BACKGROUND OF THE INVENITON
Field of the Invention
[0001] The present invention relates to an ink jet recording apparatus, and more particularly
to an ink jet recording apparatus having a suction recovery device.
Related Background Art
[0002] Conventionally, the recording apparatus for recording onto a recording medium such
as a paper or OHP sheet (thereafter referred to as a recording sheet or simply as
a paper) has been proposed in the form in which the recording head is mounted in accordance
with any of various recording methods. The recording head is one in accordance with
any of wire-dot, thermal, thermal imprint and ink jet recording methods.
[0003] Particularly, the ink jet recording method is one in which the ink is directly discharged
onto a recording sheet, and has been noted by virtue of its inexpensive running cost
and quiet recording method.
[0004] In a recording apparatus with such ink jet recording method, when some air bubbles
or dusts have entered inwardly into discharge ports, or thickened ink inappropriate
for discharging or recording has occurred owing to the evaporation of ink solvent,
the processing (suction recovery processing) for removing improper discharge factors
must be performed by refreshing the ink with the suction recovery device because the
recording head has generality fine discharge ports arranged.
[0005] One form of such suction recovery means is provided with a cap for covering a discharge
port formation face of recording head and a pump for exerting the suction force to
the cap in communication therewith. Removal of improper discharge factors is accomplished
in such a way of discharging ink by driving energy generation elements for discharging
ink which are located inwardly of discharge ports, with the cap being opposed to the
discharge port formation face, or forcedly discharging ink by suction through the
discharge ports with the exertion of suction force, with the discharge port formation
face being covered by the cap.
[0006] The present invention is to find out and resolve new technical problems in the aforementioned
suction recovery device.
[0007] In order to perform the suction recovery processing smoothly, received ink within
cap must be sucked smoothly into the waste ink tank. In this case, such a situation
must not arise that received ink within cap remains without being sucked, or sucked
ink leaks out of the equalizing mechanism for providing a stable contact between cap
and discharge port face.
[0008] However, if the cap constitution is inadequate, received ink can not be exhausted
completely from the cap, but may remain therein. That is, whereas such an exhaust
processing is performed in such a manner that the cap is separated away from the recording
head, and received ink is sucked through the suction port with the cap inner space
opening to the atmosphere, if received ink is not adequately guided into the suction
port, the air is only sucked recklessly.
[0009] Residual ink within the cap is apparently undesirable because it may leak out into
the interior of apparatus for some reason, or stiffen within the cap to degrade the
performance of cap remarkably.
[0010] Also, the equalizing mechanism had following problems. A constitution in which the
cap member made of at least an elastic body is contacted with or directly supported
by the support member was used excellently during early service period, because an
ink exhaust passge of elastic cap member and an ink guide passage of support member
are communicated each other. However, in a process for confirming the product reliability,
observation of product condition indicated that a slight amount of ink leakage had
occurred in the contact area as above described. This occurred even though sufficient
measures had been considered in the design stage. The inventors found a following
problem in pursuing that cause. That is, with a constitution in which the cap member
is supported and equalized for the discharge port formation face of recording head
so that a contact portion of the cap member is brought into stable contact with the
discharge port formation face without gap, the face accuracy of cap with the discharge
port formation face was sometimes decrease so that contact could be made rather unstably.
SUMMARY OF THE INVENTION
[0011] An object of the present invention is, in view of aforementioned conventional technical
problems, to resolve those problems, and thus to provide a reliable ink jet recording
apparatus with a suction recovery device for sucking waste ink smoothly.
[0012] A further object of the present invention is to provide a suction recovery device
and an ink jet recording apparatus with said device, having support means for supporting
a cap member which can provide securely both the cap face accuracy and the equalization
ability for a discharge port formation face.
[0013] A further object of the present invention is to provide a suction recovery device
and an ink jet recording apparatus with said device in which a cap member is adequately
constructed so that received ink may not remain within cap.
[0014] Another object of the present invention is to provide a suction recovery device and
an ink jet recording apparatus with said device in which in will not remain within
a cap in whatever attitude the cap or apparatus is used.
[0015] Another object of the present invention is to provide a suction recovery device and
an ink jet recording apparatus with said device in which waste ink produced during
the recovery operation or received within suction recovery device in said operation
can be surely introduced into a waste ink tank.
[0016] Another object of the present invention is to provide a suction recovery device and
an ink jet recording apparatus with said device having a cap constitution in which
ink within cap can be all removed surely after the suction recovery operation, and
contamination on discharge port face due to residual ink or dusts such as paper dust
accumulated within cap can be eliminated.
[0017] Another object of the present invention is to provide an ink jet recording apparatus
comprising a cap which can contact with/separate from a face formed with discharge
ports of recording head having discharge ports for recording by discharging the ink,
and a suction system for performing the suction processing through said discharge
ports via said cap, wherein an ink communication member for communicating to said
suction system of said cap is formed of an elastic member integrally therewith.
[0018] Another object of the present invnetion is to provide an ink jet recording apparatus
comprising a cap which can contact with/separate from a face formed with discharge
ports of recording head having discharge ports for recording by discharging the ink,
and a suction system for performing the suction processing through said discharge
ports via said cap, wherein said cap has a channel portion for guiding ink associated
with a suction port provided on its inner wall face to perform said suction.
[0019] Another object of the present invention is to provide an ink jet recording apparatus
comprising a suction pump capable of making the ink discharge condition more excellent
by sucking the ink through discharge ports of recording head for recording by discharging
ink through said discharge ports, wherein said suction pump has a cylinder and a piston
reciprocating within said cylinder, and having disposed absorbing member on an ink
exhaust portion within said cylinder.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] Fig. 1 is an external perspective view showing one example of an ink jet recording
apparatus according to the present invention.
[0021] Fig. 2 is a perspective view showing a main portion of the apparatus as shown in
Fig. 1, with a cover removed.
[0022] Fig. 3A is a perspective view mainly showing a paper exhaust system of the apparatus
as shown in Fig. 1.
[0023] Fig. 3B is a side view of the apparatus as shown in Fig. 3A.
[0024] Figs. 4A and 4B are side views showing one example of a recording head corresponding
to recording sheets, respectively.
[0025] Figs. 5A and 5B are rear views showing one example of a recording head at a home
position in correspondence with recording sheets, respectively.
