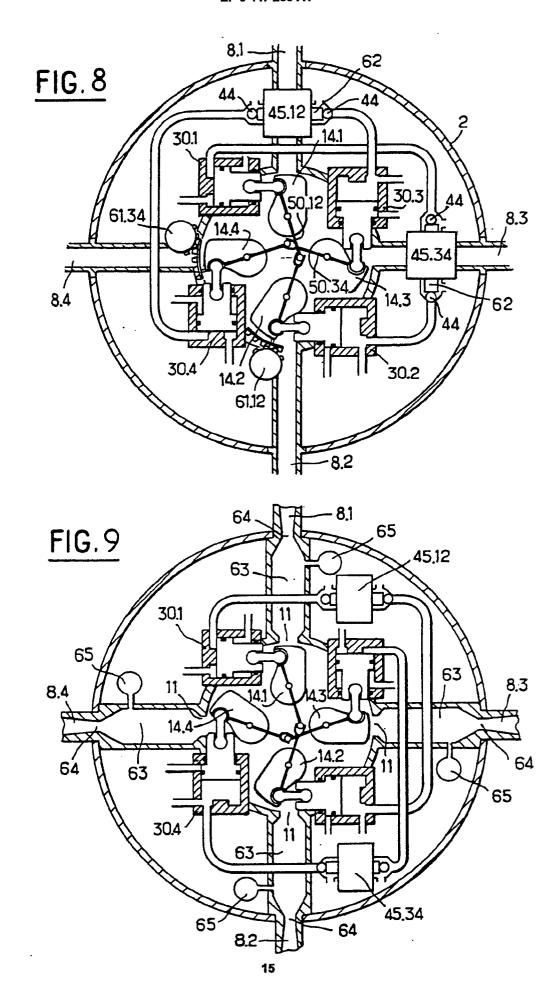

caracterise en ce que chaque bielle est solidaire en rotation de l'arbre (20) de l'obturateur (14) correspondant et en ce que, à son extrémité opposée à ladite articulation avec l'autre bielle, chaque bielle est articulée au piston (31) du vérin (30) correspondant.


- 12 Système selon la revendication 11, pour un couple de tuyères diamétralement opposées, caractérisé en ce que, en position neutre, les deux articulations (35) des bielles auxdits vérins et l'articulation entre lesdites bielles sont alignées et en ce que les deux obturateurs (14) obturent à demi les tuyères correspondantes.
- 13 Système selon l'une des revendications 1 à 12, caractérisé en ce que, en aval de son col (11) coopérant avec l'obturateur rotatif (14) correspondant, chaque tuyère (8) comporte une chambre de tranquillisation des gaz (63), reliée à ladite tuyère, du côté opposé audit col (11), par un étranglement (64) tel que l'écoulement gazeux à l'intérieur de ladite tuyère est subsonique.
- 14 Système selon la revendication 13, caractérisé en ce qu'un dispositif de mesure (65) est prévu pour la mesure de pression dans chaque chambre de tranquillisation (63).


9







RAPPORT DE RECHERCHE EUROPEENNE Numero de la demande

EP 91 40 0520

atégorie	Citation du document avec des parties pe	indication, en cas de besoin, rtinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
· .	EP-A-64433 (THOMSON-BR * page 4, ligne 5 - pa	ANDT) ge 8, ligne 21; figures	1-8	F42B10/66
\			11	
,	DE-A-2743371 (FORD AER CORP) * page 9, alinéa 3 - po 1-3 *	OSPACE &COMMUNICATIONS age 12, alinéa 1; figures	1-8	
γ,Υ	US-A-4531693 (RAYNAUD) * colonne 3, ligne 17 figures 1-9 *		2-6	
				DOMAINES TECHNIQUE
				F42B B64C F02K
Le pré	sent rapport a été établi pour te	utes les revendications		
		Date d'achèvement de la recherche 19 JUIN 1991	TRIAN	Examinateur TAPHILLOU P.
X : perti V : perti	ATEGORIE DES DOCUMENTS (culièrement portinent à lui seul culièrement pertinent en combinaison decument de la même catégorie	CITES T: théorie ou E: document date de dé n avec un D: cité dans l	principe à la base de l'in de brevet antérieur, mais sôt ou après cette date	vention