

(1) Veröffentlichungsnummer: 0 449 781 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91810209.6

(22) Anmeldetag: 25.03.91

(51) Int. CI.5: **B02C 13/04,** B02C 13/26,

B02C 13/284

(30) Priorität: 26.03.90 DD 339045

(43) Veröffentlichungstag der Anmeldung: 02.10.91 Patentblatt 91/40

84) Benannte Vertragsstaaten : CH DE DK GB LI NL SE

71 Anmelder: MÜHLENBAU DRESDEN GmbH Fritz-Schreiter-Strasse 40 O-8046 Dresden (DE) (72) Erfinder: Sauermann, Werner, Dipl-Ing. Oskar-von-Miller-Strasse 12

O-8017 Dresden (DE)
Erfinder: Stöhr, Steffen
Karl-Liebknecht-Strasse 1
O-8300 Pirna (DE)
Erfinder: Lenz, Willi
Wilhelm-Pieck-Ring 9c

O-1554 Ketzin (DE) Erfinder: Schwalbe, Susanne

Freystrasse 5

O-8046 Dresden (DE)

Vertreter: Riederer, Conrad A., Dr. Bahnhofstrasse 10 CH-7310 Bad Ragaz (CH)

(54) Hammermühle.

Durch die Anordnung von Statorwerkzeugen (8), die während des Betriebes von aussen, in Richtung Schlagkreis der Schlagwerkzeuge (9), nachgestellt werden können und mindestens einseitig im Gehäuse gelagert sind, wird die Relativgeschwindigkeit zwischen Schlagkante der Schlagwerkzeuge (9) und umlaufendem Mahlgutring in der Mahlkammer (16) ständig erhöht; die groben Partikel werden vom Sieb (7) abgehoben und die Siebfläche wird somit vergrössert. Durch das Nachführen der Statorwerkzeuge (8) in Richtung Schlagkreis der Schlagwerkzeuge (9) wird der Verschleiss der Schlagkanten und der Statorwerkzeuge (8) kompensiert. Dadurch ist es möglich, bei vorgegebenem Komgrössenspektrum grössere Lochdurchmesser des Siebes (7), als ursprünglich vorgesehen, zu verwenden.

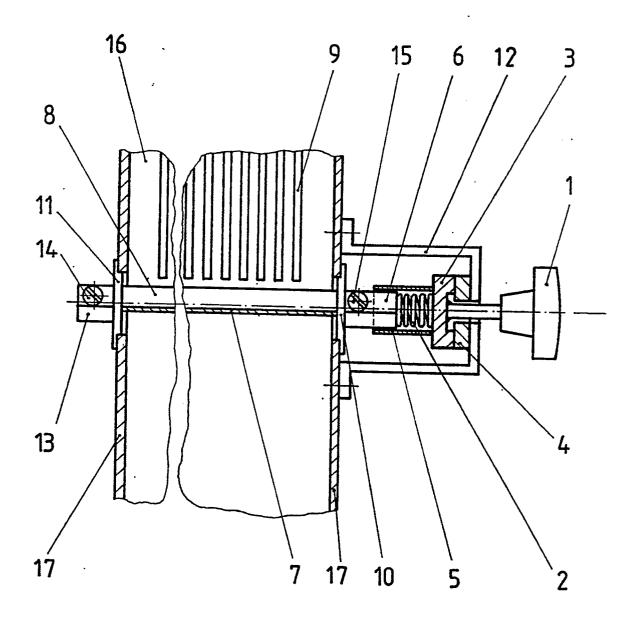


Fig.1

5

10

20

30

35

40

45

50

Die Erfindung betrifft die Gestaltung einer Hammermühle, bei der verschiedene Betriebsparameter durch Verwendung nachstellbarer Statorwerkzeuge beeinflußt werden können. Diese Hammermühlen werden vorzugsweise in der getreideverarbeitenden Industrie zur Herstellung schrotförmiger Produkte eingesetzt.

Es sind Hammermühlen bekannt, die aus einem Rotor mit reihenweise und in definierter Anordnung pendelnd aufgehängten Schlagwerkzeugen und einem koaxial zum Rotor, diesen größtenteils umschliessenden Siebmantel aus perforierten Lochblech oder Drahtgewebe, bestehen. Zwischen der Kreisbahn der Schlagwerkzeuge und dem Sieb-mantel ergibt sich ein definierter Spalt, der sich durch Verschleiß, vorwiegend der Schlagwerkzeuge, ständig verändert und sich somit negativ auf die Energieökonomik und das Korngrößenspektrum auswirkt.