[0026] Fig. 6 is a partly broken perspective view showing one example of the engagement
state of a base having mounted a recovery mechanism with a chassis.
[0027] Figs. 7A-7C are partial perspective views showing one example of a blade and an ink
carrier unit for recording head.
[0028] Figs. 8A and 8B are an exploded perspective view showing one example of a recovery
system for recording head and a cross-sectional view of a cap unit and its peripheral
portion, respectively.
[0029] Figs. 8C and 8D are an upper view and a side view showing the equalizing state of
cap, respectively.
[0030] Fig. 9 is a cross-sectional view of a suction pump and its peripheral portion in
a suction circuit system according to the present invention.
[0031] Fig. 10 is a timing chart showing the operation timing of each portion according
to the present invention.
[0032] Fig. 11 is a perspective view showing one example of a clutch mechanism for transmitting
the driving force to recovery system.
[0033] Figs. 12A-12C are side views showing the engagement state of a clutch gear and a
hook with a timing gear in the clutch mechanism as shown in Fig. 11.
[0034] Figs. 13A and 13B are front views similar to Fig. 12.
[0035] Figs. 14A-14D are side views for explaining sequential operations of a blade and
an ink carrier unit.
[0036] Figs. 15A-15C are side views for explaining sequential operations of a cap unit.
[0037] Figs. 16A and 16B are side cross-sectional views for explaining the operation of
a pump for performing the suction recovery.
[0038] Fig. 17 is a timing chart for explaining the sequence during predischarge and suction
recovery according to the present invention.
[0039] Figs. 18A and 18B are side views showing one example of a pressing mechanism for
paper presser plate.
[0040] Fig. 19 is a perspective view shoing one example of a supporting state for spur in
a paper exhaust system.
[0041] Fig. 20 is a front view showing one example of a paper exhaust roller.
[0042] Fig. 21 is a perspective view showing another embodiment of the service condition
for the apparatus according to the example of the present invention.
[0043] Fig. 22 is a side cross-sectional view of the state as shown in Fig. 21.
[0044] Fig. 23A and 23B are a cross-sectional view and a perspective view showing one example
of constitution for grounding a paper feed roller.
[0045] Figs. 24A and 24B are perspective views for explaining the ink residual state taking
place in a cap according to a conventional constitution.
[0046] Fig. 24C is an explanation view for the effects in using a cap according to an example
of the present invention.
[0047] Fig. 25 is a typical longitudinal cross-sectional view showing one example of another
conventional head cap.
[0048] Fig. 26 is a typical longitudinal cross-sectional view showing a further constitutional
example of conventional head cap.
[0049] Fig. 27 is a typical perspective view showing one example of a head cap according
to the present invention.
[0050] Fig. 28 is a longitudinal cross-sectional view as shown in Fig. 27.
[0051] Fig. 29 is a typical longitudinal cross-sectional view showing an ink exhaust state
within a head cap as shown in Fig. 27.
[0052] Fig. 30 is a typical longitudinal cross-sectional view corresponding to Fig. 29 when
the ink is discharged downward with the attitude of apparatus changed.
[0053] Fig. 31 is a typical perspective view showing another example of a head cap according
to the present invention.
[0054] Figs. 32A-32C are cross-sectional views showing other three examples of a pump in
a suction circuit system.
[0055] Fig. 33 is a typical perspective view showing another example of an ink jet recording
apparatus according to the present invention.
[0056] Fig. 34 is an external perspective view showing a vertical service condition of the
ink jet recording as shown in Fig. 25.
[0057] Fig. 35 is an external perspective view showing a horizontal service condition of
the ink jet recording apparatus as shown in Fig. 34.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0058] An example of the present invention will be described in detail with reference to
the drawings.
[0059] Fig. 1 is an external perspective view of an ink jet recording apparatus in accordance
with one example of the present invention, Fig. 2 is a perspective view of the main
portion of apparatus as shown in Fig. 1, with a case removed, and Figs. 3A and 3B
are views mainly showing a paper exhaust system of apparatus as shown in Fig. 1.
[0060] In Fig. 1, 100 is an ink jet recording apparatus, in which the apparatus 100 is placed
as shown in the same figure, or vertically placed as will be described later, during
use, and is of a comparatively small size.
[0061] 101 is an apparatus housing, 102 is an outer cover, and 103 is an inner cover; when
not used, the outer cover 102 is overlapped on the inner cover 103 so that the apparatus
100 is made compact. Thereby, an user can transport the recording apparatus, for example,
by containing it in a special bag.
[0062] The outer cover 102 can be also used as a paper feed guide for a recording sheet
40 as shown in the figure, in which 106 as indicated in the figure becomes a paper
feed opening. Further, the outer cover 102 is also used as a paper exhaust tray as
will be described later.
[0063] In either of the above cases, 107 as indicated in the figure becomes a paper exhaust
opening.
[0064] 105 is a position fixing hook for upper cover 102, and 104 is the operation key and
display section.
[0065] Next, the constitution of essential parts for the apparatus will be described with
reference to Fig. 2.
[0066] In Fig. 2, 1 is a chassis, backward of which are stood a left-hand plate 1a and a
right-hand plate 1b which also serve as the guide for a recording medium such as a
paper. The chassis 1 is provided with a motor mounting hole for rotatably supporting
a carrier motor as will be described, but not shown.
[0067] 1h is a lead arm for rotatably supporting a lead screw as will be described in the
axial and radial directions, and supported in a bearing portion (not shown).
[0068] 2 is the lead screw which is formed with a lead groove 2a at a predetermined pitch,
corresponding to a range of recording. On a carrier home position side of the lead
screw 2A, a position groove 3b for setting the position of capping and discharge recovery
is formed around the periphery of cross section perpendicular to a screw axis. The
lead groove 2a and the position groove 3b are smoothly continued via an introduction
groove 3c.
[0069] A shank 2g is provided on a right end portion of the lead screw 2, and a shank is
also provided on its left end portion, in which the shanks are fitted into bearing
portions provided on a front side plate 1c and the lead arm 1b, respectively, and
rotatably supported therein. 3 is a lead pulley provided on the shaft of lead screw
2 and including the grooves 3b, 3c as above described, on an end portion of which
is provided a pulley 3a. And the driving force is transmitted to the pulley 3a via
a timing belt 13 from motor 11.
