

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 451 244 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

Note: Bibliography reflects the latest situation

- (15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see page(s) 13-22
- (48) Corrigendum issued on:
26.01.2005 Bulletin 2005/04
- (45) Date of publication and mention
of the grant of the patent:
23.12.1998 Bulletin 1998/52
- (21) Application number: **90915958.4**
- (22) Date of filing: **26.10.1990**

(54) SUBTILISIN MUTANTS

SUBTILISINMUTANTEN
MUTANTS DE SUBTILISINE

<p>(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI NL SE</p>	<ul style="list-style-type: none"> • GRAYCAR, Thomas, Paul Pacifica, CA 94044 (US)
<p>(30) Priority: 31.10.1989 US 429882 19.10.1990 US 600430</p>	<p>(74) Representative: Armitage, Ian Michael Mewburn Ellis LLP York House 23 Kingsway London WC2B 6HP (GB)</p>
<p>(43) Date of publication of application: 16.10.1991 Bulletin 1991/42</p>	<p>(56) References cited:</p>
<p>(60) Divisional application: 96120247.0 / 0 775 749</p>	<p>EP-A- 0 130 756 WO-A-89/06279 US-A- 4 760 025 US-A- 4 914 031</p>
<p>(73) Proprietor: GENENCOR INTERNATIONAL, INC. Rochester, New York 14618 (US)</p>	<ul style="list-style-type: none"> • TIBS TRENDS IN BIOCHEMICAL SCIENCES. vol. 13, August 1988, CAMBRIDGE EN pages 291 - 297; J. WELLS AND D. ESTELL: "Subtilisin - an enzyme designed to be engineered"
<p>(72) Inventors:</p> <ul style="list-style-type: none"> • CALDWELL, Robert, Mark San Carlos, CA 94070 (US) • ESTELL, David, Aaron Mountain View, CA 94043 (US) 	<p><u>Remarks:</u> Divisional application 96120247.0 filed on 17/12/96.</p>

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

DescriptionField of the Invention

5 The present invention relates to novel carbonyl hydrolase mutants having an amino acid sequence wherein one or more amino acid residues of a precursor carbonyl hydrolase, specifically those at positions corresponding to residues +123 and optionally +274 in Bacillus amyloliquefaciens subtilisin, have been substituted with a different amino acid. Such mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding a naturally-occurring or recombinant carbonyl hydrolase to encode the substitution of one or both of these amino 10 acid residues in a precursor amino acid sequence alone or in combination with other substitution, insertion or deletion in the precursor amino acid sequence.

Background of the Invention

15 Serine proteases are a subgroup of carbonyl hydrolase. They comprise a diverse class of enzymes having a wide range of specificities and biological functions. Stroud, R. M.-(1974), Sci.Amer., 131, 74-88. Despite their functional diversity, the catalytic machinery of serine proteases has been approached by at least two genetically distinct families of enzymes: the subtilisins and the mammalian chymotrypsin related and homologous bacterial serine proteases (e.g., trypsin and S.gresius trypsin). These two families of serine proteases show remarkably similar mechanisms of 20 catalysis. Kraut, J. (1977), Ann. Rev. Biochem., 46, 331-358. Furthermore, although the primary structure is unrelated, the tertiary structure of these two enzyme families bring together a conserved catalytic triad of amino acids consisting of serine, histidine and aspartate.

25 Subtilisin is a serine endoprotease (MW 27,500) which is secreted in large amounts from a wide variety of Bacillus species and other microorganisms. The protein sequence of subtilisin has been determined from at least four different species of Bacillus. Markland, F.S., et al. (1983), Honne-Seyler's Z. Physiol. Chem., 364, 1537-1540. The three-dimensional crystallographic structure of Bacillus amyloliquefaciens subtilisin to 2.5A resolution has also been reported. Wright, C.S., et al. (1969), Nature, 221, 235-242; Drenth, J., et al. (1972), Eur. J. Biochem., 26, 177-181. These studies indicate that although subtilisin is genetically unrelated to the mammalian serine proteases, it has a similar active site structure. The x-ray crystal structures of subtilisin containing covalently bound peptide inhibitors (Robertus, J.D., et al. 30 (1972), Biochemistry, 11, 2439-2449), or product complexes (Robertus, J.D., et al. (1976), J. Biol. Chem., 251, 1097-1103), have also provided information regarding the active site and putative substrate binding cleft of subtilisin. In addition, a large number of kinetic and chemical modification studies have been reported for subtilisin (Philipp, M., et al. (1983), Mol. Cell. Biochem., 51, 5-32; Svendsen, B. (1976), Carlsbera Res. Comm., 41, 237-291; Markland, F. S. Id.) as well as at least one report wherein the side chain of methionine at residue 222 of subtilisin was converted by 35 hydrogen peroxide to methionine-sulfoxide (Stauffer, D.C., et al. (1965), J. Biol. Chem., 244, 5333-5338) and the side chain of serine at residue 221 converted to cysteine by chemical modification (Polgar, et al. (1981), Biochimica et Biophysica Acta, 667, 351-354.)

40 U.S. Patent No. 4,760,025 and EPO Publication No. 0 130 756 published January 9, 1985 each disclose the modification of subtilisin amino acid residues corresponding to positions in Bacillus amyloliquefaciens subtilisin tyrosine -1, aspartate +32, asparagine +155, tyrosine +104, methionine +222, glycine +166, histidine +64, glycine +169, phenylalanine +189, serine +33, serine +221, tyrosine +217, glutamate +156 and alanine +152. EPO Publication No. 0 251 446 published January 7, 1988 discloses other amino acid residues in Bacillus amyloliquefaciens subtilisin and their equivalents which may be modified by way of substitution, insertion or deletion and which may be combined with modifications to the residues identified in U.S. Patent No. 4,760,025 to form useful subtilisin mutants. The particular residues identified herein, however, are not identified in these references.

45 Similarly, PCT Publication No. WO 89/09819 and WO 89/09830 each published October 19, 1989, and PCT publication W089/06279 published on July 13, 1989, disclose subtilisin enzymes made by mutating a nucleotide sequence coding for a subtilisin. Numerous amino acid residues are identified in each of these publications which may be so modified. However, as with the previously identified references, neither identifies the residues of the present invention.

50 Accordingly, the present invention provides carbonyl hydrolase mutants containing the substitution of amino acid residues in a precursor carbonyl hydrolase corresponding to positions +123 and optionally + 274 in Bacillus amyloliquefaciens subtilisin. Such mutants generally have at least one property which is different from the same property of the carbonyl hydrolase precursor from which the amino acid of said mutant is derived, in particular having altered proteolytic activity compared to the precursor carbonyl hydrolase. The present invention further provides DNA sequences encoding such carbonyl hydrolase mutants as well as expression vectors containing such mutant DNA sequences.

55 The present invention further provides host cells transformed with such vectors as well as host cells which are capable of expressing such DNA to produce carbonyl hydrolase mutants either intracellularly or extracellularly.

Thus, the invention includes non-naturally occurring carbonyl hydrolase mutants having a different proteolytic ac-

tivity, stability, and/or performance characteristic as compared to the precursor carbonyl hydrolase from which the amino acid sequence of the mutant is derived. The precursor carbonyl hydrolase may be a naturally-occurring carbonyl hydrolase or recombinant hydrolase. Specifically, such carbonyl hydrolase mutants have an amino acid sequence, not found in nature, which is derived by replacement of one or more amino acid residues of a precursor carbonyl hydrolase with one or more different amino acids. The one or more amino acid residues of the precursor enzyme correspond to position Asn +123, and optionally Ala +274, of Bacillus amyloliquefaciens subtilisin or equivalent amino acid residues in other carbonyl hydrolases or subtilisins.

5 The invention also includes mutant DNA sequences encoding such carbonyl hydrolase or subtilisin mutants.

10 These mutant DNA sequences are derived from a precursor DNA sequence which encodes a naturally-occurring or recombinant precursor enzyme. The mutant DNA sequences are derived by modifying the precursor DNA sequence to encode the substitution of one or more specific amino acid residues encoded by the precursor DNA sequence corresponding to position +123, and optionally +274, in Bacillus amyloliquefaciens. These recombinant DNA sequences encode carbonyl hydrolase mutants having a novel amino acid sequence and, in general, at least one property which is substantially different from the same property of the enzyme encoded by the precursor carbonyl hydrolase DNA sequence. Such properties include proteolytic activity, stability and/or enhanced performance characteristics.

15 The invention also includes prokaryotic and eucaryotic subtilisins with a different amino acid residue such as serine, at positions equivalent to Asn +123 in Bacillus amyloliquefaciens subtilisin and to subtilisin with different amino acid residues at positions equivalent to position +274 in Bacillus amyloliquefaciens subtilisin.

20 Further, the invention includes expression vectors containing such mutant carbonyl hydrolase DNA sequences as well as host cells transformed with such vectors which are capable of producing such mutants. The invention also relates to detergent compositions comprising the carbonyl hydrolase mutants of the invention.

Brief Description of the Drawings

25 Fig. 1 depicts the DNA and amino acid sequence for Bacillus amyloliquefaciens subtilisin and a partial restriction map of this gene.

Fig. 2 depicts the conserved amino acid residues among subtilisins from Bacillus amyloliquefaciens, Bacillus subtilis varI1668 and Bacillus licheniformis (carlsbergensis).

30 Figs. 3A and 3B depict the amino acid sequence of subtilisin from Bacillus amyloliquefaciens, Bacillus subtilis varI168 and Bacillus licheniformis.

35 Fig. 4 depicts the amino acid sequence of three subtilisins. The top line represents the amino acid sequence of subtilisin from Bacillus amyloliquefaciens subtilisin (also sometimes referred to as subtilisin BPN'). The second line depicts the amino acid sequence of subtilisin from Bacillus lentus (subtilisin 309 in PCT Publication No. WO 89/06276). The bottom line represents the amino acid sequence of a preferred embodiment of the invention designated GG-RYSA.

35 The symbol * denotes the absence of specific amino acid residues as compared to subtilisin BPN'.

Fig. 5 depicts the construction of plasmid pGG A274.

Fig. 6 depicts the construction of pGG-KVNA which is an intermediate to plasmid pGG-RYSA.

Fig. 7 depicts the oligonucleotide-duplex method used to construct a synthetic Bacillus lentus subtilisin gene.

Fig. 8 depicts the strategy for constructing a synthetic gene encoding Bacillus lentus subtilisin.

40 Fig. 9 depicts the cassette used to make substitutions in the DNA at codon position +123 by cassette mutagenesis. XXX represents the codon modified to encode the amino acid substitutions at position +123.

45 Fig. 10 depicts the DNA and amino acid sequence of a preferred embodiment of the invention wherein the DNA sequence is a synthetic DNA. The DNA in this Figure has been modified to encode arginine at position 27, serine at position 78, tyrosine at position 104, serine at position 123 and alanine at position 274.

Detailed Description of the Invention

50 It has been discovered that in vitro mutations in the carbonyl hydrolase subtilisin at an amino acid residue equivalent to +123 in Bacillus amyloliquefaciens subtilisin produces subtilisin mutants exhibiting altered proteolytic activity over precursor subtilisins.

55 It has also been discovered that in vitro mutation at residues equivalent to +274 in Bacillus amyloliquefaciens subtilisin produce subtilisin mutants exhibiting altered stability, e.g. modified autoproteolytic stability. In some instances, these latter mutants also exhibit enhanced performance when used in detergent compositions.

Carbonyl hydrolases are enzymes which hydrolyze compounds containing

5 bonds in which X is oxygen or nitrogen. They include naturally-occurring carbonyl hydrolases and recombinant carbonyl hydrolases. Naturally-occurring carbonyl hydrolases principally include hydrolases, e.g. peptide hydrolases, such as subtilisins or metalloproteases. Peptide hydrolases include α -aminoacylpeptide hydrolase, peptidylamino acid hydrolase, acylamino hydrolase, serine carboxypeptidase, metallocarboxypeptidase, thiol proteinase, carboxylproteinase and metalloproteinase. Serine, metallo, thiol and acid proteases are included, as well as endo and exo-proteases.

10 15 "Recombinant carbonyl hydrolase" refers to a carbonyl hydrolase in which the DNA sequence encoding the naturally-occurring carbonyl hydrolase is modified to produce a mutant DNA sequence which encodes the substitution, insertion or deletion of one or more amino acids in the carbonyl hydrolase amino acid sequence. Suitable modification methods are disclosed herein, in EPO Publication No. 0 130 756 published January 9, 1985 and EPO Publication No. 0 251 446 published January 7, 1988.

20 25 Subtilisins are bacterial or fungal carbonyl hydrolases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "subtilisin" means a naturally-occurring subtilisin or a recombinant subtilisin. A series of naturally-occurring subtilisins is known to be produced and often secreted by various microbial species. Amino acid sequences of the members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine. In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus is aspartate-histidine-serine. In the chymotrypsin related proteases the relative order, however is histidine-aspartate-serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases. Examples include the subtilisins identified in Fig. 3 herein and as described in PCT Publication WO 89/06276 and EPO Publication No. 0 283 075.

30 35 "Recombinant subtilisin" refers to a subtilisin in which the DNA sequence encoding the subtilisin is modified to produce a mutant DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally-occurring subtilisin amino acid sequence. Suitable methods to produce such modification and which may be combined with those disclosed herein include those disclosed in EPO Publication Nos. 0 130 756 and 0 251 446 and PCT Publication Nos. WO 89/06279, WO 89/09830 and WO 89/09819.