Diese bekannten Hammermühlen arbeiten nach dem Prall- und Reibprin-zip und unterliegen der Gesetzmäßigkeit, daß mit wachsendem Verschleiß der Schlagwerkzeuge die Bruchwahrscheinlichkeit des Mahlgutes sinkt und der Anteil der Reibarbeit steigt. Der Reibanteil steigt in dem Maße, wie gröbere Partikel die Sicht- und Klassier-geschwindigkeit durch Blockieren der Durchtrittsöffnungen des perforierten Lochbleches herabsetzen oder im Mahlgutring solange rotieren und abgearbeitet werden, bis die Wahrscheinlichkeit zum Verlassen der Mahlkammer gegeben ist.

Nach WP B 02 C/326 841 2 ist eine Lösung bekannt, bei der die negativen Auswirkungen auf die Energieökonomik und das Korngrößenspektrum dadurch aufgehoben werden, indem der Verschleiß der Schläger durch die Bereitstellung einer jeweils scharfen Schlagkante kompensiert wird.

Diese Lösung kann auch nach WP B 02 C/331 024 8 durch Konstanthaltung des Spaltes zwischen Kreisbahn der Schlagwerkzeuge und Siebmantel erreicht werden. Nach der EP 0 173 831 und angebotenen Erzeugnissen der Firma Kahl/Hamburg wird durch konstante und regelungstechnische Maßnahmen die Verweilzeit des zu zerkleinernden Produkts in der Mahlkammer dadurch beeinflußt, daß die Anzähl der möglichen Schlagkanten und die absolute Siebfläche (wirksame Durchtritts- oder Sichtfläche), teilweise kombiniert mit einer innerhalb der Zerkleinerungsmaschine angeordneten Sichtung, so variiert werden kann, daß eine optimale Energieökonomik und ein optimales Korngrößenspektrum erreicht werden. Der maschinentechnische Aufwand für die Herstelluna derartiger Zerkleinerungseinrichtungen sowie der regelungstechnische Aufwand beim Anwender sind relativ hoch. Eine Reduzierung des Reibanteiles beim Zerkleinerungsvorgang ist nach DE OS 37 03 309 bekannt. Danach sind auf der Innenseite des Siebringes oder der Siebtrommel Statorwerkzeuge angeordnet, die parallel zur Drehachse

des Rotors ortsfest mit dem Siebring oder der Siebtrommel verbunden sind. Diese Statorwerkzeuge wirken einmal als Gegenstück zu den Schlagwerkzeugen und zum anderen erzielen sie einen Rückstau für noch nicht ausreichend fein zerkleinerte Gutteilchen. Der Mahlgutring wird aufgelöst und das Zerkleinerungsgut den Schlagwerkzeugen wieder zugeführt . Von nachteil bei dieser Ausführungsvariante ist, daß mit wachsendem Verschleiß der Schlagwerkzeuge und der Statorwerkzeuge ein Betriebsverhalten der Zerkleinerungseinrichtung erreicht wird, welches dem ohne Statorwerkzeuge entspricht.

Ein weiterer Nachteil ist, daß bei Zerstörung des Siebringes/Siebtrommel durch Fremdkörper die gesamte Baueinheit einschließlich Statorwerkzeugen gewechselt werden muß. Das Befestigen der Statorwerkzeuge auf der Siebtrommel ist aus fertigungstechnischer Sicht wegen der verfahrensbedingt einsetzbaren Materialgüten mit hohen Kosten verbunden.

Nach EP 0 173 831 haben die angeführten Statorwerkzeuge einerseits den Materialkurzschluß, bedingt durch die vertikal liegende Drehachse, zu verhindern und andererseits haben sie die Funktion von Leiteinrichtungen, nicht aber die Funktion von Gegenwerkzeugen da sie in Umfangsrichtung und parallel der Schlagkanten der Rotorwerkzeuge liegen. Eine Nachstellung zur Kompensation des Schlägerverschleißes ist nicht möglich.