[0070] The shank 2g on right end portion of lead screw 2 engages slidably into a lateral
slot of guide plate 1c connecting with a right side plate 1b of chassis and the chassis
1, and biased in a thrust direction by a presser portion 10a of leaf spring 10, and
further engages into a cam groove of cam groove plate 50a rotatably supported in an
axle provided on the guide plate 1c. Around the periphery of cam groove plate 50a,
mating teeth are formed, in which its engagement with a ratchet pawl 10c of leaf spring
10 allows the cam groove plate 50a to be stopped at a predetermined position. As a
result, the shank 2g engaging into the cam groove has its position fixed with respect
to the lateral slot of guide plate 1c, and therefore, the position on the right end
portion of the apparatus. This construction is used for the adjustment of recording
head and platen as will be described later.
[0071] 4 is a clutch gear supported slidably in the axial direction to the lead pulley 3,
and engaged by a key provided on the lead pulley 3, as will be described, in the rotational
direction, so as to transmit the rotation force of lead screw 2. 5 is a clutch spring,
which is a compression spring urging the clutch gear 4 in the direction of lead groove.
Note that member for restraining the clutch gear 4 within a predetermined range in
the axial direction is formed between the clutch gear 4 and the lead pulley 3.
[0072] 6 is a carrier slidingly mounted on the lead screw 2. 6a is a presser portion for
pressing an end face of the clutch gear 4 and formed integrally on a left side of
carrier. 7 is a lead pin engaging the lead groove 2a of lead screw 2 and guided in
a guide hole (not shown) of carrier 6 with respect to the direction of pressing. 8
is a lead pin spring with its one end attached to the carrier 6, and the other end
pressing on the lead pin 7.
[0073] 9 is a recording head mounted on the carrier 6, in this example, in the form of a
cartridge type made detachable by integrating a head element 9a for discharging ink
and an ink tank 9b which is an ink supply source, i.e., a disposable type which is
exchangeable when ink is used up. As discharge energy generation elements for acting
the discharge energy onto the ink disposed in the head element 9a, electricity-heat
or electromechanical converters are used, and preferably, the former is used because
higher density packaging is possible and manufacturing process is simple.
[0074] 6c is a hook secured to one portion of carrier 6 and used to stop stably in place
such as a capping position of recording head 9 during the movement of carrier 6, as
will be described later.
[0075] 51 is a carrier guide shaft slidably engaged by a guide pin 6b provided on a rear
end portion of carrier 6. The guide shaft 51 has an eccentric shaft 51a, as will be
described later, which is rotatably carried by side plates 51b, 51c provided on end
portions of chassis 1. Further, the end portion of shaft 51a carried by side plate
51c is fixed to a positioning knob 51d, and the engagement of projection on the knob
51d into a hole 51e on side plate 51c permits the rotation position.
[0076] As shown in Figs. 4A and 4B, the above constitution is intended to make appropriate
the clearance between a recording plane of recording sheet 40 and discharge ports
of head element 9a. That is, by rotating the knob 51d manually, the shaft 51 can be
fixed to a position where the distance between the shaft 51a and the pin 6b is minimum,
as shown in Fig. 4A, or a position where that distance is maximum, as shown in Fig.
4B. Correspondingly, the recording head 9 is rotated around a rotation axis of lead
screw 2, and fixed to a position (Fig. 4A) corresponding to plain paper in which recording
sheet 40 is comparatively thin, or a position (Fig. 4B) spaced in large clearance
corresponding to comparatively thick recording sheet such as an envelope.
[0077] However, the above constitution is one corresponding to recording sheet during recording.
That is, in the suction recovery processing, the recording head 9 is moved to a position
for recovery processing as shown to the left in Fig. 2. At this time, the recording
head 9 and the recovery system must be always placed in a predetermined positional
relation. Accordingly, during the suction recovery processing, the recovery head 9
is required to take a predetermined position, irrespective of the position as shown
in Fig. 4A or 4B. Such a constitution is shown in Figs. 5A and 5B.
[0078] Figs. 5A and 5B show views corresponding to those of Figs. 4A and 4B, respectively.
[0079] In Fig. 5A, the shaft 51a and the pin 6b are engageable without changing the height
of engagement position of the shaft 51 with the pin 6b. At this time, in order to
maintain the height of its engagement position, a parallel plane of trapezoidal cam
51g is caused to engage the pin 6b.
[0080] In Fig. 5B, when the recording head 9 moves and the pin 6b engages the shaft 51a,
the height of engagement position of the pin 6b changes. Therefore, the shaft 51 is
provided with a taper portion 51f, and correspondingly, the trapezoidal cam 51g is
provided with a taper surface. Thereby, the height of engagement position of the pin
6b with the shaft 51 (taper portion 51f, shaft 51a) is changed, and then maintained.
[0081] With the above constitution, when the recording head 9 reaches the position of suction
recovery system, a predetermined height, accordingly, a predetermined position relation
with the recovery system can be always maintained.
[0082] Note that the rotation fixed position of recording head 9 is not limited to two positions
as above mentioned, but may take fixed intermediate position to cope with recording
sheet of various thicknesses. In this case, engageable positions between the projection
of knob 51d and the hole 51e of side plate 51c are needed to increase.
[0083] The rotation of knob 51d is not limited to manual operation, but the knob 51d may
be rotated using the driving force of a paper feed motor or the like, in accordance
with the key input corresponding to recording sheet for use, for example.
[0084] Referring to Fig. 2 again, 11 is a carrier motor consisting of a pulse motor, for
example, on front and rear faces of which rotation pins 11a (that on rear side is
not shown) are provided in lower portions in alignment therewith, and fitted for free
rotation into motor mounting holes provided on a recovery system base 50 movable on
the chassis 1. It is of course sufficient that the rotation pins are provided on the
recovery system base 50 and the mounting holes are provided on the motor. And the
carrier motor 11 is mounted for rotation around the rotation pins 11a. 11b is a spring
shoe formed integrally with the carrier motor 11, and stood parallel to motor shaft
for receiving a motor spring as will be described later. And the spring shoe is formed
with a cylindrical projection to which an end portion of coiled motor spring 14 is
fixed.