40 45 "Non-human carbonyl hydrolases" and the DNA encoding them may be obtained from many prokaryotic and eukaryotic organisms. Suitable examples of prokaryotic organisms include gram negative organisms such as E. coli or Pseudomonas and gram positive bacteria such as Micrococcus or Bacillus. Examples of eukaryotic organisms from which carbonyl hydrolase and their genes may be obtained include yeast such as Saccharomyces cerevisiae, fungi such as Aspergillus sp., and non-human mammalian sources such as, for example, bovine sp. from which the gene encoding the carbonyl hydrolase chymosin can be obtained. As with subtilisins, a series of carbonyl hydrolases can be obtained from various related species which have amino acid sequences which are not entirely homologous between the members of that series but which nevertheless exhibit the same or similar type of biological activity. Thus, non-human carbonyl hydrolase as used herein has a functional definition which refers to carbonyl hydrolases which are associated, directly or indirectly, with prokaryotic and eukaryotic sources.

50 55 A "carbonyl hydrolase mutant" has an amino acid sequence which is derived from the amino acid sequence of a "precursor carbonyl hydrolase". The precursor carbonyl hydrolases include naturally-occurring carbonyl hydrolases and recombinant carbonyl hydrolases. The amino acid sequence of the carbonyl hydrolase mutant is "derived" from the precursor hydrolase amino acid sequence by the substitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the amino acid sequence of the precursor carbonyl hydrolase rather than manipulation of the precursor carbonyl hydrolase enzyme per se. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein and in EPO Publication Nos. 0 130 756 and 0 251 446.

Specific residues corresponding to positions +123 and +274 of Bacillus amyloliquefaciens subtilisin are identified herein for substitution. These amino acid position numbers refer to those assigned to the mature Bacillus amyloliquefaciens subtilisin sequence presented in Fig. 1. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor carbonyl hydrolases containing amino acid residues at positions which are "equivalent" to the particular identified residues in Bacillus amyloliquefaciens subtilisin.

A residue (amino acid) of a precursor carbonyl hydrolase is equivalent to a residue of Bacillus amyloliquefaciens subtilisin if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in Bacillus amyloliquefaciens subtilisin (i.e., having the same or similar

functional capacity to combine, react, or interact chemically).

In order to establish homology to primary structure, the amino acid sequence of a precursor carbonyl hydrolase is directly compared to the Bacillus amyloliquefaciens subtilisin primary sequence and particularly to a set of residues known to be invariant in all subtilisins for which sequence is known (Fig. 2). After aligning the conserved residues, 5 allowing for necessary insertions and deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of Bacillus amyloliquefaciens subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is 10 also adequate to define equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained.

For example, in Fig. 3 the amino acid sequence of subtilisin from Bacillus amyloliquefaciens, Bacillus subtilis var. I168 and Bacillus licheniformis (carlsbergensis) are aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved residues contained in each sequence. These are the residues identified in Fig. 2.

15 These conserved residues thus may be used to define the corresponding equivalent amino acid residues of Bacillus amyloliquefaciens subtilisin in other carbonyl hydrolases such as subtilisin from Bacillus lentus (PCT Publication No. W089/06279 published July 13, 1989) and the preferred subtilisin mutant herein. These particular amino acid sequences are aligned in Fig. 4 with the sequence of Bacillus amyloliquefaciens subtilisin to produce the maximum homology of conserved residues. As can be seen there are a number of deletions in the sequence of Bacillus lentus and in the 20 preferred subtilisin mutant of the invention as compared to Bacillus amyloliquefaciens subtilisin. Thus, the equivalent amino acid for Val-165 in Bacillus amyloliquefaciens subtilisin in the other subtilisins is the particular isoleucine shown beneath Val-165.

25 In Fig. 4, the amino acid at position 123 is asparagine in Bacillus amyloliquefaciens subtilisin. In Bacillus lentus subtilisin the equivalent residue is the particular asparagine shown. In the preferred subtilisin mutant of the invention, however, the amino acid equivalent to +123 in Bacillus amyloliquefaciens subtilisin is an amino acid other than asparagine and is preferably the serine shown in Fig. 4. Similarly, in Fig. 4, the amino acid at position +274 Bacillus amyloliquefaciens subtilisin is alanine. As can be seen, the equivalent amino acid in Bacillus lentus subtilisin is the particular threonine shown in Fig. 4. In a particular preferred subtilisin mutant of the invention, the equivalent amino acid position 30 274 is occupied by the alanine shown in Fig. 4.

30 Thus, the positions +123 and +274 are identified by primary amino acid sequences in Fig. 4 for the subtilisin from Bacillus lentus and the preferred embodiment of the invention. However, various other amino acid residues may be modified which are equivalent to specific amino acids in Bacillus amyloliquefaciens subtilisin. Thus, in the preferred embodiment, the amino acid lysine at position 27 in Bacillus amyloliquefaciens subtilisin has an equivalent lysine at position 27 in Bacillus lentus subtilisin. As indicated in the Examples, the subtilisin comprising one of the preferred 35 embodiments of the invention was derived by modifying a DNA sequence encoding Bacillus lentus subtilisin. Such modifications to the DNA included the modification of codons equivalent to positions 123 and 274 of Bacillus amyloliquefaciens subtilisin. However, two other modifications were made to the Bacillus lentus amino acid sequence at positions equivalent to residues 27 and 104 in Bacillus amyloliquefaciens subtilisin. Thus, as can be seen in Fig. 4, the 40 lysine at equivalent residue 27 in Bacillus lentus subtilisin was modified to encode arginine in the preferred embodiment. Similarly, the valine residue at position 104 of Bacillus lentus, which is equivalent to tyrosine 104 in Bacillus amyloliquefaciens subtilisin, was also modified to encode tyrosine. Thus, the preferred embodiment shown in Fig. 4 contains 45 an amino acid sequence derived from Bacillus lentus subtilisin by modifying residues of that subtilisin equivalent to positions 27, 104, 123 and 274 of Bacillus amyloliquefaciens subtilisin.

50 Equivalent residues may also be defined by determining homology at the level of tertiary structure for a precursor carbonyl hydrolase whose tertiary structure has been determined by x-ray crystallography. Equivalent residues are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the precursor carbonyl hydrolase and Bacillus amyloliquefaciens subtilisin (N on N, CA on CA, C on C, and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the carbonyl hydrolase in question to the Bacillus amyloliquefaciens subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the highest resolution available.

$$R \text{ factor} = \frac{\sum_h |F_o(h)| - |F_c(h)|}{\sum_h |F_o(h)|}$$

55 Equivalent residues which are functionally analogous to a specific residue of Bacillus amyloliquefaciens subtilisin are defined as those amino acids of the precursor carbonyl hydrolases which may adopt a conformation such that they

either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the Bacillus amyloliquefaciens subtilisin. Further, they are those residues of the precursor carbonyl hydrolase (for which a tertiary structure has been obtained by x-ray crystallography), which occupy an analogous position to the extent that although the main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie with 0.13nm of the corresponding side chain atoms of Bacillus amyloliquefaciens subtilisin. The coordinates of the three dimensional structure of Bacillus amyloliquefaciens subtilisin are set forth in EPO Publication No. 0 251 446 and can be used as outlined above to determine equivalent residues on the level of tertiary structure.

Some of the residues identified for substitution, insertion or deletion are conserved residues whereas others are not. In the case of residues which are not conserved, the replacement of one or more amino acids is limited to substitutions which produce a mutant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such replacements should not result in a naturally-occurring sequence. The carbonyl hydrolase mutants of the present invention include the mature forms of carbonyl hydrolase mutants as well as the pro- and prepro-forms of such hydrolase mutants. The prepro-forms are the preferred construction since this facilitates the expression, secretion and maturation of the carbonyl hydrolase mutants.

"Prosequence" refers to a sequence of amino acids bound to the N-terminal portion of the mature form of a carbonyl hydrolase which when removed results in the appearance of the "mature" form of the carbonyl hydrolase. Many proteolytic enzymes are found in nature as translational proenzyme products and, in the absence of post-translational processing, are expressed in this fashion. A preferred prosequence for producing carbonyl hydrolase mutants, specifically subtilisin mutants, is the putative prosequence of Bacillus amyloliquefaciens subtilisin although other subtilisin prosequences may be used. In the Examples, the putative pro sequence from the subtilisin from Bacillus latus (ATCC 21536) was used.

A "signal sequence" or "presequence" refers to any sequence of amino acids bound to the N-terminal portion of a carbonyl hydrolase or to the N-terminal portion of a prohydrolase which may participate in the secretion of the mature or pro forms of the hydrolase. This definition of signal sequence is a functional one, meant to include all those amino acid sequences, encoded by the N-terminal portion of the subtilisin gene or other secretable carbonyl hydrolases, which participate in the effectuation of the secretion of subtilisin or other carbonyl hydrolases under native conditions. The present invention utilizes such sequences to effect the secretion of the carbonyl hydrolase mutants as defined herein. A preferred signal sequence used in the Examples comprises the first seven amino acid residues of the signal sequence from Bacillus subtilis subtilisin fused to the remainder of the signal sequence of the subtilisin from Bacillus latus (ATCC 21536).

A "prepro" form of a carbonyl hydrolase mutant consists of the mature form of the hydrolase having a prosequence operably linked to the amino-terminus of the hydrolase and a "pre" or "signal" sequence operably linked to the amino terminus of the prosequence.

"Expression vector" refers to a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites, and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most commonly used form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art.

The "host cells" used in the present invention generally are prokaryotic or eukaryotic hosts which preferably have been manipulated by the methods disclosed in EPO Publication No. 0 130 756 to render them incapable of secreting enzymatically active endoprotease. A preferred host cell for expressing subtilisin is the Bacillus strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in EPO Publication No. 0 130 756 and further described by Yang, M.Y., et al. (1984), *J. Bacteriol.*, 160, 15-21. Other host cells for expressing subtilisin include Bacillus subtilis I168 (EPO Publication No. 0 130 756).

Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. Such transformed host cells are capable of either replicating vectors encoding the carbonyl hydrolase mutants or expressing the desired carbonyl hydrolase mutant. In the case of vectors which encode the pre or prepro form of the carbonyl hydrolase mutant, such mutants, when expressed, are typically secreted from the host cell into the host cell medium.

"Operably linked" when describing the relationship between two DNA regions simply means that they are functionally related to each other. For example, a prosequence is operably linked to a peptide if it functions as a signal sequence, participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome

binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

The genes encoding the naturally-occurring precursor carbonyl hydrolase may be obtained in accord with the general methods described in EPO Publication Nos. 0 130 756 and 0 251 446. As can be seen from the examples disclosed therein, the methods generally comprise synthesizing labelled probes having putative sequences encoding regions of the hydrolase of interest, preparing genomic libraries from organisms expressing the hydrolase, and screening the libraries for the gene of interest by hybridization to the probes. Positively hybridizing clones are then mapped and sequenced.

The cloned carbonyl hydrolase is then used to transform a host cell in order to express the hydrolase. The hydrolase gene is then ligated into a high copy number plasmid. This plasmid replicates in hosts in the sense that it contains the well-known elements necessary for plasmid replication: a promoter operably linked to the gene in question (which may be supplied as the gene's own homologous promotor if it is recognized, i.e., transcribed, by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the hydrolase gene in certain eucaryotic host cells) which is exogenous or is supplied by the endogenous terminator region of the hydrolase gene and, desirably, a selection gene such as an antibiotic resistance gene that enables continuous cultural maintenance of plasmid-infected host cells by growth in antibiotic-containing media. High copy number plasmids also contain an origin of replication for the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations. However, it is within the scope herein to integrate multiple copies of the hydrolase gene into host genome. This is facilitated by prokaryotic and eucaryotic organisms which are particularly susceptible to homologous recombination.

Alternatively, a synthetic gene encoding a naturally-occurring or mutant precursor carbonyl hydrolase may be produced. In such an approach, the DNA and/or amino acid sequence of the precursor hydrolase is determined. Multiple, overlapping synthetic single-stranded DNA fragments are thereafter synthesized which upon hybridization and ligation produce a synthetic DNA encoding the precursor hydrolase. This approach provides several advantages over cloning the natural gene in that restriction sites may be interposed throughout the DNA without change in the amino acid sequence encoded so as to facilitate subsequent modification to form mutant carbonyl hydrolases. Further, the synthetic approach allows for adjusting the codon usage in the synthetic gene to conform with the codon bias for the particular expression hosts to be used. An example of synthetic gene construction is set forth in the Examples.

Once the naturally-occurring or synthetic precursor carbonyl hydrolase gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor carbonyl hydrolase. Such modifications include the production of recombinant carbonyl hydrolases as disclosed in EPO Publication Nos. 0 130 756 and 0 251 446 and the production of carbonyl hydrolase mutants described herein.

The following cassette mutagenesis method may be used to facilitate the construction and identification of the carbonyl hydrolase mutants of the present invention although other methods including site-directed mutagenesis may be used. First, the naturally-occurring gene encoding the hydrolase is obtained and sequenced in whole or in part. Then the sequence is scanned for a point at which it is desired to make a mutation (deletion, insertion or substitution) of one or more amino acids in the encoded enzyme. The sequences flanking this point are evaluated for the presence of restriction sites for replacing a short segment of the gene with an oligonucleotide pool which when expressed will encode various mutants. Such restriction sites are preferably unique sites within the hydrolase gene so as to facilitate the replacement of the gene segment. However, any convenient restriction site which is not overly redundant in the hydrolase gene may be used, provided the gene fragments generated by restriction digestion can be reassembled in proper sequence. If restriction sites are not present at locations within a convenient distance from the selected point (from 10 to 15 nucleotides), such sites are generated by substituting nucleotides in the gene in such a fashion that neither the reading frame nor the amino acids encoded are changed in the final construction. Mutation of the gene in order to change its sequence to conform to the desired sequence is accomplished by M13 primer extension in accord with generally known methods. The task of locating suitable flanking regions and evaluating the needed changes to arrive at two convenient restriction site sequences is made routine by the redundancy of the genetic code, a restriction enzyme map of the gene and the large number of different restriction enzymes. Note that if a convenient flanking restriction site is available, the above method need be used only in connection with the flanking region which does not contain a site.