Das Ziel der Erfindung besteht darin, eine Zerkleinerungseinrichtung zu schaffen, bei der der Mahlgutring innerhalb der Mahlkammer gestört wird und der Verschleiß der Schlagwerkzeuge und der Statorwerkzeuge unabhängig ihres Verschleißes zueinander und ihrer Anordnung am Umfang der Mahlkammer von außen, bezüglich des optimalen Mahlspaltes, kompensiert werden kann.

Der Erfindung liegt die Aufgabe zugrunde, eine Zerkleinerungseinrichtung zu schaffen, bei der in der Mahlkammer von außen und in Richtung Schlagkreis der Schlagwerkzeuge nachstellbare Statorwerkzeuge angeordnet sind. Die Anzahl und die Anordnung der Statorwerkzeuge werden ausschließlich vom Zerkleinerungsziel und dem eingesetzten Sieb bestimmt.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß sich die Statorwerkzeuge über die gesamte Breite oder Teilabschnitte des Siebes erstrecken und jedes Statorwerkzeug wenigstens einseitig in einer Gehäusewand gelagert und von außen nachstellbar ist. Durch die Lagerung der Statorwerkzeuge im Gehäuse ist deren Nachstellung, entsprechend der Zerkleinerungs- und Verschleißbedingungen und ihrer Anordnung an Umgang der Mahlkammer, möglich. Die funktionelle Trennung im Zerkleinerungsablauf einer Zerkleinerungseinrichtung zwischen der durch das Sieb übernommenen Sichtfunktion und der von

15

25

35

40

45

50

Schlag- und Statorwerkzeugen übernommenen Zerkleinerungsfunktion, vor allem durch die flexibel und nachstellbar am Umfang der Mahlkammer angeordneten Statorwerkzeuge, bringt den Vorteil, daß der Mahlgutring so gestört wird, daß die Relativgeschwindigkeit zwischen den Schlagwerkzeugen und den noch nicht ausreichend fein zerkleinerten Gutteilchen optimal erhöht wird. Außerdem ist es möglich, durch das Heranführen der Statorwerkzeuge an den Schlagkreis, den Mahlspalt zu optimieren und den Verschleiß der Schlagwerkzeuge auszugleichen. Dabei ist es unbedeutend, ob die Nachstellung der Schlagleisten in radialer Richtung oder auf einer Kurvenbahn erfolgt.

Die funktionelle Trennung zwischen Sicht- und Zerkleinerungsfunktion durch Anordnung von Statorwerkzeugen führt zu einer Verschleißminderung an den Schlagwerkzeugen, da der Reibanteil im Zerkleinerungsprozeß reduziert ist. Die Bruchwahrscheinlichkeit erhöht sich in dem Maße wie sich die Relativgeschwindigkeit erhöht und der Verschleiß an den Schlagkanten der Schlagwerkzeuge durch Nachstellen kompensiert wird. Die getrennte Anordnung von Sieb- und Statorwerkzeugen im Gehäuse führt zu einer Kosteneinsparung, da die durch den auftretenden Verschleiß beziehungsweise durch Fremdkörper zerstörten Bauteile gesondert gewechselt werden können.

In diesem Fall ist auch keine Veränderung des Abstandes zwischen Schlagkreis der Schlagwerkzeuge und Statorwerkzeugen notwendig. Mit dem Austausch des Siebes ist die Betriebsbereitschaft bei gleichem zu erwartenden Zerkleinerungsergebnis gesichert. Beim Schlagwerkzeugwechsel ist eine Nachjustierung auf den optimalen Mahlspalt erforderlich. Das ständige Zerstören des Mahlgutringes und des damit verbundene Wegführens grober Gutteilchen vom Sieb erhöht die Sichtfläche, führt zur Durchsatzsteigerung beziehungsweise zur Reduzierung des spezifischen Arbeitsbedarfs und verhindert ein Verstopfen der Mahlkammer bei Produktion mit geringem spezifischen Zerkleinerungswiderstand und der damit gefürchteten unkontrollierten Brandgefahr. Durch die Verwendung von Statorwerkzeugen wird nachweisbar eine erhebliche Senkung des spezifischen Arbeitsbedarfes erreicht, so daß bei gleichem zu erreichenden Korngrößenspektrum ein Sieb mit einer etwa 1 mm größeren Lochweite verwendet werden kann.

Die Erfindung soll an nachstehendem Ausführungsbeispeil näher erläutert werden.