[0085] 12 is a motor pulley secured on the motor shaft of carrier motor 11. 13 is a timing
belt 13 extended under tension between the motor pulley 12 and the lead pulley 3a
provided on the shaft of lead screw 2. The motor spring 14 is a compression spring
in the constitution of this example, which is attached between one end of lead arm
1h and the spring shoe 11b of carrier motor 11, thereby urging the carrier motor 11
in the direction of arrow A as indicated in the figure, and giving a tensile force
to the timing belt 13.
[0086] 15 is a set shaft to which means for cleaning discharge port face stood on a side
plate, not shown, fixed to the base 50, the cap and a so-called recovery mechanism
involved in the suction recovery are mounted.
[0087] By the way, as previously described, the positional relation between the recovery
mechanism and the recovery head 9 is important. For example, in order to exhibit excellently
the feature of blade wiping over the discharge port face of recording head 9, the
positional relation, the positional relation with respect to the discharge port face
is important, and the spacing between the cap and the discharge port face is important
to make excellent the capping function of discharge port face. Accordingly, the positional
relation between the recovery mechanism and the recording head 9 is desirably maintained
constant at all times.
[0088] On the other hand, the recording head 9 performs the recording while moving along
the lead screw 2 by transmitting its driving force via the lead screw 2. At this time,
it is clear that the distance between recording sheet 40 and the discharge ports of
recording head 9 is desirably equal in any position of movement. Accordingly, an adjustment
mechanism for adjusting the distance of the recording head 9 to recording sheet can
be provided to let the recording head to move parallel to recording sheet, but this
adjustment may destroy a certain positional relation with respect to the recovery
system as above described.
[0089] Thus, in this example, the recovery system base 50 on which the carrier motor 11
and recovery mechanism as will be described are provided is made movable with respect
to the chassis 1. The position of lead screw 2 can be adjusted on both end portions
using the movement of the base 50 and the adjustment of cam groove plate 50a as previously
described, so that the recording head 9 can move parallel to recording sheet 40. The
detail of mechanism in the base 50 for such purpose is shown in Fig. 6.
[0090] Fig. 6 is a perspective view, partially broken away, of recovery system base 50 looked
from the direction opposite to that of Fig. 2.
[0091] In the figure, 50e is a guide groove member fixed to a side face of groove provided
on a back side of the base 50, wherein the engagement of a groove of the member 50e
with a guide portion of hook-type guide member 1k can restrain the moving direction
of the base 50, and prevent the lifting of base 50 from the chassis 1.
[0092] In the above mechanism, by rotating a cam plate 50b around an axis 50d attached to
the base 50, its cam face is contacted with either of faces of cam groove 11 in the
chassis 1, and pressed thereto, as shown in detail in Fig. 2. Then, the base 50 moves
in a direction guided by the member 50e and member 1k due to a reaction against the
pressing force.
[0093] Note that the above cam can be constituted such that the cam plate is rotated around
a predetermined shaft by operating the shaft engageable with a predetermined cam groove
formed on the cam plate.
[0094] Along with this movement, the carrier motor 11 and the driving system for driving
the motor 11, i.e., timing belt 13, pulley 3, 12, lead screw 2, and the recovery mechanism
mounted on the base 50 move so as to adjust the one end position of lead screw 2.
[0095] On the other hand, the position adjustment for other end of lead screw 2 is performed
by rotating the cam groove plate 50a.
[0096] With the above adjustment, the lead screw 2 can be made parallel to recording sheet,
and accordingly, the recording head can move parallel to recording sheet.
[0097] Note that this adjustment is carried out by assembler robot in a manufacturing process
for recording apparatus, whereas this adjustment can be made in the user side, for
example, in the repair after long-term service of apparatus.
[0098] Next, means for making excellent the discharge port formation face which is one of
the recovery mechanisms will be described with reference to Fig. 2 and Figs. 7A-7C.
[0099] 16 is a blade lever (see Fig. 7A), a boss portion 16a of which is rotatably mounted
on a set shaft 15. 16b is an arm portion and 16c is a hook portion. 17 is a blade
for wiping over the discharge port formation face, and formed of an elastic member
such as silicone rubber or chloroprene (CR) rubber. 18 is a blade shaft for clamping
the blade 17 on central portion parallel to the rotation axis, and rotatably attached
to the blade lever 16. 18a is a rotation tab integrally formed with the blade shaft
18. 19 is an ink carrier formed of hydrophilic porous material (plastic sintered body,
urethane foams) and secured to the blade lever 16. Note that the blade 17 and the
ink carrier 19 are disposed at places where they are overlapped by cap as will be
described later.
[0100] 20 is a set lever rotatably mounted on the set shaft 15. 20a, 20b are stop teeth
provided on the set lever 20, 20c is a start tooth, and 20d is a rotation tooth, the
tooth thickness of start tooth 20c being about one half that of other teeth. 20e is
an arm portion, including a set plane 20f and a reset plane 20g formed by cutting
away its part in a direction of plate thickness, to which the rotation tab 18a of
the blade shaft 18 mounted on the blade lever 16 is fitted for the driving.
[0101] 21 is a timing gear rotatably mounted on the base 50 by a support member, not shown.
[0102] The timing gear 21 is formed with a stop cam 21a for engaging the stop teeth 20a,
20b of set lever 20 on a part of its external periphery, as shown in Fig. 7B. Also,
three types of driving teeth 21b₁, 21b₂, 21b₃, partially omitted, are formed, and
further, a cap cam 21c for swinging cap lever as will be described later is formed.
In addition, a piston set cam 21f for pressing a piston of pump as will be described
later is formed as a face cam, and a piston reset cam 21g is integrally formed corresponding
to the piston set cam 21f and spaced by a predetermined distance.
[0103] 22 is an ink absorbing spring fixed to a predetermined position of base 50, and having
an absorbing member holding portion 22a and a spring portion 22b for rotating the
pump as will be described later, as shown in Fig. 7C. 23 is an ink absorbing member
formed of a hydrophilic porous material like the ink carrier 19 as previously described.
The ink absorbing member 23 is formed with a wipe-over portion 23a with which the
blade 17 as previously described is brought into contact, and an absorbing face 23b
contacted by the ink carrier 19 to pass and receive ink in a lower portion thereof.