Once the naturally-occurring DNA or synthetic DNA is cloned, the restriction sites flanking the positions to be mutated are digested with the cognate restriction enzymes and a plurality of end termini-complementary oligonucleotide cassettes are ligated into the gene. The mutagenesis is enormously simplified by this method because all of the oligonucleotides can be synthesized so as to have the same restriction sites, and no synthetic linkers are necessary to create the restriction sites.

As used herein, proteolytic activity is defined as the rate of hydrolysis of peptide bonds per milligram of active enzyme. Many well known procedures exist for measuring proteolytic activity (K.M. Kalisz, "Microbial Proteinases", Advances in Biochemical Engineering/ Biotechnology, A. Fiechter ed., 1988).

In one aspect of the invention, the objective is to secure a mutant carbonyl hydrolase having a greater (numerically

large) proteolytic activity as compared to the precursor carbonyl hydrolase, thereby enabling the use of the enzyme to more efficiently act on a target substrate. Specific amino acids useful to obtain such results in subtilisin-type carbonyl hydrolases at residues equivalent to +123 in Bacillus amyloliquefaciens subtilisin are presented in the Examples. In some instances, lower proteolytic activity may be desirable. In such cases a decrease in proteolytic activity can be produced by substituting the amino acids identified in the examples at residues equivalent to +123 in Bacillus amyloliquefaciens subtilisin.

For precursor subtilisins wherein serine is not the residue at the position equivalent to +123 in Bacillus amyloliquefaciens the greatest proteolytic activity is obtained when serine is substituted in the precursor at position +123. Further, no naturally-occurring Bacillus subtilisin is known to exist which contains serine at a position equivalent to +123 in Bacillus amyloliquefaciens subtilisin. Based on the discovery that serine at this position enhances proteolytic activity, one skilled in the art can screen naturally-occurring Bacillus subtilisin to identify and clone a natural mutant containing serine at this position. Such natural Bacillus subtilisin mutants are within the scope of the invention.

Where the carbonyl hydrolase is from other than Bacillus and a serine is present at +123 in the precursor enzyme the substitution can be one that decreases proteolytic activity. This would be useful, for example, where the synthetic activity of the carbonyl hydrolases is desired (as for synthesizing peptides). One may wish to decrease this proteolytic activity which is capable of destroying the product of such synthesis.

In another aspect of the invention, it has been determined that residues equivalent to +274 in Bacillus amyloliquefaciens subtilisin are important in modulating the overall performance characteristics of the enzyme in detergent compositions. Thus, as set forth in the Examples, the threonine in Bacillus lenthus subtilisin at equivalent position +274 can be mutated to alanine in the preferred embodiment to produce enhanced performance of the mutant enzyme. As also disclosed in the Examples, substitution of this residue with an amino acid other than threonine, e.g. leucine, serine, valine and alanine results in a decrease in the stability of the mutant. Such decrease in stability is believed to be the result of autocatalytic degradation of the mutant. Thus, modifications of residues equivalent to +274 in Bacillus subtilisin are capable of enhancing the overall performance of the enzyme in a detergent composition and modulating the overall stability of the enzyme. In this aspect of the invention, the objective is to secure a mutant carbonyl hydrolase having enhanced performance when used in a detergent composition as compared to the precursor carbonyl hydrolase. As used herein, enhanced performance in a detergent is defined as increased cleaning of certain enzyme sensitive stains such as grass or blood. This cleaning is determined by visual evaluation after a standard wash cycle.

A preferred embodiment of the invention is set forth in the Examples wherein the lysine at position 27 is substituted with arginine, the valine at position 104 is substituted with tyrosine, the asparagine at position 123 substituted with serine and the threonine at residue 274 is substituted with alanine in Bacillus lenthus subtilisin. Although the stability of this enzyme is somewhat reduced as compared to the precursor Bacillus lenthus subtilisin, the performance level of this enzyme in a detergent composition is substantially enhanced such that the same performance of this Bacillus lenthus subtilisin mutant is obtained as compared to the unmodified Bacillus lenthus subtilisin when using approximately one-half the amount of enzyme.

Based on the results obtained with this and other mutant subtilisins, it is apparent that residues in carbonyl hydrolases equivalent to positions +123 and +274 in Bacillus amyloliquefaciens are important to the proteolytic activity, performance and/or stability of these enzymes.

Many of the carbonyl hydrolase mutants of the invention, especially subtilisin, are useful in formulating various detergent compositions. A number of known compounds are suitable surfactants useful in compositions comprising the carbonyl hydrolase mutants of the invention. These include nonionic, anionic, cationic, anionic, or zwitterionic detergents, as disclosed in U.S. 4,404,128 to Barry J. Anderson and U.S. 4,261,868 to Jiri Flora, et al. The art is familiar with the different formulations which can be used as cleaning compositions.

Subtilisins of the invention can be formulated into known powdered and liquid detergents having pH between 6.5 and 12.0 at levels of about .01 to about 5% (preferably .1% to .05%) by weight. These detergent cleaning compositions can also include other enzymes such as known proteases and amylases, as well as builders and stabilizers.

The addition of subtilisins of the invention to conventional cleaning compositions does not create any special use limitation. In other words, any temperature and pH suitable for the detergent is also suitable for the present compositions as long as the pH is within the above range, and the temperature is below the subtilisins of the invention denaturing temperature. In addition, subtilisins of the invention can be used in a cleaning composition without detergents, again either alone or in combination with builders and stabilizers.

The following is presented by way of example and is not to be construed as a limitation to the scope of the claims.

EXAMPLE 1

Constructions for Expression of Bacillus lenthus Subtilisin Gene in Bacillus subtilis

Plasmid pSAR, Fig. 5, carries a translational fusion via a common Sau3A restriction site at the seventh/eighth

signal sequence codon of the subtilisin genes of *B. subtilis* and *B. amyloliquefaciens*. As shown in Fig. 5, this gene, on an EcoRI-BamHI 2.0 Kb fragment, was subcloned into M13mp19 in order to isolate single-stranded template DNA to be used for site-directed mutagenesis to form pSAR-Q275R. The mutagenesis protocol was essentially that of Zoller, M., et al. (1983), Methods Enzymol., 100, 468-500, (1) and used a synthetic oligonucleotide of the sequence:

5

* **

5' - C - AAC - GTA - CAG - GCT - GCA - GCT - CGC - TAA - AAC - ATA - A - 3'

Q275R

10 where the asterisks denote changes from the wild-type gene sequences and the underline represents an introduced PstI restriction endonuclease site used in screening for the particular mutant gene encoding the Q275R change. These changes were made to (1) convert the amino acid at this position to that found in Bacillus lenthus subtilisin and (2) to allow hookup of the terminator in pSAR to the mature coding region of Bacillus lenthus via a Pst site similarly introduced 15 into pGG36 from Bacillus lenthus (ATCC 21536).

Plasmid pGG36, Fig. 5, contains a 2.1 kb genomic DNA fragment from *Bacillus lenthus* (ATCC 21536) encoding the complete subtilisin gene which was cloned by standard methods in the shuttle vector pBS42. Band, L., et al. (1984), DNA, 3, 17-21.

The amino acid sequence for this subtilisin is the same as that disclosed for subtilisin 309 in PCT Publication No. 89/06279. This gene was subcloned into M13 as above for site-directed mutagenesis using an oligonucleotide of the sequence:

* * *

5' - C - AAT - GCA - GAA - GCT - GCA - GCT - CGC - TAA - TCA - A - 3'
T274A

in order to 1) introduce a *Pst*I site at the same location in this gene corresponding to the site introduced into pSAR above and 2) to substitute the threonine at position 274 with alanine to form pGG36-T274A.

30 The mutant pSAR-Q275R and pGG36-T274A genes were individually subcloned back into pBS42 prior to PstI/BamHI digestions, fragment isolation and ligation to produce plasmid GG-A274B.amy.term. as shown in Fig. 5, all by standard methods.

A synthetic DNA linker was made by annealing complimentary single-stranded oligonucleotides of the sequences:

35

5'-G-ATC-GTC-GCG-TCG-ACC-GCA-CTA-CTC-ATT-TCT-GTT-
GCT-TTT-AGT-TCA-T-3'

40 and

5' - CGA - TGA - ACT - AAA - AGC - AAC - AGA - AAT - GAG - TAG - TGC -
GGT - CGA - CGC - GAC - 3'

50 to give the double-stranded DNA fragment #2 shown in Fig. 6. The recessed left- and right-hand ends of this duplex linker are complimentary to the Sau3A end of fragment #1 (from pSAR) and the Clal end of fragment #3 (from pGG-A274 B.amy.term), respectively. These 3 fragments were combined with fragment 4 from pSAR-Q275R after restriction endonuclease digestions of plasmids, fragment isolation and ligation by standard methods to produce plasmid pGG-KV-NA. The designation GG-KVNA indicates that this subtilisin contains the subtilisin encoded by pGG-36 which includes lysine (K) at position 27, valine (V) at position 104, asparagine (N) at position 123 and the substitution of threonine at position 274 with alanine (A).

55

EXAMPLE 2

Modification of PGG-KVNA

5 As indicated in Fig. 6, the GG-KVNA gene (2.1 kb EcoRI-BamHI fragment) was subcloned into M13 for three successive rounds of site-directed mutagenesis using oligonucleotides having the sequence :

10 (a) 5'-GT-TCT-GGT-GTA-AGA-GTT-GCT-GTT-CTA-GAT-ACA-GGT-3',
K27R

15 * **
(b) 5'-A-GTA-TTA-GGG-GCT-AGC-GGT-TCA-GGT-TCG-TAC-AGC-TCG-ATT-3'
V104y

20 and

(c) 5' -GGG-AAC-AAT-GGA-ATG-CAC-GTT-GCT-AGC-TTG-AGT-TTA-3'
N123S

The asterisks denote changes from the wild-type gene sequence. The underlines represent, in (a) an introduced XbaI site and in (b) and (c) introduced NheI sites used to screen for the presence of the linked R27, Y104 and S123 mutations, respectively. In addition, in (c), the overlined denotes a destroyed SphI site. Finally, the 2.1 kb GG-RYSA gene was subcloned back into pBS42 for expression in *B. subtilis* hosts.

35 The resultant plasmid was designated pGG-RYSA. This designation indicates that four residues were modified in the pGG-KVNA plasmid. Lysine (K) at position 27 to arginine (R), valine (V) to tyrosine (Y) at position 104 and asparagine (N) at position 123 to serine (S). The alanine previously substituted at residue 274 was not modified in this procedure.

The lysine at position 27 was substituted with arginine based upon the amino acid sequencing of subtilisin 309. As indicated in PCT Publication No. W089/06279, lysine is located at position 27. However, after independently sequencing this subtilisin protein, the initial data indicated that arginine was the residue at position 27. In the case of the substitution of tyrosine for valine at residue 104, the substitution was made to lower the pH activity profile and to increase the performance of the enzyme based on results previously obtained for Bacillus amyloliquefaciens subtilisin (sometimes referred to as BPN'). The substitution of asparagine at position 123 with serine is based on the results obtained hereinafter wherein it was determined that the substitution of serine at position 123 maximized the proteolytic activity of the enzyme in a closely related mutant.

45 EXAMPLE 3

Construction of Synthetic *Bacillus latus* Subtilisin Gene

50 DNA encoding the amino acid sequence of Bacillus lentinus subtilisin was also prepared by constructing a gene encoding a synthetic DNA sequence.

The 2.1 kb HindIII genomic fragment from plasmid pGG36 was sequenced. The deduced amino acid sequence of the mature gene product (GG36 subtilisin) was used to design a synthetic mature coding sequence with the following properties: (1) In general, the codons most frequently found for each amino acid in seven different *B. subtilis* genes (from a tabulation of codon usages, Table 2 from Maruyama, T., et al., (1986), *Nucl. Acids Res.*, Supplement 14 pp. r151-r197) were utilized except in the cases where alternate codons resulted in conveniently located restriction enzyme recognition sites within the gene; (2) Approximately every 40-60 b.p. of the ~0.8 mature coding region, combinations of 2 or 3 specifically chosen codons were utilized which resulted in the introduction of fairly evenly spaced, unique restriction sites. These sites were chosen to facilitate (a) later cassette mutagenesis and screening studies and (b)

constructions involving more than one mutation; (3) A unique Pst I recognition site was designed to cover codons 272-274 allowing hook up to the terminator sequences of a *Bacillus amyloliquefaciens* gene similarly modified over the same three codons and substituting threonine at position 274 with alanine; and (4) A unique NruI site was introduced to cover mature codons residues 9-10 allowing hookup to GG36's pre-pro coding sequence via a short synthetic duplex DNA linker. Based on this design, oligonucleotides ("oligos") were synthesized such that upon annealing the coding and noncoding oligos for a given ~60 b.p. coding region, the resultant duplex DNA fragment would have at its ends single stranded regions complimentary to the end of the next duplex fragment of the gene (see, Fig. 7).

A total of 36 separate oligos (comprising 18 individual duplexes) were used in the scheme, as outlined above, resulting in an ~0.8kb duplex synthetic mature coding region (Fragment 3 in Fig. 8).

Finally, one additional pair of synthetic oligo's was synthesized, which upon annealing (to give fragment 2 in Fig. 8) has an NcoI site at its 5' end (complimentary to GG36's NcoI site at mature codons 5-6) and an NruI site at its 3' end (complimentary to the 3's 5' end of fragment 3).