Die dazugehörigen Zeichnungen zeigen in

Fig. 1 - eine Schnittdarstellung, wo die Funktionsweise des Verstellmechanismus veranschaulicht wird Fig. 2 - einen Ausschnitt aus Fig. 1 in der Seitenansicht

In bezug auf die Darstellung von Fig. 2 ist zu beachten, dass sich das Statorwerkzeug 8 noch nicht

in der Fig. 1 gezeigten Stellung befindet, also noch nicht wegen des fortschrei tenden Verschliesses um den Maximalbetrag von 90° gedreht wurde.

Durch axialen Druck auf den Sterngriff 1 wird die Rückstellfeder 2 zusammengedrückt und die sich im Eingriff befindlichen Zahnräder 3 und 4 werden getrennt.

Das Zahnrad 4 ist am Bügel 12 angeordnet. Durch die Trennung der Zahnräder 3 und 4 wird eine Verdrehung des heruntergedrückten Zahnrades 3 möglich. Das am Zahnrad 3 befestigte Kastenprofil 5 gleitet über den Zapfen 6 und vergroßert dadurch die Fläche, die zur Übertragung des Drehmomentes notwendig ist. Durch Verdrehung des Sterngriffes 1 kann das über die gesamte Breite des Siebes 7 verlaufende Statorwerkzeug 8 in Richtung des Schlagwerkzeuges 9 angehoben oder in Richtung Sieb 7 abgesenkt werden. Dei Rückstellfeder 2 bewirkt nach Änderung der Statorwerkzeugstellung den stabilen Formschluß der Zahnräder 3 und 4 und verhindert ein selbstandiges Verstellen des Statorwerkzeuges 8. Das Statorwerkzeug 8 ist mit den an den Dichtscheiben 10 und 11 befestigen Zapfen 6 und 13 verbunden. Die Dichtscheiben 10 und 11 dienen zur Führung des Statorwerkzeuges 8 und verhindern den Austritt von Mahlgut aus der Mahlkammer 16. Die Statorwerkzeuge 8 sind dabei in einer die Mahlkammer 16 begrenzenden Gehaüsewand 17 nachstellbar gelagert. Zur Demontage des verschlissenen Statorwerkzeuges 8 müssen die Verschraubungen 14 und 15 gelöst werden. Anschließen kann das Statorwerkzeug 8 seit seitlich herausgezogen werden. Die Montage eines neuen Statorwerkzeuges erfolgt in umgekehrter Reihenfolge.

Patentansprüche

- Hammermühle, vorzugsweise zur Zerkleinerung von Körnerfrüchten und Komponenten der Mischfutterindustrie, mit einer Mahlkammer (16), einem in dieser angeordneten Rotor mit Schlagwerkzeugen (9) und einem koaxial zum Rotor angeordneten, diesen mindestens teilweise umschliessenden Sieb (7), dadurch gekennzeichnet, dass in der Mahlkammer (16) ohne Betriebsunterbrechung von aussen in Richtung Schlagkreis der Schlagwerkzeuge (9) nachstellbare Statorwerkzeuge (8) angeordnet sind.
- Hammermühle nach Anspruch 1, dadurch gekennzeichnet, dass die Statorwerkzeuge (8) über Teilabschnitte des Siebes (7) angeordnet und mindestens auf einer Seite der die Mahlkammer (16) begrenzende Gehäusewand (17) nachstellbar gelagert sind.
- 3. Hammermühle nach Anspruch 1, dadurch

4

55

EP 0 449 781 A2

5

15

20

25

30

35

40

gekennzeichnet, dass die Statorwerkzeuge (8) über die gesamte Breite des Siebes (7) angeordnet und mindestens auf einer Seite der die Mahlkammer (16) begrenzende Gehäusewand (17) nachstellbar gelagert sind.

ter Anordnung am Rotor aufgehängt sind.

4. Hammermühle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Statorwerkzeuge (8) einzeln in Richtung Schlagkreis der Schlagwerkzeuge (9) nachgestellt werden können.

5. Hammermühle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Statorwerkzeuge (8) in Gruppen in Richtung Schlagkreis der Schlagwerkzeuge (9) nachgestellt werden können.

6. Hammermühle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Lagerungspunkte der Statorwerkzeuge (8) einzeln oder gruppenweise in Umfangsrichtung zueinander versetzt angeordnet sind.

7. Hammermühle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das jeweilige Statorwerkzeug (8) drehbar gelagert ist.