Note that the absorbing member holding portion of ink absorbing member spring 22 is
urged upward with a slight elasticity, and stopped at a predetermined position by
a stopper, not shown. Therefore, when the ink carrier 19 as previously mentioned is
contacted, the ink absorbing member 23 is displaced downward by the flexing of ink
absorbing member spring 22 so as to secure the contact state.
[0104] Next, a recovery unit, which is one of the recovery mechanisms, will be described
mainly with reference to Figs. 8 and 9.
[0105] In Figs. 8A, 8B and 9, 24 is a cylinder having a cylindrical cylinder section 24a,
a piston absorbing member 241 as will described later, and a cylinder flow passage
24b for carrying a flow passage absorbing member 242, wherein a portion into which
the flow passage absorbing member 242 as will be described is fitted has partially
formed a projection 24c extending in the axial direction so as to provide a void in
the axial direction between an external periphery of flow passage absorbing member
and a bore of cylinder flow passage. 24d is a cap lever carrier formed to be fitted
thereinto by a lever seal, as will be described. 24e is an ink flow passage which
opens at a predetermined position within the cylinder 24a. 24f is a rotation lever
formed integrally with the cylinder 24, and having the rotation force applied by a
spring portion 22b of ink absorbing member spring 22 as previously described. Note
that an extension spring may be also used to apply the rotation force.
[0106] 241 is an absorbing member provided on an ink exhaust portion within the cylinder
on the right hand of piston as shown in Fig. 9, wherein it is formed of a hydrophilic
porous material (sintered compact from fine grains of polyolefine, or urethane foams)
and fitted into the cylinder flow passage 24b of cylinder 24 as previously described.
This piston absorbing member 241 may be secured to the cylinder 24, or conversely,
fitted loosely with a play. The piston absorbing member 241 is formed with a substantially
conical opening portion 241a slightly larger than an edge contour of piston shaft
as will be described, a support portion 241b fitted into the cylinder flow passage
24b as previously described, and an air bleed 241c.
[0107] 242 is a flow passage absorbing member fitted into the cylinder flow passage 24b
as previously described, wherein the total length is set so that its one end is in
contact with an end face of piston absorbing member 241, and the other end projects
by a slight amount from an edge of the cylinder 24 to come into contact with a waste
ink absorbing member as will be described. The flow passage absorbing member 242 is
formed of a porous material containing communication pores with the elasticity such
as melamine or urethane foam.
[0108] 25 is a cylinder cap secured to an end portion of cylinder 24 with a press fitting
or adhesive. 25a is a lever guide disposed at a position opposed to the cap lever
carrier 24d of cylinder 24 as previously described. 26 is a piston seal fitted into
cylinder 241, wherein its inner diameter is made slightly smaller to obtain a predetermined
pressure welding force with the piston shaft as will be described. Also, lubrication
coating may be applied on its surface to reduce the sliding force of piston shaft
27.
[0109] 27 is piston shaft, which is formed with an operation shaft 27a, a piston presser
27b, a piston carrier 27c, a connecting shaft 27d, and a channel 27f serving as an
ink flow passage along the connecting shaft 27d. 27g is a rotation stop formed as
a groove in the operation shaft 27a. And a bearing portion 27h is provided on an end
face of operation shaft 27a.
[0110] 28 is piston, formed in a cylindrical shape and larger by a predetermined amount
than an inner diameter of the cylinder 24, using a rubber such as NBR or CR, wherein
it is adequately compressed when inserted into the cylinder 24. A surface where an
external circumferential surface and a piston presser 27b for piston shaft 27 are
in contact is desirably made smooth, but may be provided with one or more ribs to
secure the sealing property. The total length of piston 28 is formed shorter by a
predetermined amount than the connecting shaft 27d of piston shaft 27, so as to yield
a slight amount of play in the axial direction.
[0111] 42 is a pump chamber. 29 is a piston presser roller rotatably mounted on an end portion
of piston shaft 27. 30 is a piston return roller, which is also rotatably mounted
on the end portion of the piston shaft 27.
[0112] 32 is a cap lever formed with a rotation shaft 32a, an ink guide 32b and a lever
guide 32c. And on its top portion, a cylindrical portion 32d inserted into a tube
portion of cap as will be described is provided, with an hole for ink flow passage
formed centrally therein, and a convex spherical guide face 32e which is brought into
contact with a spherical recess of cap holder as will be described is formed on its
front face. Further, on its side face, a partially cylindrical horizontal stop face
32f and a vertical stop face 32g which is substantially semicircular step portion
are provided in a pair with opposed side face.
[0113] The ink flow passage 32f is formed to pass from the cylindrical portion 32d as previously
described through the inside of the lever 32, bent at right angles midway, passing
through a center of the ink guide 32b, and open to its end face.
[0114] 33 is a lever seal into which the ink guide 32b is fitted and which is fitted under
pressure into the cap lever carrier 24d. 33a is a communication aperture which communicates
a notch 32i of the ink guide 32b with an ink flow passage 24e.
[0115] 34 is a cap holder provided with a hook 34a engageable with the horizontal stop face
32f and the vertical stop face 32g of cap lever 32 on opposed positions. Also, a holder
guide portion 34b having a spherical recess to make contact with the guide face 32e
of cap lever 32 is formed. 34c is an opening portion for mounting cap as will be described.
[0116] 35 is a cap on the lower portion of which is provided a seal face 35a, a slit-shaped
channel 35b (thereafter called as a slit) for collecting residual ink within the cap,
and a suction port 35c for sucking, and on its back portion is formed a tube portion
35d having internal ink passage. Note that in this example, the slit 35b is provided
substantially over the entire length of area in the upward and downward directions
on a central portion in inner wall of cap, and the suction port 35c is formed elliptically
in the same width as the slit width. On the inner wall face provided with the slit,
a taper face is formed in a portion ranging from a boundary with a side wall portion
where the seal face 35a is provided to the slit 35b. However, as long as received
ink can be collected well, any number of slits or any shape can be taken. For example,
the slit may be formed radially from the suction port. Also, the suction port does
not need reside within the slit.