The final construction to give a complete expression unit consisting of *B. subtilis* promoter and the first seven amino acids of the signal sequence hooked up to GG36's sequences encoding the remainder of the signal sequence, the complete pro sequence and the first six mature amino acids (Fragment 1 from GG-KVNA), the synthetic gene encoding mature residues 7-274 (Fragments 2+3) and the terminator region (including the final mature gene codon 279) of *Bacillus amyloliquefaciens* (fragment 4) was done as a four-way ligation as set forth in Fig. 6.

Finally, three additional separate mutations were introduced into the mature coding region of this full length hybrid gene. The first substituted the lysine at position 27 with arginine. The second substituted the valine at position 104 with tyrosine. The third substituted the asparagine at position 123 with serine. The resultant plasmid is designated pBC3-RYSA. The following example describes the method used to modify position 123 in the synthetic gene. Similar methods were used to modify positions 27 and 104 in this synthetic gene.

EXAMPLE 4

Construction of Position 123 Mutants

An Xho I site was introduced over codons 111/112 in the synthetic gene from Example 3 by making three phenotypically silent mutations via site directed mutagenesis (primer extension mutagenesis in M13). The resulting plasmid, pX123 (Fig. 9), was digested with Xho I and Ava I and the large vector-containing fragment isolated by electroelution from agarose gel. complimentary synthetic oligonucleotides were annealed, ligated with the pX123 large fragment and transformed into *E. coli* strain MM294. These cassettes encoded, individually, all 20 naturally-occurring amino acids at position 123, and in addition contained a silent mutation which destroyed a unique Sph I site lying between the Xho I and Ava I sites in pX123. Resulting plasmids from *E. coli* transformants were screened for the loss of the unique Sph I site. Positives by restriction analysis (i.e., Sph I negatives) were sequenced to confirm the presence of the desired position 123 mutations subcloned into the shuttle vector pBS42 and transformed into *Bacillus subtilis* BG2036 for expression.

EXAMPLE 5

Activity of Various +123 Mutants

Proteolytic activity of each of the subtilisin mutants encoded by the above modified position +123 mutants was assayed by mixing 0.04 ml of supernatant from centrifuged-culture broths with 0.56 ml of 1% w/v casein in 0.1M Tris pH8.60. After a 20 minute incubation at 37°C, reactions were quenched by precipitation with 10% trichloroacetic acid (TCA). Activity was determined from the absorbance at a wavelength of 280nm for the supernatant after precipitation with 10% TCA.

TABLE I

Relative proteolytic activity of codon 123 variants normalized to Asn-123 mutant	
Codon 123	% Proteolytic Activity
Ser	116
Asn	100
Cys	22
Gly	12
Ala	9

TABLE I (continued)

Relative proteolytic activity of codon 123 variants normalized to Asn-123 mutant	
Codon 123	% Proteolytic Activity
Thr	7
Gln	7
Val	6
Glu	<5
Ile	<5
Trp	<5
Phe	<5
Asp	<5
His	<5
Leu	<5
Met	<5
Pro	<5
Tyr	<5

In the process of final confirmation of the DNA sequence of the synthetic gene coding for the enzyme BC3-RYSA, proline was found to be at position 78 instead of serine (the amino acid at this position in *Bacillus lenthus* subtilisin). The initial properties of the position 123 mutations were tested in this enzyme, BC3-RPYA (proline at position 78). These results are shown in Table I. The amino acid at position 78 was thereafter changed back to serine to form the DNA and amino acid sequence shown in Fig. 10 by replacing the synthetic DNA duplex corresponding to that portion of the gene. As can be seen the substitution of Asn with Ser at position +123 results in a substantial increase in proteolytic activity. The relationship between the various subtilisins discussed herein are summarized for positions 27, 78, 104, 123 and 274 in Table II.

TABLE II

	position				
	27	78	104	123	274
GC36 (genomic)	Lys(K)	Ser(S)	Val(V)	Asn(N)	Thr(T)
Synthetic <i>B. lenthus</i> gene	Lys(K)	Pro(P)	Val(V)	Asn(N)	Ala(A)
<i>B. amyloliquefaciens</i> subtilisin (BPN)	Lys(K)	Ser(S)	Tyr(Y)	Asn(N)	Ala(A)
Subtilisin 309 as published	Lys(K)	Ser(S)	Val(V)	Asn(N)	Thr(T)
Preferred embodiment herein	Arg(R)	Ser(S)	Tyr(Y)	Ser(S)	Ala(A)

EXAMPLE 6

Stability of Position 274 Mutants

Stability of position 274 mutants in BC3-RPY (arginine at position 27, proline at position 78, and tyrosine at position 104 in *Bacillus lenthus* subtilisin) are shown in Table III. Data are percent activity remaining following incubation at 37°C in 50mM EDTA for 60 minutes.

TABLE III

Amino Acid at Position 274	% Activity
Leucine	2%
Serine	79%
Threonine	91%
Valine	42%
Alanine	43%

Mutations at this position clearly effect stability of the enzyme. Although the alanine mutation was not as stable as serine or threonine at this position, this enzyme provided superior performance relative to Bacillus lentus subtilisin under the conditions of use described. For different applications, other amino acids at position 274 may be used.

5 EXAMPLE 7

Detergent Composition

A spray-dried phosphate detergent granule of the following composition was prepared:

	Component	Weight %
	Sodium C12 linear alkylbenzene sulfonate	8.45
	Sodium Tallow Alcohol sulfate	4.23
15	Sodium C14~15 linear alkyl sulfate	4.23
	Sodium Toluene Sulfonate	1.00
	Sodium Tripolyphosphate	5.60
20	Sodium pyrophosphate	22.40
	Silicate (1.6 r)	5.50
	Sodium Sulfate	29.83
	Sodium polyacrylate (4500 MW)	1.17
	Brightener	0.22
25	Sodium Carbonate	12.30
	Polyethylene Glycol (MW 80)0	0.47
	C12~13 alcohol polyethoxylate (6.5)*	0.50
	Miscellaneous + Water	to 100%
	Protease**	0.034

*Alcohol and monoethoxyl alcohol removed.

**mg active enzyme/g (2.0 mg active enzyme/g stock)

A 0.1 weight percent solution of this composition in water had a pH of 10.0. The composition with subtilisin mutant of the invention (Fig. 7) provided superior cleaning of enzyme-sensitive stains, when compared to Bacillus lentus at 0.068 mg active enzyme/g product, in a 95°F (35°C) wash at 6 grains per gallon (gpg) hardness (3:1 Ca/Mg).

Throughout this application reference is made to various amino acids by way of common one-and three-letter codes. Such codes are identified in Proteins: Structures and Molecular Proteases, Thomas E. Creighton, eds. W.N. Freeman, N.Y., N.Y. (1983), p.3.

Although the preferred form of the invention has been described above, it will be obvious to those skilled in the art to which the invention pertains, that, after understanding the invention as a whole, various changes and equivalent modifications may be made without departing from the scope of the invention as defined by the appended claims.

All publications are expressly incorporated herein by reference.

45 **Claims**

Claims for the following Contracting States : AT, BE, CH, DE, DK, FR, GB, GR, IT, LU, NL, SE

- 50 1. A carbonyl hydrolase mutant having an amino acid sequence not found in nature which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said precursor equivalent to +123 in Bacillus amyloliquefaciens subtilisin wherein the mutant has an altered proteolytic activity compared to the precursor carbonyl hydrolase.
- 55 2. The carbonyl hydrolase mutant according to claim 1 having further substitution at a position equivalent to +274 in Bacillus amyloliquefaciens.
3. The carbonyl hydrolase mutant of claim 1 or claim 2 wherein said precursor carbonyl hydrolase is a subtilisin.

4. The carbonyl hydrolase mutant according to claim 3 wherein said precursor carbonyl hydrolase is a Bacillus subtilisin.

5. The carbonyl hydrolase mutant of any one of claims 1 to 4 wherein the amino acid residue in said mutant at position +123 is serine and the amino acid residue in said mutant at position +274 is alanine.

6. The carbonyl hydrolase mutant of any one of claims 1 to 5 wherein the proteolytic activity of the mutant is increased relative to the precursor carbonyl hydrolase.

10 7. A mutant Bacillus subtilisin having the amino acid sequence:

AQSVPWGISRVQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
 15 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA
 QGLEWAGNNGMHSV ASLSLGSPSPSATLEQAVNSATSRGV LVVAASGN SGAGSI
 SYPARYANAMAVGATDQNNNRASF SQYGA GLDIVAPGVNVQSTYPG STYASLN
 GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE

20

AAAR

25 8. DNA encoding a carbonyl hydrolase mutant of any one of claims 1 to 7.

9. An expression vector including the DNA of claim 8.

10. Host cells transformed with the expression vector of claim 9.

30 11. A method of producing a carbonyl hydrolase mutant having an amino acid sequence not found in nature which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said precursor equivalent to +123 in Bacillus amyloliquefaciens subtilisin, the method comprising culturing the host cells of claim 10 and separating the carbonyl hydrolase mutant produced.

35 12. An enzymatic cleaning composition capable of degrading proteins comprising:

(a) a surfactant; and,
 40 (b) a carbonyl hydrolase mutant having an amino acid sequence not found in nature which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said precursor equivalent to +123 in Bacillus amyloliquefaciens subtilisin.

13. The composition of claim 12 wherein said carbonyl hydrolase enzyme is a subtilisin.

45 14. The composition of claim 12 or claim 13 wherein said subtilisin has the following amino acid sequence:

AQSVPWGISRVQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
 50 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA

QGLEWAGNNGMHSV ASLSLGSPSPSATLEQAVNSATSRGV LVVAASGN SGAGSI
 SYPARYANAMAVGATDQNNNRASF SQYGA GLDIVAPGVNVQSTYPG STYASLN
 GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
 55 **AAAR**

15. The composition of any one of claims 12 to 14 wherein the surfactant comprises a detergent.
16. A composition according to any one of claims 12 to 15 formulated as a spray-dried detergent granule.

5

Claims for the following Contracting State : ES

1. A process which comprises preparing a carbonyl hydrolase mutant having an amino acid sequence not found in nature which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said precursor equivalent to +123 in Bacillus amyloliquefaciens subtilisin wherein the mutant has an altered proteolytic activity compared to the precursor carbonyl hydrolase.
- 10 2. The process according to claim 1 wherein the carbonyl hydrolase mutant has further substitution at a position equivalent to +274 in Bacillus amyloliquefaciens.
- 15 3. The process of claim 1 or claim 2 wherein said precursor carbonyl hydrolase is a subtilisin.
- 20 4. The process according to claim 3 wherein said precursor carbonyl hydrolase is a Bacillus subtilisin.
- 25 5. The process of any one of claims 1 to 4 wherein the amino acid residue in said mutant at position +123 is serine and the amino acid residue in said mutant at position +274 is alanine.
6. The process of any one of claims 1 to 5 wherein the proteolytic activity of the mutant is increased relative to the precursor carbonyl hydrolase.
- 25 7. A process which comprises preparing a mutant Bacillus subtilisin having the amino acid sequence:

30 AQSVPGISRVQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
35 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA
40 QGLEWAGNNGMHVASLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSI
45 SYPARYANAMAVGATDQNNRASF SQYGAGLDIVAPGVNVQSTYPGSTYASLN
50 GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE

AAAR

- 40 8. DNA encoding a carbonyl hydrolase mutant produced by the process of any one of claims 1 to 7.
9. An expression vector including the DNA of claim 8.
- 45 10. Host cells transformed with the expression vector of claim 9.
11. A method of producing a carbonyl hydrolase mutant having an amino acid sequence not found in nature which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said precursor equivalent to +123 in Bacillus amyloliquefaciens subtilisin, the method comprising culturing the host cells of claim 10 and separating the carbonyl hydrolase mutant produced.
- 50 12. A process which comprises preparing an enzymatic cleaning composition capable of degrading proteins comprising:
- 55 (a) a surfactant; and,
(b) a carbonyl hydrolase mutant having an amino acid sequence not found in nature which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for the amino acid residue at a position in said precursor equivalent to +123 in Bacillus amyloliquefaciens subtilisin.

13. The process of claim 12 wherein said carbonyl hydrolase enzyme is a subtilisin.

14. The process of claim 12 or claim 13 wherein said subtilisin has the following amino acid sequence:

5
AQSVPGISRVQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
PSTQDGNGHGTHVAGTIALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA

10
QGLEWAGNNGMHVASLSLGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGS I
SYPARYANAMAVGATDQNNNRASF SQYGAGLDIVAPGVNVQSTYPGSTYASLN
15
GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
AAAR

16. The process of any one of claims 12 to 14 wherein the surfactant comprises a detergent.

20 16. A process according to any one of claims 12 to 15 formulated as a spray-dried detergent granule.