8. Hammermühle nach Anspruch 7, dadurch gekennzeichnet, dass das Statorwerkzeug (8) über ein erstes Zahnrad (3) mit einem zweiten stationären Zahnrad (4) lösbar gekuppelt ist.

9. Hammermühle nach Anspruch 8, dadurch gekennzeichnet, dass das erste Zahnrad (3) entgegen der Kraft einer Feder (2) ausser Eingriff mit dem zweiten Zahnrad (4) gebracht werden kann.

10. Hammermühle nach Anspruch 9, dadurch gekennzeichnet, dass ein Griff (I) vorgesehen ist, um das erste Zahnrad (3) durch eine Axialbewegung ausser Eingriff mit dem zweiten Zahnrad (4) zu bringen und das Statorwerkzeug (8) zu verstel-

11. Hammermühle nach Anspruch 10, dadurch gekennzeichnet, dass das Statorwerkzeug (8) auf Zapfen (6) ausserhalb der Mahlkammer (16) lösbar befestigt ist.

12. Hammermühle nach Anspruch 11, dadurch gekennzeichnet, dass das erste Zahnrad (3) mittels eines axial zum Zapfen (6) verschiebbaren Kastenprofil (5) mit dem Zapfen (6) gekuppelt ist.

13. Hammermühle nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Statorwerkzeuge (9) pendelnd in reihenweise definier-

len.

45

50

55

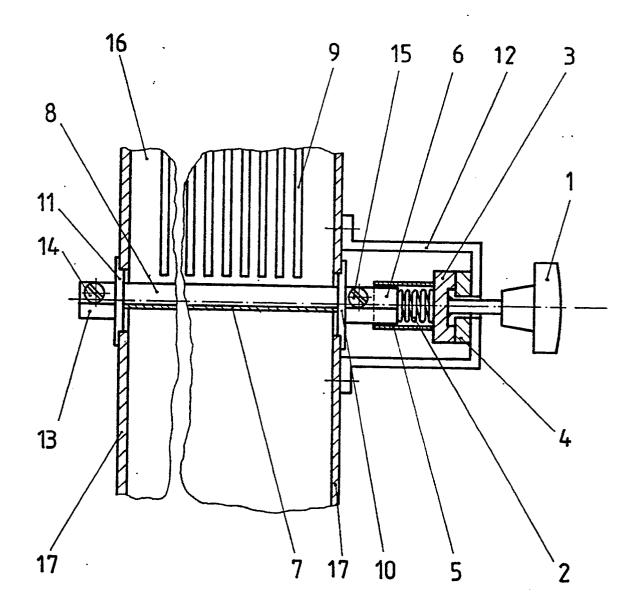


Fig.1

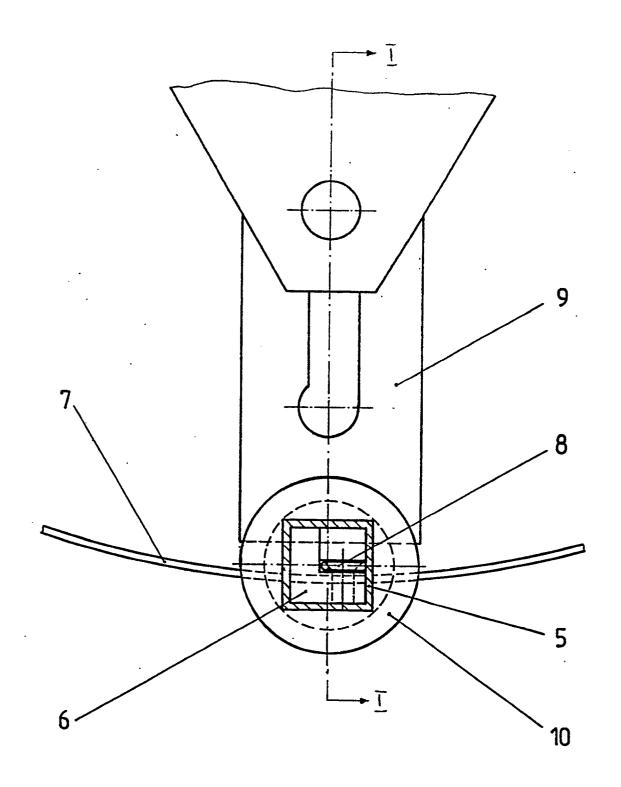


Fig.2