[0117] 35e is a flange portion which serves as a stop member when attached to the cap holder
34. The tube portion 35d is inserted into the cylindrical portion 32d of cap lever
32 as previously described. Note that if the cap 35 housed in the cap holder 34 is
attached to the cap lever 32, it is communicated to the ink flow passage 32h of cap
lever 32 via the tube portion 35d, wherein the cap holder 34 serves as an equalizer
through the holder guide portion 34b, and the hook portion 34a engages the vertical
engagement face 32g of cap lever 32 to serve as a stop. Note that when the cap equalizes
the head discharge port formation face, the equalization can be performed smoothly
with the deformation of tube portion 35d or the relative movement of the cap lever
32 with respect to the cylindrical portion 32d.
[0118] Figs. 8C and 8D are views showing the equalization from the above and the side of
cap 35.
[0119] Note that in this example, the tube portion 35d which is an ink communication portion
of cap has the elasticity, while the cylindrical portion 32d which is an ink communicating
portion of cap lever is formed of a material considered as the rigid body compared
with the elasticity of the tube portion 35d. Accordingly, the holding accuracy of
cap 35 against the head discharge port formation face, i.e., the face accuracy of
cap 35 against the head discharge port formation face can be secured by the cylindrical
portion 32 of cap lever, and the equalization of cap 35 against the head discharge
port formation face during the capping is permitted by the deformation of the tube
portion 35d.
[0120] On the contrary, when the communication portion of both the cap and cap lever is
made of an elastic member, it is necessary to take into consideration the elasticity
of the communication portion to satisfy sufficiently both the holding property and
equalization, so that the selection of material is inconveniently limited on the design.
On the other hand, when the cap communication portion is made of a rigid body, and
the cap lever communication portion is made of an elastic material, the cap communication
portion and the cap body are separate members, so that it is inconvenient to manufacture
the cap as it is constructed by coupling them, and a problem may arise in respect
of the holding accuracy as the lever communication portion for holding the cap and
exerting the capping force on the cap has the elasticity.
[0121] Further, in this example, the holding accuracy and equalization are made more excellent
in connection with the constitution of cap holder 34 and cap lever 32. This is because
with a spherical recess of holder guide portion 34b and a convex spherical guide face
32e of lever 32 being in contact, when the cap 35 comes into contact with the discharge
port formation face, the holder 34 and the cap 35 are displaced along a sphere, and
the hook portion 34a of holder 34 and vertical and horizontal stop faces 32g, 32f
of lever 32 permits the displacement along the sphere as above mentioned, while serving
as stops. When the stopper feature is only given to the mounting portion holder lever,
it is apprehended that the face accuracy of cap on the discharge port face becomes
improper owing to the dimension precision or aging of the mounting portion (especially,
further worse when the lubricant is applied to the above-mentioned spherical contact
face in view of the equalization), and the equalization becomes incomplete, but in
this example, such an disadvantage will not occur.
[0122] Referring now to Fig. 2 again, 36 is a paper feed roller for conveying a recording
medium such as a paper, which is formed by applying an elastic coating (e.g., urethane
or acrylic resin) on a surface of aluminum drawn tube, for example. Also, this roller
36 has its interior as a reservoir of waste ink, as well as serving as the platen
for restraining the record surface of recording medium on its external face. 37 is
a waste ink absorbing member provided within the roller 36, which is made by filling
an absorbing material of polyester cotton or the like into a thin tube formed of a
plastic such as vinyl chloride so as to have better ink absorbency in the axial direction.
Note that waste ink tube 24g of the cylinder 24 is inserted into the waste ink absorbing
member 37 and fixed therein, because the movement of base 50 causes the recovery mechanism
to move. The fiber itself of absorbing material is preferably a liquid non-absorbing
material such as a resin or metal, but may be slightly absorbent for liquid.
[0123] Here, while the paper feed roller 36 is charged with the static electricity generated
by the friction with paper, to prevent the discharge from breaking circuit devices,
a method of grounding the paper feed roller 36 (thereafter referred to as a PF roller)
via a chassis (made of metal) of printer will be described with reference to Figs.
23A and 23B.
[0124] In Figs. 23A and 23B, 361 is a PF roller cap with a gear 361a and a shaft 361b integrally
formed of a plastic material, fitted under pressure into the PF roller 36 made of
aluminum, and secured therein by means of a caulking or adhesive. 361c is stopper,
wherein more than one stopper are provided on inner periphery so that waste ink absorbing
member 37 will not move from a predetermined position to the PF roller cap 361, and
formed integrally with the PF roller cap 361.
[0125] Moreover, the PF roller cap 361 is formed with two bores 361d for mounting a PF roller
ground member (PF roller earth) as will be described, on an intermediate portion of
which a projecting portion 361e is formed by projecting a predetermined amount from
an end portion of shaft 361b. 361f is a hole for opening to the atmosphere to promote
the evaporation from the waste ink absorbing member 37. 362 is a PF roller earth formed
of a metallic wire with the elasticity such as SUS, with its U-shape portion 362a
inserted into the hole 361d of PF roller cap 361 as above described, in which a predetermined
flexed portion is provided midway so that its tip portion comes into contact with
an inner face of PF roller 36 at a predetermined pressure.
[0126] Note that the projection portion 361e of PF roller cap 361 is provided to fix the
PF roller earth 362 at a projecting position so that a thrust pressing portion 10b
of leaf spring 10 as previously described and the PF roller earth 362 are easily placed
into contact.
[0127] 38 is a paper presser plate made of a fluorocarbon resin or carbon fiber blended
material, and mounted on the chassis 1 by being divided into four sections, as detailed
in Fig. 3. A gear 38B is fixed at one end of shaft 38A for releasing the pressing
force of paper pressing plate 38, its other end engaging a bearing 38C for supporting
the shaft 38A therein. The bearing 38C is fixed to the chassis 1. Note that the gear
38B is mated with a gear portion of release lever, not shown. 39 is a paper feed motor
connecting to the paper feed roller 36 via reduction gear with a predetermined gear
ratio.
[0128] 40m is a recording sheet such as a paper or film.
[0129] Next, the operation in connection with the above constitution will be described.
[0130] First, in normal recording operation, as the rotation of shaft of carrier motor 11
causes the lead screw 2 to be rotated via the timing belt 13, the carrier 6 is moved
for the scan in the printing direction along the recording sheet 40 with the lead
pin 7 engaging the lead groove 2a. Here, as the carrier motor 11 is urged by the motor
spring 14, the timing belt 13 is tensioned at all times to enable the suitable transmission.