Patentansprüche

25 Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, DE, DK, FR, GB, GR, IT, LU, NL, SE

1. Carbonylhydrolasemutante mit einer Aminosäuresequenz, die in der Natur nicht gefunden wird und die von einer Vorläufer-Carbonylhydrolase abgeleitet ist, indem der Aminosäurerest an einer Position in dem Vorläufer, die äquivalent ist zu +123 in Bacillus amyloliquefaciens-Subtilisin, durch eine unterschiedliche Aminosäure ausgetauscht wird, wobei die Mutante eine veränderte proteolytische Aktivität im Vergleich zu der Vorläufer-Carbonylhydrolase aufweist.
2. Carbonylhydrolasemutante nach Anspruch 1, die eine weitere Substitution an einer Position, die äquivalent ist zu +274 in Bacillus amyloliquefaciens, aufweist.
3. Carbonylhydrolasemutante nach Anspruch 1 oder Anspruch 2, wobei die Vorläufer-Carbonylhydrolase ein Subtilisin ist.
- 40 4. Carbonylhydrolasemutante nach Anspruch 3, wobei die Vorläufer-Carbonylhydrolase ein Bacillus-Subtilisin ist.
5. Carbonylhydrolasemutante nach einem der Ansprüche 1 bis 4, wobei der Aminosäurerest in der Mutante an Position +123 Serin ist und der Aminosäurerest in der Mutante an Position +274 Alanin ist.
- 45 6. Carbonylhydrolasemutante nach einem der Ansprüche 1 bis 5, wobei die proteolytische Aktivität der Mutante gegenüber der Vorläufer-Carbonylhydrolase erhöht ist.
7. Mutiertes Bacillus-Subtilisin mit der Aminosäuresequenz:

50

55

AQSVPGISRVQAPAAHNRGLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSYSSIA
5 QGLEWAGNNGMVASLSQLSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSI
SYPARYANAMAVGATDQNNRASFQYGAGLDIVAPGVNVQSTYPGSTYASLN
GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
10 AAAR

8. DNA, die eine Carbonylhydrolasemutante nach einem der Ansprüche 1 bis 7 kodiert.
9. Expressionsvektor, der die DNA nach Anspruch 8 enthält.
- 15 10. Wirtszellen, die mit dem Expressionsvektor nach Anspruch 9 transformiert worden sind.
11. Verfahren zur Herstellung einer Carbonylhydrolasemutante mit einer Aminosäuresequenz, die in der Natur nicht 20 gefunden wird und die von einer Vorläufer-Carbonylhydrolase abgeleitet ist, indem der Aminosäurerest an einer Position in dem Vorläufer, die äquivalent ist zu +123 in Bacillus amyloliquefaciens-Subtilisin, durch eine unterschiedliche Aminosäure ausgetauscht wird, wobei das Verfahren umfaßt, die Wirtszellen nach Anspruch 10 zu züchten und die produzierte Carbonylhydrolasemutante abzutrennen.
12. Enzymatische Reinigungszusammensetzung, die in der Lage ist, Proteine abzubauen, umfassend:
25 (a) ein grenzflächenaktives Mittel und
(b) eine Carbonylhydrolasemutante mit einer Aminosäuresequenz, die in der Natur nicht gefunden wird und die von einer Vorläufer-Carbonylhydrolase abgeleitet ist, indem der Aminosäurerest an einer Position in dem Vorläufer, die äquivalent ist zu +123 in Bacillus amyloliquefaciens-Subtilisin, durch eine unterschiedliche Aminosäure ausgetauscht wird.
- 30 13. Zusammensetzung nach Anspruch 12, wobei das Carbonylhydrolaseenzym ein Subtilisin ist.
14. Zusammensetzung nach Anspruch 12 oder Anspruch 13, wobei das Subtilisin die folgende Aminosäuresequenz 35 hat:

AQSVPGISRVQAPAAHNRGLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSYSSIA
40 QGLEWAGNNGMVASLSQLSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSI
SYPARYANAMAVGATDQNNRASFQYGAGLDIVAPGVNVQSTYPGSTYASLN
GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
45 AAAR

- 50 15. Zusammensetzung nach einem der Ansprüche 12 bis 14, wobei das grenzflächenaktive Mittel ein Detergens umfaßt.
16. Zusammensetzung nach einem der Ansprüche 12 bis 15, die als ein sprühgetrocknetes Detergensgranulat formuliert ist.

55 **Patentansprüche für folgenden Vertragsstaaten : ES**

1. Verfahren, umfassend die Herstellung einer Carbonylhydrolasemutante mit einer Aminosäuresequenz, die in der Natur nicht gefunden wird und die von einer Vorläufer-Carbonylhydrolase abgeleitet ist, indem der Aminosäurerest

an einer Position in dem Vorläufer, die äquivalent ist zu +123 in Bacillus amyloliquefaciens-Subtilisin, durch eine unterschiedliche Aminosäure ausgetauscht wird, wobei die Mutante eine veränderte proteolytische Aktivität im Vergleich zu der Vorläufer-Carbonylhydrolase aufweist.

- 5 2. Verfahren nach Anspruch 1, wobei die Carbonylhydrolasemutante eine weitere Substitution an einer Position, die äquivalent ist zu +274 in Bacillus amyloliquefaciens, aufweist.
- 10 3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei die Vorläufer-Carbonylhydrolase ein Subtilisin ist.
- 15 4. Verfahren nach Anspruch 3, wobei die Vorläufer-Carbonylhydrolase ein Bacillus-Subtilisin ist.
- 20 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Aminosäurerest in der Mutante an Position +123 Serin ist und der Aminosäurerest in der Mutante an Position +274 Alanin ist.
- 25 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die proteolytische Aktivität der Mutante gegenüber der Vorläufer-Carbonylhydrolase erhöht ist.
- 30 7. Verfahren, umfassend die Herstellung eines Mutierten Bacillus-Subtilisins mit der Aminosäuresequenz:

20 AQSVPWGISRQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA
 QGLEWAGNNGMHVASL LGSPSPSATLEQAVNSATSRGVLVVAASGNSGAGSI
 SYPARYANAMAVGATDQNNNRASF SQYGA GLDIVAPGVNVQSTYPG STYASLN
 GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
 AAAR

- 35 8. DNA, die eine Carbonylhydrolasemutante kodiert, welche nach dem Verfahren gemäß einem der Ansprüche 1 bis 7 hergestellt worden ist.
- 40 9. Expressionsvektor, der die DNA nach Anspruch 8 enthält.
- 45 10. Wirtszellen, die mit dem Expressionsvektor nach Anspruch 9 transformiert worden sind.
- 50 11. Verfahren zur Herstellung einer Carbonylhydrolasemutante mit einer Aminosäuresequenz, die in der Natur nicht gefunden wird und die von einer Vorläufer-Carbonylhydrolase abgeleitet ist, indem der Aminosäurerest an einer Position in dem Vorläufer, die äquivalent ist zu +123 in Bacillus amyloliquefaciens-Subtilisin, durch eine unterschiedliche Aminosäure ausgetauscht wird, wobei das Verfahren umfaßt, die Wirtszellen nach Anspruch 10 zu züchten und die produzierte Carbonylhydrolasemutante abzutrennen.
- 55 12. Verfahren, umfassend die Herstellung einer Enzymatischen Reinigungszusammensetzung, die in der Lage ist, Proteine abzubauen, umfassend:
- (a) ein grenzflächenaktives Mittel und
 (b) eine Carbonylhydrolasemutante mit einer Aminosäuresequenz, die in der Natur nicht gefunden wird und die von einer Vorläufer-Carbonylhydrolase abgeleitet ist, indem der Aminosäurerest an einer Position in dem Vorläufer, die äquivalent ist zu +123 in Bacillus amyloliquefaciens-Subtilisin, durch eine unterschiedliche Aminosäure ausgetauscht wird.
13. Verfahren nach Anspruch 12, wobei das Carbonylhydrolaseenzym ein Subtilisin ist.
- 55 14. Verfahren nach Anspruch 12 oder Anspruch 13, wobei das Subtilisin die folgende Aminosäuresequenz hat:

5 AQSVPGI SRVQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA
 QGLEWAGNNGMHVASLSLGSPSPATLEQAVNSATSRGVLVVAASGNSGAGSI
 SYPARYANAMAVGATDQNNNRASFQYGAGLDIVAPGVNVQSTYPGSTYASLN
 GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
 10 AAAR

15. Verfahren nach einem der Ansprüche 12 bis 14, wobei das grenzflächenaktive Mittel ein Detergens umfaßt.

16. Verfahren nach einem der Ansprüche 12 bis 15, die als ein sprühgetrocknetes Detergensgranulat formuliert ist.

Revendications

20 **Revendications pour les Etats contractants suivants : AT, BE, CH, DE, DK, FR, GB, GR, IT, LU, NL, SE**

- 25 1. Carbonyle hydrolase mutée présentant une séquence d'acides aminés ne se trouvant pas dans la nature qui est obtenue à partir d'une carbonyle hydrolase précurseur par substitution du résidu d'acide aminé occupant la position dans ledit précurseur équivalente à +123 dans la subtilisine de *Bacillus amyloliquefaciens* par un acide aminé différent, dans laquelle le mutant présente une activité protéolytique altérée par rapport à la carbonyle hydrolase précurseur.
- 30 2. Carbonyle hydrolase mutée selon la revendication 1, présentant une substitution supplémentaire dans une position équivalente à +274 dans *Bacillus amyloliquefaciens*.
- 35 3. Carbonyle hydrolase mutée selon la revendication 1 ou la revendication 2, dans laquelle ladite carbonyle hydrolase précurseur est une subtilisine.
- 40 4. Carbonyle hydrolase mutée selon la revendication 3, dans laquelle ladite carbonyle hydrolase précurseur est une subtilisine de *Bacillus*.
- 45 5. Carbonyle hydrolase mutée selon l'une quelconque des revendications 1 à 4, dans laquelle le résidu d'acide aminé en position +123 dans ledit mutant est la sérine et le résidu d'acide aminé en position +274 dans ledit mutant est lalanine.
6. Carbonyle hydrolase mutée selon l'une quelconque des revendications 1 à 5, dans laquelle l'activité protéolytique du mutant est augmentée par rapport à la carbonyle hydrolase précurseur.
7. Subtilisine de *Bacillus* mutée présentant la séquence d'acides aminés :

50 AQSVPGI SRVQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA
 QGLEWWAGNNGMHVASLSLGSPSPATLEQAVNSATSRGVLVVAASGNSHAGSI
 SYPARYANAMAVGATDQNNNRASFQYGAGLDIVAPGVNVQSTYPGSTYASLN

55 GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
 AAAR .

8. ADN codant pour une carbonyle hydrolase mutée selon l'une quelconque des revendications 1 à 7.
9. Vecteur d'expression comprenant l'ADN selon la revendication 8.
- 5 10. Cellules hôtes transformées par le vecteur d'expression selon la revendication 9.
11. Procédé de production d'une carbonyle hydrolase mutée présentant une séquence d'acides aminés ne se trouvant pas dans la nature qui est obtenue à partir d'une carbonyle hydrolase précurseur par substitution du résidu d'acide aminé occupant une position dans ledit précurseur équivalente à +123 dans la subtilisine de *Bacillus amyloliquefaciens* par un acide aminé différent, le procédé comprenant la mise en culture des cellules hôtes selon la revendication 10 et la séparation de la carbonyle hydrolase mutée ainsi produite.

12. Composition de lavage enzymatique capable de dégrader des protéines comprenant :
 - 15 (a) un agent tensio-actif ; et
 - (b) une carbonyle hydrolase mutée présentant une séquence d'acides aminés ne se trouvant pas dans la nature qui est obtenue à partir d'une carbonyle hydrolase précurseur par substitution du résidu d'acide aminé occupant une position dans ledit précurseur équivalente à +123 dans la subtilisine de *Bacillus amyloliquefaciens* par un acide aminé différent.

- 20 13. Composition selon la revendication 12, dans laquelle ladite enzyme carbonyle hydrolase est une subtilisine.

14. Composition selon la revendication 12 ou la revendication 13, dans laquelle ladite subtilisine présente la séquence d'acides aminés suivante :

25 **AQSVPWGISRVOAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE**

30 **PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA**
QGLEWWAGNNGMHVASLSLGSPSPATLEQAVNSATSRGVLVVAASGN SHAGSI
SY PARYANAMAVGATDQNNNRASF SQYGAGLDIVAPCVNVQSTYPG STYASLN
35 **GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE**
AAAR.

- 40 15. Composition selon l'une quelconque des revendications 12 à 14, dans laquelle l'agent tensio-actif comprend un détergent.
16. Composition selon l'une quelconque des revendications 12 à 15, formulée sous la forme de granulés détergents séchés par pulvérisation.

45 **Revendications pour l'Etat contractant suivant : ES**

1. Procédé comprenant la préparation d'une Carbonyle hydrolase mutée présentant une séquence d'acides aminés ne se trouvant pas dans la nature qui est obtenue à partir d'une carbonyle hydrolase précurseur par substitution du résidu d'acide aminé occupant la position dans ledit précurseur équivalente à +123 dans la subtilisine de *Bacillus amyloliquefaciens* par un acide aminé différent, dans laquelle le mutant présente une activité protéolytique altérée par rapport à la carbonyle hydrolase précurseur.
- 50 2. Procédé selon la revendication 1, où la Carbonyle hydrolase mutée présente une substitution supplémentaire dans une position équivalente à +274 dans *Bacillus amyloliquefaciens*.
- 55 3. Procédé selon la revendication 1 ou la revendication 2, dans laquelle ladite carbonyle hydrolase précurseur est une subtilisine.