[0131] In moving the carrier 6, though inertial force is exerted at the starting or stopping,
the load applied on the motor spring 14 may be smaller because the weight of carrier
motor 11 absorbs that inertial force, and thereby the load for motor rotation may
be also smaller. If an air or hydraulic damper is provided in connection with this
spring, noise owing to the vibration of rotor of motor 11 in starting or stopping
the carrier 6 can be reduced. The overshoot of rotor can be reduced by appropriately
selecting the weights of motor and carrier, and the damping coefficient of motor spring,
so that the noise can be lowered.
[0132] Next, the operation of apparatus of this example during non-recording will be described
with reference to Figs. 10 - 16.
[0133] Fig. 10 is a timing chart showing the operation timing of each portion, wherein the
operation timing of each portion can be determined, as shown, in accordance with the
number of pulses.
[0134] Fig. 11 is a perspective view showing the detailed construction of clutch gear 4
and timing gear 21 as above described, in which the clutch gear 4 can slide on the
lead screw 2, and rotate together with the key groove 4d engaging the key portion
2h of lead screw 2. Also, the clutch gear 4 is urged toward the carrier 6 by the spring
5, and normally, is placed at a predetermined position by a slot 2i of lead screw
2 and rotated together with the lead screw 2 during recording. When the recording
head 9 is moved to a home position, the clutch gear 4 is pressed by the carrier 6
correspondingly, and begins to engage the timing gear 21.
[0135] The clutch gear 4 has a start tooth 4c₁ and a normal driving tooth 4c₂, which are
formed at different positions in the direction of width of clutch gear. The driving
gear 4c₂ is not formed over the entire periphery of gear, but partially has a curved
surface 4b. Further, on an edge portion of clutch gear 4, a collar 4a is formed over
the entire periphery.
[0136] The timing gear 21 has a start tooth 21b₁, and two driving teeth 21b₂, 21b₃ at different
positions, the teeth 21b₁, 21b₂, 21b₃ being formed at different positions in the direction
of width.
[0137] Figs. 12A - 12C and Figs. 13A - 13B are views showing the engagement state between
the clutch gear 4 and the timing gear 21.
[0138] During normal recording, the engagement state is as shown in Figs. 12A and 13A. However,
in Fig. 13A, the lead pin 7 is not located at the position as shown, and the blade
17 and the ink carrier 19, not shown, are located on the upper portion of ink absorbing
member 23.
[0139] At this time, the clutch gear 4 is rotated along with the rotation of lead screw
2, but is not located at a position where the start tooth 4c₁ and the start tooth
21b₁ are in engagement (see Fig. 13A). Thereby, the timing gear 21 is not rotated,
and the driving tooth 21b₂ at the left end of timing gear 21 and the collar 21h are
in the positional relation of being spaced a slight clearance from the collar 4a of
clutch gear 4 and able to come into contact therewith, the timing gear 21 can not
be rotated in any of the directions.
[0140] Thereby, some rotational force or human power is exerted on the timing gear 21, it
is not rotated inadvertently, so that errors at the operational position of the recovery
mechanism can be prevented.
[0141] If the recording head 9 moves to the home position, and the carrier 6 presses the
clutch gear 4, the positional relation between the clutch gear 4 and the timing gear
21 is finally as shown in Fig. 13B. In this process, the start teeth 4c₁ and 21b₁
are placed in engageable positional relation (however, the lead pin 7 has not been
located at this position).
[0142] Next, when the lead pin 7 moves fro groove 3c to groove 3b, the clutch gear 4 is
rotated clockwise in Fig. 12, in which the positional relation sequentially changes
from the state of Fig. 12A to that of Fig. 12C. Then, as the curve portion 4b as non-tooth
portion as shown in Fig. 11 is located in closest proximity to the timing gear 21
until the start teeth 4c₁ and 21b₁ are placed in engagement, the timing gear does
not move inadvertently to cause other driving teeth to be first engaged with each
other.
[0143] Thereby, the mating between the clutch gear 4 and the timing gear 21 is always started
by that between respective start teeth, so that the rotation of timing gear 21 is
always started at a correct position.
[0144] Consequently, the operation of recovery mechanism driven via the timing gear 21 is
made correctly.
[0145] Also, some advantages can be obtained such that the attachment precision of clutch
gear 4 and timing gear 21 are not necessary to be very high.
[0146] Note that the driving teeth 21b₃ located differently among the driving teeth of timing
gear 21 is one engageable when the above-mentioned curve portion 4b is confronted
with the timing gear 21 again, as shown in Fig. 7B. That is, if the driving teeth
is located at the same side as that for normal driving teeth 21b₂, they may be brought
into contact with the curve portion 4b, and thereby, that driving teeth are displaced
for the engagement between respective driving teeth.
[0147] Also, while the timing gear is rotating with driving teeth in engagement, the hook
6c attached to the carrier 6 slides on the side face of timing gear 21.
[0148] Thereby, separation of the recording head 9 from the home position can be prevented,
for example, by separating the lead pin 7 from the groove 3b before predetermined
teeth are mated. This is because when the recording head 9 performs a series of recovery
processings at the home position, the lead screw is rotated twice, and so the lead
pin 7 may be moved to the groove 3c.
[0149] Note that in the previous example, a series of recovery processings are made by two
revolutions of the lead screw, whereas they are not limited to such an operation,
and any number of revolutions can be set, whereby the degree of freedom in designing
the clutch mechanism can be decreased.
[0150] Figs. 14A - 14D are explanation views showing sequential operation states of mechanism
associated with the blade 17, Figs. 15A - 15C are explanation views showing sequential
operation states of mechanism associated with the cap 35, and Figs. 16A - 16B are
explanation views showing the operation of mechanism for introducing waste ink into
waste ink receiver 37 within the roller 36. With reference to those figures and Figs.
12 and 13 as above described, the operation will be described.
[0151] Firstly, the carrier 6 is moved in the direction to the home position (direction
as indicated by an arrow B). At this time, as shown in Fig. 13A, the lead pin 7 still
engages the lead groove 2a, with discharge ports 9c of head element 9a being opposed
to the ink carrier 19 (see Fig. 14A). Here, the discharge operation (thereafter referred
to as predischarge) is carried out by driving all the discharge energy generation
elements of head element 9a at this position to remove some thickened ink with the
discharge force, and thereby, the recovery operation with predischarge is terminated.