4. Procédé selon la revendication 3, dans laquelle ladite carbonyle hydrolase précurseur est une subtilisine de *Bacillus*.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans laquelle le résidu d'acide aminé en position +123 dans ledit mutant est la sérine et le résidu d'acide aminé en position +274 dans ledit mutant est l'alanine.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans laquelle l'activité protéolytique du mutant est augmentée par rapport à la carbonyle hydrolase précurseur.
- 10 7. Procédé comprenant la préparation d'une subtilisine de *Bacillus* mutée présentant la séquence d'acides aminés :

AQSVPWGISRQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE
15 PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPS AELYAVKVLGASGSGSYSSIA
OGLEWWAGNNGMHVASLSLGSPSPATLEQAVNSATSRGVLVVAASGNSHAGSI
SYPARYANAMAVGATDQNNNRASF SQYGAGLDIVAPGVNVQSTYPGSTYASLN

20 GTSMATPHVAGAAALVKQKNPSWSNVQIRNLKNTATSLGSTNLYGSGLVNAE
AAAR.

- 25 8. ADN codant pour une carbonyle hydrolase mutée produite par le procédé selon l'une quelconque des revendications 1 à 7.
9. Vecteur d'expression comprenant l'ADN selon la revendication 8.
- 30 10. Cellules hôtes transformées par le vecteur d'expression selon la revendication 9.
11. Procédé de production d'une carbonyle hydrolase mutée présentant une séquence d'acides aminés ne se trouvant pas dans la nature qui est obtenue à partir d'une carbonyle hydrolase précurseur par substitution du résidu d'acide aminé occupant une position dans ledit précurseur équivalente à +123 dans la subtilisine de *Bacillus amyloliquefaciens* par un acide aminé différent, le procédé comprenant la mise en culture des cellules hôtes selon la revendication 10 et la séparation de la carbonyle hydrolase mutée ainsi produite.
- 35 12. Procédé comprenant la préparation d'une composition de lavage enzymatique capable de dégrader des protéines comprenant :
- 40 (a) un agent tensio-actif ; et
(b) une carbonyle hydrolase mutée présentant une séquence d'acides aminés ne se trouvant pas dans la nature qui est obtenue à partir d'une carbonyle hydrolase précurseur par substitution du résidu d'acide aminé occupant une position dans ledit précurseur équivalente à +123 dans la subtilisine de *Bacillus amyloliquefaciens* par un acide aminé différent.
- 45 13. Procédé selon la revendication 12, dans laquelle ladite enzyme carbonyle hydrolase est une subtilisine.
14. Procédé selon la revendication 12 ou la revendication 13, dans laquelle ladite subtilisine présente la séquence d'acides aminés suivante :

AQSVPWGISRQAPAAHNRLTGSGVRVAVLDTGISTHPDLNIRGGASFVPGE

PSTQDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSYSSIA
QGLEWWAGNNGMHVASLSLGSPSPATLEQAVNSATSRGVLVVAASGNSHAGSI
5 SYPARYANAMAVGATDQNNNRASFSQLYAGLDIVAPGVNVQSTYPGSTYASLN
GTSMATPHVAGAAALVKQKNPSWSNVQIRNHLKNTATSLGSTNLYGSGLVNAE
AAAR.

10 15. Procédé selon l'une quelconque des revendications 12 à 14, dans laquelle l'agent tensio-actif comprend un détergent.

15 16. Procédé selon l'une quelconque des revendications 12 à 15, formulée sous la forme de granulés détergents séchés par pulvérisation.

20

25

30

35

40

45

50

55

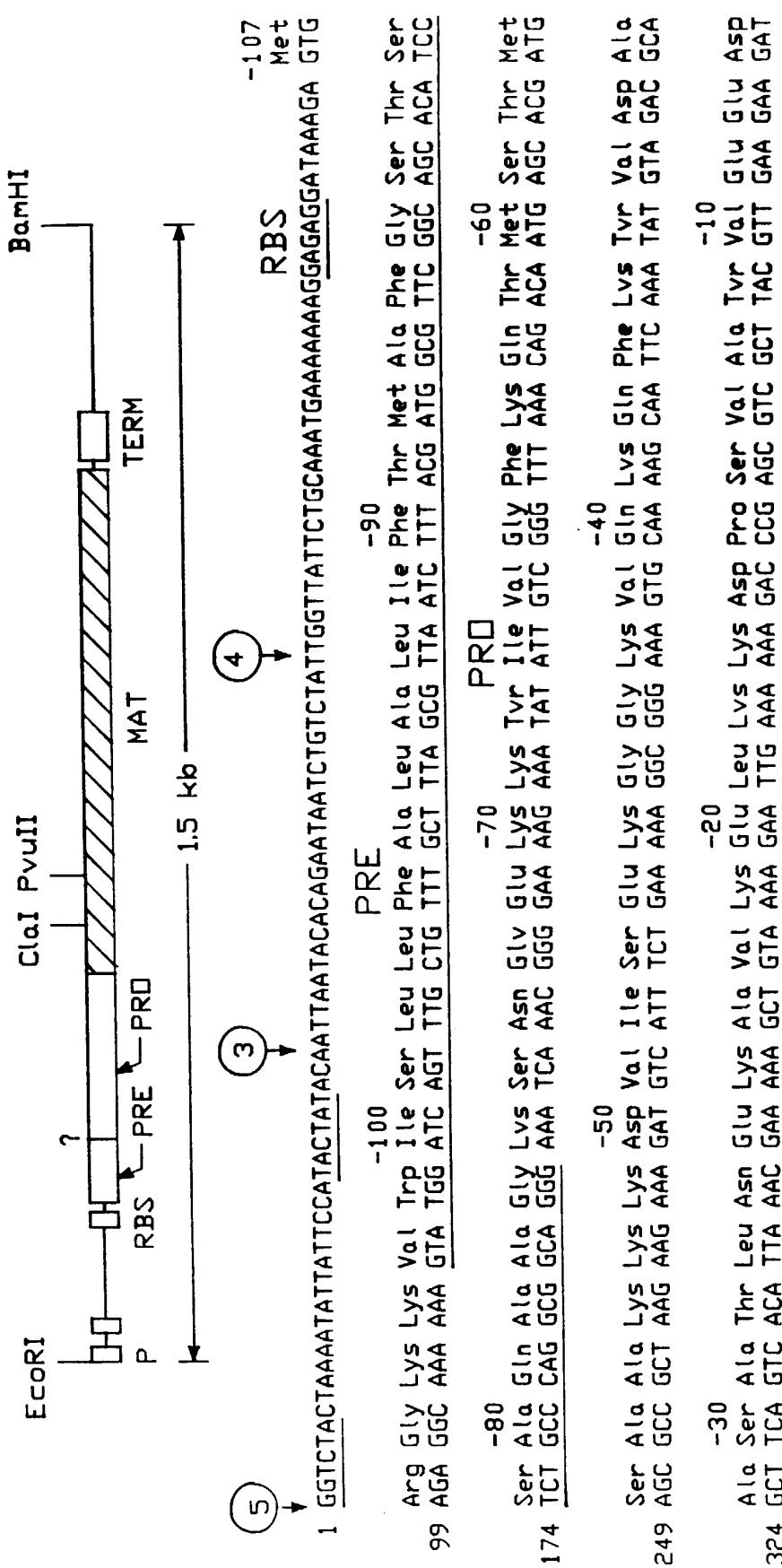


FIG.-1A

His ⁻¹ ¹ ¹⁰ ²⁰ ³⁰ ⁴⁰
 399 CAC GCA CAT GCG TAC GCG CAG TCC GTG CCT TAC GGC GAA ATT AAA GCA ATT CAA TCA GTC GCA CAC TCT CAA
 Gly Tyr Thr GLY Ser Asn Val Lys Val Ala Val Ile Asp Ser GLY Ile ASP Ser Ser His Pro Asn Leu Lys Val
 474 GGC TAC ACT GGA TCA AAT GTT AAA GTC GCG GTT ATC GAC AGC GGC GGT ATC GAT TCT TCT CAC GAT TTA AAG GTC
 Ala GLY GLY Ala Ser Met Val Pro Ser Glu Thr Asn Pro Phe GLN Asp Asn Ser His GLY Thr His Val Ala
 549 GCA AGC GGA GCC AGC ATG GTT CCT TCT GAA ACA AAT CCT TCC CAA GAC AAC AAC TCT CAC GGA ACT CAC GTT GCC
 Gly Thr Val Ala Ala Leu Asn Asn Ser Ile GLY Val Leu GLY Val Ala Pro Ser Ala Ser Leu Tyr Ala Val Lys
 624 GGC ACA GTT GCG GCT CTT AAT AAC TCA ATC GGT GTC TTA GGC GTT GCG CCA AGC GCA TCA CTT TAC GCT GTC AAA
 Val Leu GLY Ala ASP GLY Ser GLY GLN Tyr Ser Trp Ile Ile Asn GLY Ile GLU Trp Ala Ile Ala Asn Asn Met
 699 GTT CTC GGT GCT GAC GGT TCC GGC CAA TAC AGC TGG ATC ATT AAC GGA ATC GAG TGG GCG ATC GCA AAC AAT ATG
 ASP Val Ile Asn Met Ser Leu GLY GLY Pro Ser GLY Ser Ala Ala Leu Lys Ala Val ASP Lys Ala Val Ala
 774 GAC GTT ATT AAC ATG AGC CTC GGC GGA CCT TCT GGT TCT GCT GCT GCT GCA GTT GAT AAA GCG GCA GTC GCA
 Ser GLY Val Val Val Ala Ala Ala GLY Asn GLU GLY Thr Ser GLY Ser Ser Thr Val GLY Tyr Pro GLY
 849 TCC GGC GTC GTC GTC GTT GCG GCA GCC GGT AAC GAA GGC ACT TCC GGC AGC ACA GTG GGC TAC CCT GGT

→ MAT

FIG-1B

170 Lys Tyr Pro Ser Val Ile Ala Val Glu Ala Val 180
 924 AAA TAC CCT TCT GTC ATT GCA GTC GGC GCT GAT GAC AGC AAC CAA AGA GCA TCT TTC TCA AGC GTA GGA CCT
 180
 190
 200 Glu Leu Asp Val Met Ala Pro Gly Val Ser Ile Glu Ser Thr Leu Pro Glu Asn Lys Tyr Ala Tyr Asn Glu
 999 GAG CTT GAT GTC ATG GCA CCT GGC GTC TCT ATC CAA AGC ACG CTT CCT GCA AAG AAA TAC GGG GCG TAC AAC GGT
 210
 220 Thr Ser Met Ala Ser Pro His Val Ala Gly Ala Ala Leu Ser Lys His Pro Asn Trp Thr Asn Thr
 1074 ACG TCA ATG GCA TCT CCG CAC GTC GGC GCA GGT GCT GCT GCG GCT GCT ATT CTT AAG CAC CCG AAC TGG ACA AAC ACT
 230
 240
 250 Glu
 260
 270
 280
 290
 300
 310
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430
 440
 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1010
 1020
 1030
 1040
 1050
 1060
 1070
 1080
 1090
 1100
 1110
 1120
 1130
 1140
 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270
 1280
 1290
 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420
 1430
 1440
 1450
 1460
 1470
 1480
 1490
 1500
 1510
 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610
 1620
 1630
 1640
 1650
 1660
 1670
 1680
 1690
 1700
 1710
 1720
 1730
 1740
 1750
 1760
 1770
 1780
 1790
 1800
 1810
 1820
 1830
 1840
 1850
 1860
 1870
 1880
 1890
 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010
 2020
 2030
 2040
 2050
 2060
 2070
 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160
 2170
 2180
 2190
 2200
 2210
 2220
 2230
 2240
 2250
 2260
 2270
 2280
 2290
 2300
 2310
 2320
 2330
 2340
 2350
 2360
 2370
 2380
 2390
 2400
 2410
 2420
 2430
 2440
 2450
 2460
 2470
 2480
 2490
 2500
 2510
 2520
 2530
 2540
 2550
 2560
 2570
 2580
 2590
 2600
 2610
 2620
 2630
 2640
 2650
 2660
 2670
 2680
 2690
 2700
 2710
 2720
 2730
 2740
 2750
 2760
 2770
 2780
 2790
 2800
 2810
 2820
 2830
 2840
 2850
 2860
 2870
 2880
 2890
 2900
 2910
 2920
 2930
 2940
 2950
 2960
 2970
 2980
 2990
 3000
 3010
 3020
 3030
 3040
 3050
 3060
 3070
 3080
 3090
 3100
 3110
 3120
 3130
 3140
 3150
 3160
 3170
 3180
 3190
 3200
 3210
 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300
 3310
 3320
 3330
 3340
 3350
 3360
 3370
 3380
 3390
 3400
 3410
 3420
 3430
 3440
 3450
 3460
 3470
 3480
 3490
 3500
 3510
 3520
 3530
 3540
 3550
 3560
 3570
 3580
 3590
 3600
 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690
 3700
 3710
 3720
 3730
 3740
 3750
 3760
 3770
 3780
 3790
 3800
 3810
 3820
 3830
 3840
 3850
 3860
 3870
 3880
 3890
 3900
 3910
 3920
 3930
 3940
 3950
 3960
 3970
 3980
 3990
 4000
 4010
 4020
 4030
 4040
 4050
 4060
 4070
 4080
 4090
 4100
 4110
 4120
 4130
 4140
 4150
 4160
 4170
 4180
 4190
 4200
 4210
 4220
 4230
 4240
 4250
 4260
 4270
 4280
 4290
 4300
 4310
 4320
 4330
 4340
 4350
 4360
 4370
 4380
 4390
 4400
 4410
 4420
 4430
 4440
 4450
 4460
 4470
 4480
 4490
 4500
 4510
 4520
 4530
 4540
 4550
 4560
 4570
 4580
 4590
 4600
 4610
 4620
 4630
 4640
 4650
 4660
 4670
 4680
 4690
 4700
 4710
 4720
 4730
 4740
 4750
 4760
 4770
 4780
 4790
 4800
 4810
 4820
 4830
 4840
 4850
 4860
 4870
 4880
 4890
 4900
 4910
 4920
 4930
 4940
 4950
 4960
 4970
 4980
 4990
 5000
 5010
 5020
 5030
 5040
 5050
 5060
 5070
 5080
 5090
 5100
 5110
 5120
 5130
 5140
 5150
 5160
 5170
 5180
 5190
 5200
 5210
 5220
 5230
 5240
 5250
 5260
 5270
 5280
 5290
 5300
 5310
 5320
 5330
 5340
 5350
 5360
 5370
 5380
 5390
 5400
 5410
 5420
 5430
 5440
 5450
 5460
 5470
 5480
 5490
 5500
 5510
 5520
 5530
 5540
 5550
 5560
 5570
 5580
 5590
 5600
 5610
 5620
 5630
 5640
 5650
 5660
 5670
 5680
 5690
 5700
 5710
 5720
 5730
 5740
 5750
 5760
 5770
 5780
 5790
 5800
 5810
 5820
 5830
 5840
 5850
 5860
 5870
 5880
 5890
 5900
 5910
 5920
 5930
 5940
 5950
 5960
 5970
 5980
 5990
 6000
 6010
 6020
 6030
 6040
 6050
 6060
 6070
 6080
 6090
 6100
 6110
 6120
 6130
 6140
 6150
 6160
 6170
 6180
 6190
 6200
 6210
 6220
 6230
 6240
 6250
 6260
 6270
 6280
 6290
 6300
 6310
 6320
 6330
 6340
 6350
 6360
 6370
 6380
 6390
 6400
 6410
 6420
 6430
 6440
 6450
 6460
 6470
 6480
 6490
 6500
 6510
 6520
 6530
 6540
 6550
 6560
 6570
 6580
 6590
 6600
 6610
 6620
 6630
 6640
 6650
 6660
 6670
 6680
 6690
 6700
 6710
 6720
 6730
 6740
 6750
 6760
 6770
 6780
 6790
 6800
 6810
 6820
 6830
 6840
 6850
 6860
 6870
 6880
 6890
 6900
 6910
 6920
 6930
 6940
 6950
 6960
 6970
 6980
 6990
 7000
 7010
 7020
 7030
 7040
 7050
 7060
 7070
 7080
 7090
 7100
 7110
 7120
 7130
 7140
 7150
 7160
 7170
 7180
 7190
 7200
 7210
 7220
 7230
 7240
 7250
 7260
 7270
 7280
 7290
 7300
 7310
 7320
 7330
 7340
 7350
 7360
 7370
 7380
 7390
 7400
 7410
 7420
 7430
 7440
 7450
 7460
 7470
 7480
 7490
 7500
 7510
 7520
 7530
 7540
 7550
 7560
 7570
 7580
 7590
 7600
 7610
 7620
 7630
 7640
 7650
 7660
 7670
 7680
 7690
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7800
 7810
 7820
 7830
 7840
 7850
 7860
 7870
 7880
 7890
 7900
 7910
 7920
 7930
 7940
 7950
 7960
 7970
 7980
 7990
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 10100
 10110
 10120
 10130
 10140
 10150
 10160
 10170
 10180
 10190
 10100
 10110
 10120
 10130
 10140
 10150
 10160
 10170
 10180
 10190
 10200
 10210
 10220
 10230
 10240
 10250
 10260
 10270
 10280
 10290
 10200
 10210
 10220
 10230
 10240
 10250
 10260
 10270
 10280
 10290
 10300
 10310
 10320
 10330
 10340
 10350
 10360
 10370
 10380
 10390
 10300
 10310
 10320
 10330
 10340
 10350
 10360
 10370
 10380
 10390
 10400
 10410
 10420
 10430
 10440
 10450
 10460
 10470
 10480
 10490
 10400
 10410
 10420
 10430
 10440
 10450
 10460
 10470
 10480
 10490
 10500
 10510
 10520
 10530
 10540
 10550
 10560
 10570
 10580
 10590
 10500
 10510
 10520
 10530
 10540
 10550
 10560
 10570
 10580
 10590
 10600
 10610
 10620
 10630
 10640
 10650
 10660
 10670
 10680
 10690
 10600
 10610
 10620
 10630
 10640
 10650
 10660
 10670
 1068

TOTALLY CONSERVED RESIDUES IN SUBTILISINS

1		10		20
.	.	P	.	.
21		30		40
.	G	.	D	G
.	.	.	.	H
41		50		60
.	.	G	V	.
61		70		80
.	H	G	T	H
.	.	.	G	.
31		90		100
.	G	.	.	G
101		110		120
;	G	.	G	.
121		130		140
.	.	L	G	.
141		150		160
.	.	G	.	G
161		170		180
.	.	V	P	V
181		190		200
.	.	S	F	S
201		210		220
P	G	.	.	G
221		230		240
S	M	A	.	P
.	.	.	H	V
241		250		260
.	.	R	.	.
261		270		
.	.	N	.	.

FIG.-2

Homology of *Bacillus* proteases

1. *Bacillus amyloliquefaciens*
 2. *Bacillus subtilis* var. 1168
 3. *Bacillus licheniformis* (carlsbergensis)

FIG. -3A

121 130 140
 V I N M S L G G P S G S A A L K A A V D
 V I N M S L G G P T G S T A A L K T A V V D
 V I N M S L G G A S G S T A M K Q A V V D

141 150 160
 K A V A S G V V V V A A A G N E G T S S G
 K A V S S G I V V V A A A A G N E G S S G
 N A Y A R G V V V V A A A G N S G N S S G

161 170 180
 S S S T V G Y P G K Y P S V I A V G A V
 S T S T V G Y P A K Y P S T I A V G A V
 S T N T I G Y P A K Y D S V I A V G A V

181 190 200
 D S S N Q R A S F S S G V P E L D V M A
 N S S N Q R A S F A S A G S E L D V M A
 D S N S N R A S F S S V G A E L E V M M A

201 210 220
 P G V S I Q S T L P G N K Y G A Y N G T
 P G V S I Q S T L P G G T Y G A Y N G T
 P G A V G Y S T Y P T N T Y A T L N G T

221 230 240
 S M S A P H V A G A A A L I L S K H P N
 S M A T P H V A G A A A L I L S K H P T
 S M A S P H V A G A A A L I L S K N P N

241 250 260
 W T N T Q V R S S L E N T T T K L G D S
 W T N A Q V R D R L E S T T A T T Y L G N S
 L S A S Q V R N R L S S T A T T Y L G S S

261 270
 F Y Y G K G L I N V Q A A A A Q
 F Y Y G K G L I N V Q A A A A Q
 F Y Y G K G I L N V E A A A A Q

PREFERRED MUNTANT

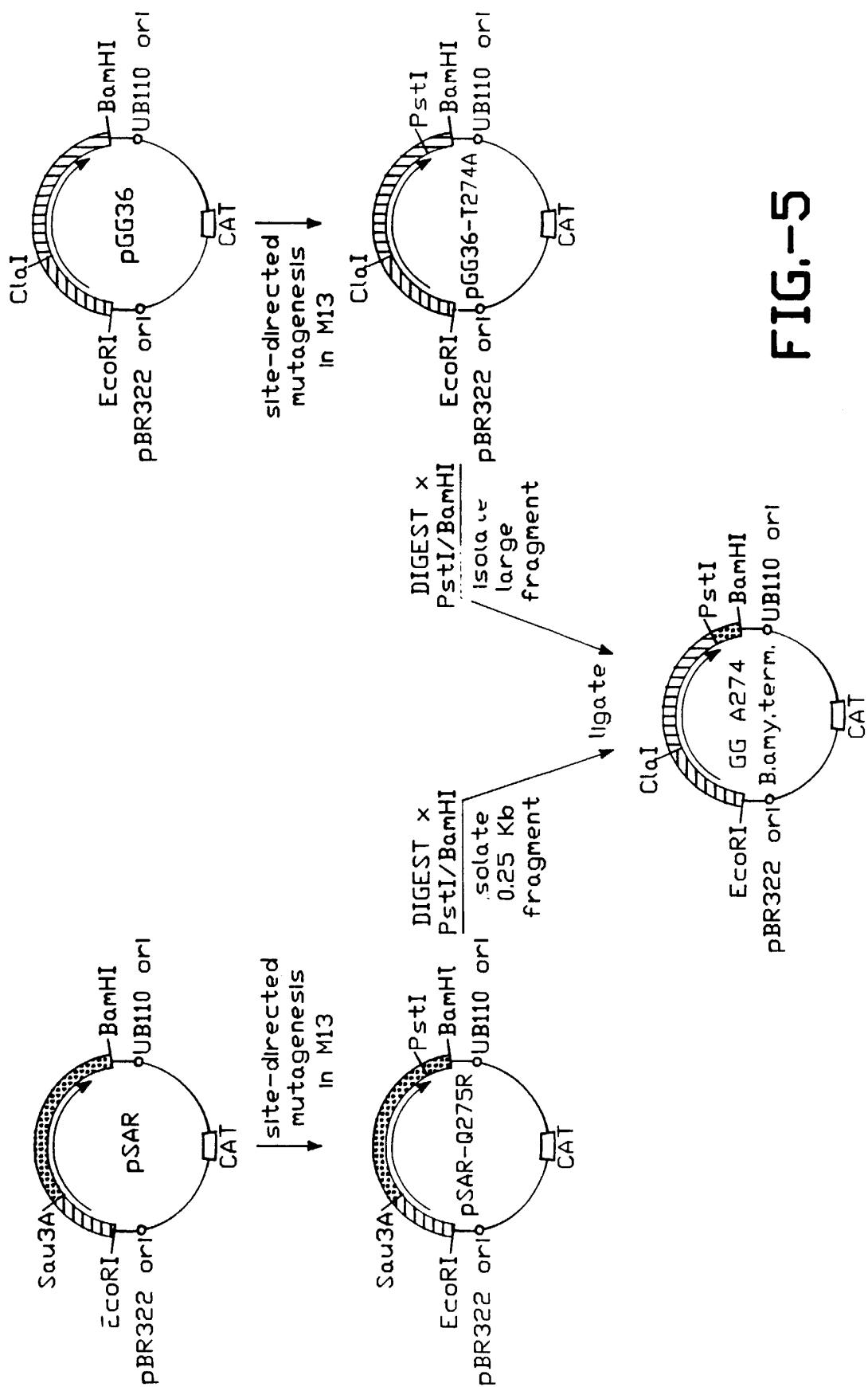
BACILLUS LENTUS

BACILLUS AMYLOLIQUIFACIENS

01	10	20	30
AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHP			
AQSVPWGISRQAPAAHNRLTGSGVKVAVLDTGI*STHP			
AQSVPWGISRQAPAAHNRLTGSGVRVAVLDTGI*STHP			

41	50	60	70
DLKVAGGASMVPSETNPFDQNNSHGTHVAGTVAA	LNNNSIG		
DLNIRGGASFVPGE*	PSTQDGNGHGTHVAGTIAA	LNNNSIG	
DLNIRGGASFVPGE*	PSTQDGNGHGTHVAGTIAA	LNNNSIG	

81	90	100	110
VLGVAPSASLYAVKVI	GADGSGQYSWII	INGIEWAI	ANNMD
VLGVAPSAELYAVKV'	GASGSGSVSSIA	QGLEWAGNN	GMH
VLGVAPSAELYAVKV'	GASGSGSYSSIA	QGLEWAGNN	GMH


121	130	140	150
VINMSLGGPSGS	AALKAAV	DKAVSGVVVVAA	AGNEGTSG
VANLSLGSPSPS	ATLEQAVNSAT	SRGVLVVAASGN	SGAGS
VASLSLGSPSPS	ATLEQAVNSAT	SRGVLVVAASGN	SGAGS

161	170	180	190
SSSTVGYPGKYP	SVIAVGAVDSSNQR	ASFSSVGPE	LDVMA
***ISYPARYANAMAVG	ATDQNNRASFSQYGA	GLDIVA	
***ISYPARYANAMAVG	ATDQNNRASFSQYGA	GLDIVA	

201	210	220	230
PGVSIQSTLPGNKY	GAYNGTSMASPHVAGAA	ALILSKHPN	
PGVNVQSTYPG	STYASLNGTSMATPHVAGAA	ALVKQKNPS	
PGVNVQSTYPG	STYASLNGTSMATPHVAGAA	ALVKQKNPS	

241	250	260	270
WTNTQVRSSLENTIT	KLGD	FYYGKGL	INVQAA
WSNVQIRNHLKNTAT	SLGSTNL	YGSGLVNA	EAATR
WSNVQIRNHLKNTAT	SLGSTNL	YGSGLVNA	EAAR

FIG. -4

FIG.-5

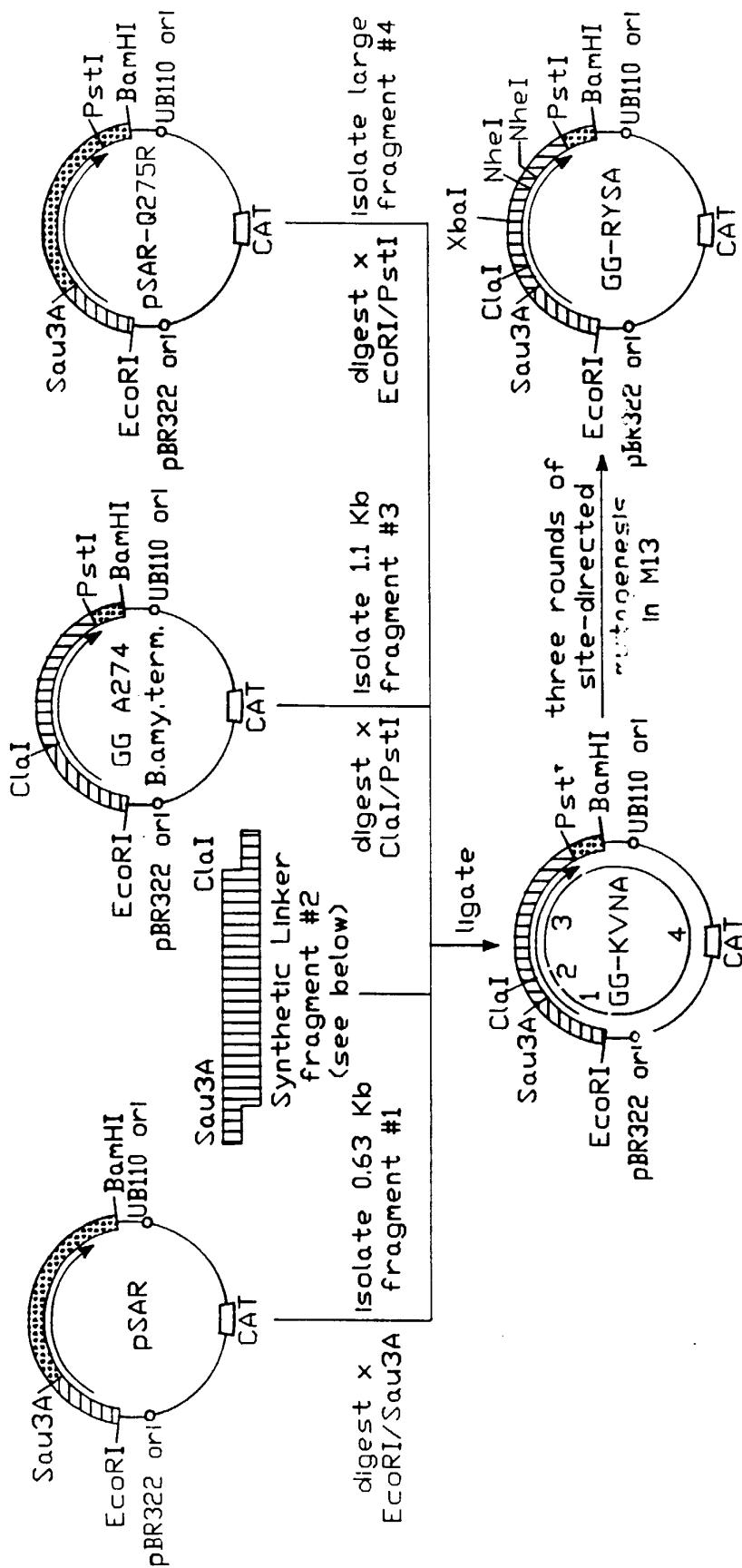


FIG.-6

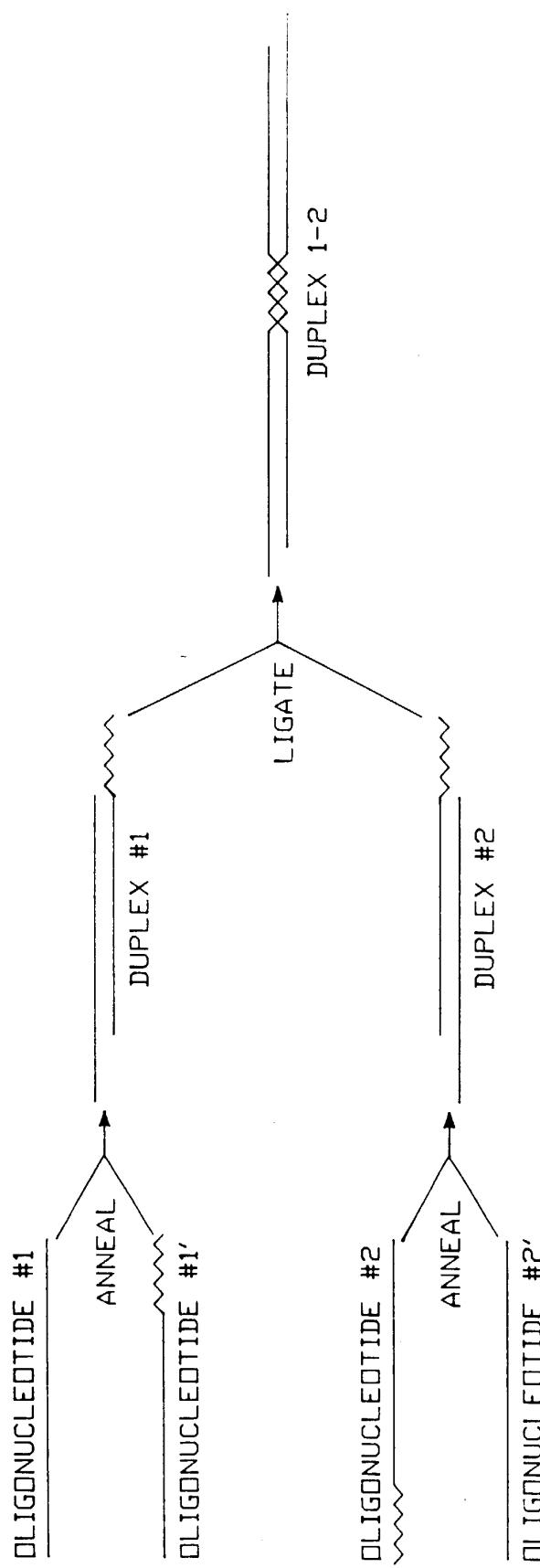
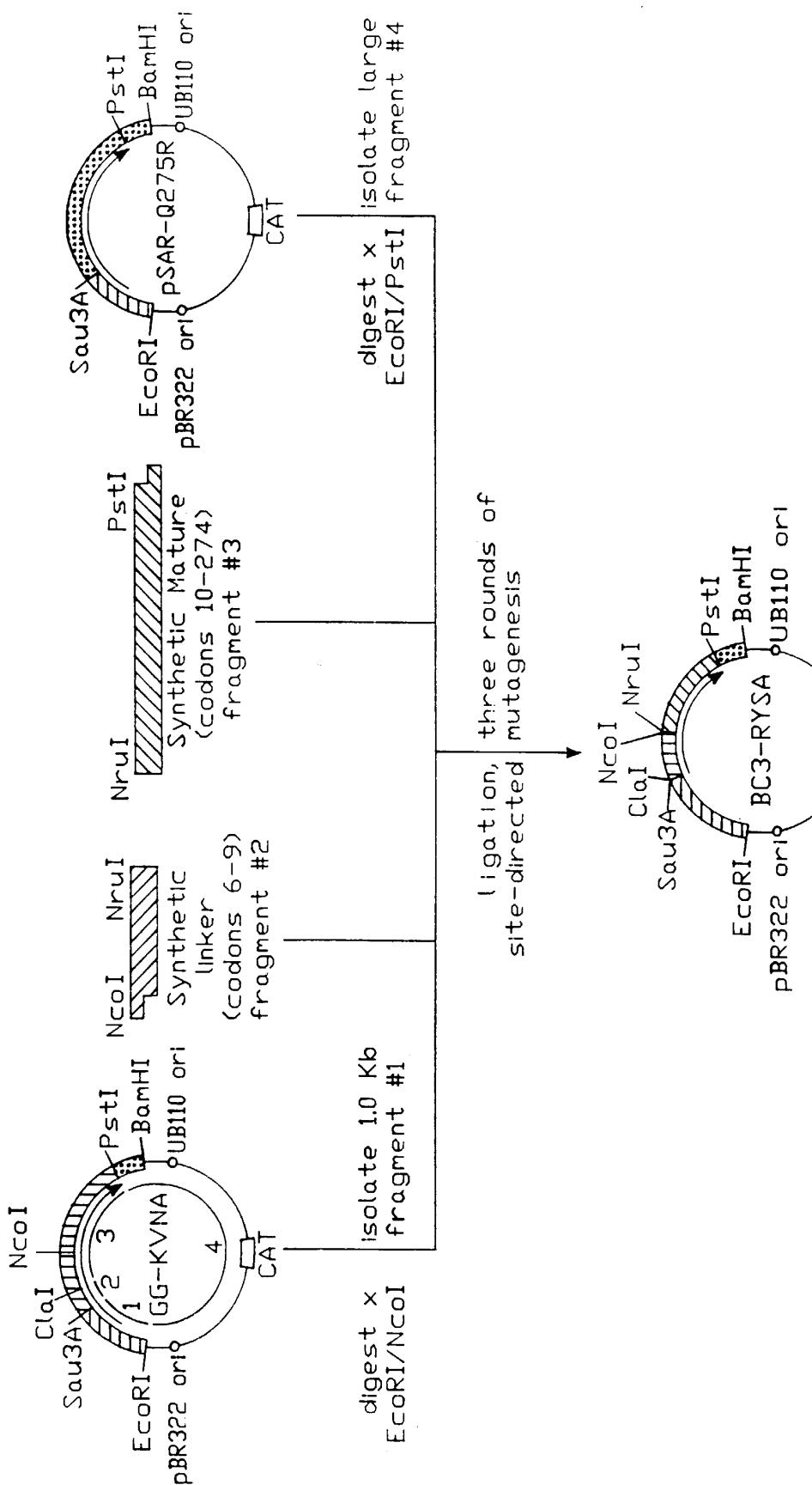



FIG.-7

FIG.-8

FIG. 6

1	GCG	CAA	TCA	GTC	CCA	TGG	GCG	ATC	TCG	CGA	GTT	CAA	GCT	CCT	GCT	CAC	AAC	CAC	GCG	
1	Ala	Gln	Ser	Val	Pro	Trp	Gly	Ile	Ser	Arg	Val	Gln	Ala	Pro	Ala	Ala	His	Asn	Arg	Gly
61	TTA	ACA	GCG	AGC	GGC	GTT	AGA	GCT	GTT	TTA	GAT	ACA	GCG	ATC	AGC	ACA	---	CAC	CCA	
21	Leu	Thr	Gly	Ser	Gly	Val	Arg	Val	Ala	Val	Leu	Asp	Thr	Gly	Ile	Ser	Thr	His	Pro	
121	GAT	CTT	AAT	ATT	AGA	GCG	GCG	AGC	TTC	GTT	CCC	GCG	GAA	---	CCG	TCG	ACA	CAA	GAT	
41	Asp	Leu	Asn	Ile	Arg	Gly	Gly	Ala	Ser	Phe	Val	Pro	Gly	Glu	-	Pro	Ser	Thr	Gln	Asp
181	GGC	AAC	GGC	CAC	GGC	ACA	CAC	GTT	GCC	GCG	ACA	ATC	GCT	GCT	TTA	AAC	AAC	TCG	ATC	GGA
61	Gly	Asn	Gly	His	Gly	Thr	His	Val	Ala	Gly	Thr	Ile	Ala	Ala	Leu	Asn	Asn	Ser	Ile	Gly
241	GTT	TTA	GGC	GTT	GCT	CCT	TCG	GCC	GAA	TAA	TAC	GCT	GTT	AAA	GTT	TTA	GGC	GCT	AGC	GAC
81	Val	Leu	Gly	Val	Ala	Pro	Ser	Ala	Glu	Leu	Tyr	Ala	Val	Lys	Val	Leu	Gly	Ala	Ser	Gly
301	AGC	GGC	AGC	TAC	AGC	TCT	ATC	GCT	CAA	GCG	CTC	GAG	TGG	GCT	GGC	AAC	AAC	GGT	AGT	CAC
101	Ser	Gly	Ser	Tyr	Ser	Ser	Ile	Ala	Gln	Gly	Leu	Glu	Trp	Ala	Gly	Asn	Asn	Gly	Met	His
361	GTT	GCT	AGC	TTA	AGC	CTC	GGG	AGC	CCT	AGC	GCT	ACA	TTA	GAA	CAA	GCT	GTT	AAC		
121	Val	Ala	Ser	Leu	Ser	Leu	Gly	Ser	Pro	Ser	Pro	Ser	Ala	Thr	Leu	Glu	Gln	Ala	Val	Asn

FIG.-10A

421	AGC	GCT	ACA	TCT	AGA	GGC	GTT	TTA	GTT	GCT	GGC	AAC	AGC	GGC	GCT	GGA	TCG			
141	Ser	Ala	Thr	Ser	Arg	Gly	Val	Leu	Val	Ala	Ser	Gly	Asn	Ser	Gly	Ala	Gly	Ser		
481	---	---	---	---	ATC	AGC	CTA	CCC	TGC	TAG	ATA	CGC	TAA	TGC	CAT	GGC	TGT	TGG		
161	-	-	-	-	Ile	Ser	tyr	Pro	Ala	Arg	Tyr	Ala	Asn	Ala	Met	Ala	Gly	Ala	Thr	
541	GAT	CAA	AAC	AAC	AAC	AGA	GCA	AGC	TTC	AGT	CAA	TAC	GGC	GCT	GGC	TTA	GAT	ATC	GTG	GCG
181	Asp	Gln	Asn	Asn	Asn	Arg	Ala	Ser	Phe	Ser	Gln	Tyr	Gly	Ala	Gly	Leu	Asp	Ile	Val	Ala
601	CCT	GGC	GTT	AAC	GTT	CAA	AGC	ACA	TAC	CCT	GGC	AGC	ACA	TAC	GCC	AGC	TTG	AAC	GGT	ACA
201	Pro	Gly	Val	Asn	Val	Gln	Ser	Thr	Tyr	Pro	Gly	Ser	Thr	Tyr	Ala	Ser	Leu	Asn	Gly	Thr
661	TCG	ATG	GCG	ACA	CCT	CAC	GTT	GCC	GGA	GCG	GCT	GCA	CTA	GTT	AAA	CAA	AAA	AAC	CCT	TCA
221	Ser	Met	Ala	Thr	Pro	His	Val	Ala	Gly	Ala	Ala	Ala	Leu	Val	Lys	Gln	Lys	Asn	Pro	Ser
721	TGG	AGC	AAC	GTT	CAA	ATC	CGC	AAC	CAC	TTA	AAA	AAC	GCA	GCT	ACT	AGC	TTA	GGC	AGT	ACT
241	Trp	Ser	Asn	Val	Gln	Ile	Arg	Asn	His	Leu	Lys	Asn	Thr	Ala	Thr	Ser	Leu	Gly	Ser	Thr
781	AAC	TTA	TAC	GGC	AGC	GGC	TTA	GTT	AAC	GCT	GAA	GCT	GCA	GCT	CGT					
261	Asn	Leu	Tyr	Gly	Ser	Gly	Leu	Val	Asn	Ala	Glu	Ala	Ala	Ala	Arg					

FIG.-10B