Also, periodical predischarges performed during normal recording to prevent thickened
ink around discharge ports not used are also carried out at this position. Note that
Fig. 14A is a side view around the periphery of the same position.
[0152] Further, as shown in Fig. 13B, if the carrier 6 is moved in the direction of arrow
B by rotating the lead screw 2, the clutch gear 4 is pressed by the presser portion
6a, and thus is moved in the same direction of arrow B, so that the start tooth 4c₁
is positioned to be engageable with the start tooth 21b₁ of timing gear 21. Then,
the clutch gear 4 is rotated synchronously with the lead screw 2, the timing gear
21 is rotated in the direction of arrow D as shown in Figs. 14B with the engagement
between respective start teeth. On the other hand, as the lead pin 7 enters through
the lead-in groove 3c into the position groove 3b, the rotation of lead screw 2 does
not cause the carrier 6 to move.
[0153] If the timing gear 21 is rotated in the direction of arrow D, the set lever 20 is
rotated in the direction of arrow E, because its gear portion and the gear portion
of set lever 20 are mated. By this time, as the hook portion 16c of blade lever 16
engages a click portion of chassis 1, the set lever 20 only is rotated and the blade
lever 16 is stopped, and in a short time, the set face 20f of set lever 20 is rotated
in the direction of arrow F while depressing the rotation tab 18a of blade shaft 18,
so that the blade 17 is rotated in the direction of arrow G to be set in a state of
being engageable with the discharge port face.
[0154] With a further rotation of timing gear 21 in the D direction, the hook portion 16c
of blade lever 16 is disengaged from the click portion of chassis, and the set lever
20 and the blade lever 16 are further rotated to wipe over the discharge port face
of head 9 with the wiper 17. At this time, ink liquid and others removed by the wiping
of blade 17 are eliminated in only one direction, i.e., only downward in this case,
whereby ink liquid and others eliminated are absorbed and carried in the upper portion
of ink carrier 19. Then, the ink carrier 19 comes into contact with the ink absorbing
member 23. With a further rotation of the set lever 20, as the ink carrier 19 and
the blade 17 slide on a wipe-over face 23a of ink absorbing member 23, ink received
into the ink carrier 19 at the predischarge, or dusts wiped from the discharge port
face by the blade 17 are accepted by the wipe-over portion 23a, and ink droplets adhering
to the discharge port face is also absorbed. Thereby, the ink absorption ability of
ink carrier 19 can be retained for a long term.
[0155] If the timing gear 21 is further rotated in the direction of arrow D, the stop teeth
20a, 20b of set lever 20 and the stop cam 21a of timing gear 21 are made opposed and
contact, so that the rotation of set lever 20 is restrained, and at the same time,
the driving gear of timing gear 21 becomes an omitted tooth portion, thereby not exerting
the rotation force.
[0156] As above described, since the blade and the absorbing member for carrying ink liquid
or others removed from the blade are made integrally with the ink receiver at the
predischarge, the apparatus can be miniaturized, and the time necessary for the recovery
operation can be shortened.
[0157] With a further rotation of the timing gear 21, the cap 35 is stopped at a position
away from the discharge port face of head element 9a, as shown in Fig. 15A, because
the cap cam 21c of timing gear 21 first restricts the rotation shaft 32a of cap lever
32c as shown in Fig. 8. Subsequently, with a further rotation of the timing gear 21
in the direction of arrow D, as the cap cam 21c is disengaged from the cap cam 21c,
thereby releasing the restraint state, the cylinder 24 is rotated in the F direction
with the rotation lever 24f urged by the spring portion 22b of ink absorbing member
spring 22, as shown in Fig. 15B, so that the cap portion 35a of cap 35 is welded under
pressure against the discharge port formation face, and the capping operation is terminated.
Note that Fig. 13B shows an upper view at this time.
[0158] The above operations are cleaning and capping operations, and normally, the operation
stops here, whereby in accordance with a next recording signal, the above operations
are inversely performed to enter the recording operation.
[0159] Next, the suction recovery operation, which is performed when the discharge condition
has not been made excellent with the predischarge, will be described.
[0160] When this operation is activated, the timing gear 21 is further rotated from the
cap position to depress the cap lever 32 with the cap cam 21f, so that the cap 35
is separated a little from the discharge port formation face, as shown in Fig. 15C.
[0161] If the timing gear 21 is further rotated in the D direction, the cap portion 35a
is welded under pressure against the discharge port face as it is disengaged from
the cap cam 21f again.
[0162] Next, the pump operation will be explained. It should be note that the entry of the
recovery operation after termination of sealing cap as previously described involves
entering the suction operation.
[0163] First, with a rotation of timing gear 21, as the piston set cam 21g presses the piston
presser roller 29 mounted on the piston shaft 27, the piston shaft 27 moves in the
H direction as shown in Fig. 16A. And the piston 28 is also pressed by the piston
presser 27b, thereby moving in the H direction and placing the pump chamber 42 in
a negative pressure.
[0164] At the ink flow passage 24e of cylinder 24 is being closed by the piston 28, the
negative pressure of pump chamber 42 only increases, with the piston 28 being movable.
On the other hand, after being capped again as previously described, the ink flow
passage 24e opens, and the ink from the recording head 9 is sucked via the suction
port 35b of cap 35. The ink sucked hereby passes through the ink flow passage 32f
formed within the cap lever 32, through the communicating aperture 33a of lever seal
33 and further through the ink flow path 24e of cylinder 24 into the pump chamber
42.
[0165] At this time, conventionally, the ink sometimes remains in a lower portion of cap
35, as shown in Fig. 24A. Though it is also conceived that the suction port is biased
on a lower end portion of cap, the ink may remain on the upper portion of suction
port, as shown in Fig. 24B, when the printer is vertically placed.
[0166] Fig. 25 is a typical longitudinal cross-sectional view showing one constitution example
of conventional another head cap, and Fig. 26 is a typical longitudinal cross-sectional
view showing a further constitution example of conventional head cap.
[0167] However, in a conventional head cap as shown in Fig. 25, as cap 551 is formed like
a U -shape, and an ink exhaust port 552 connectable to suction pump is provided on
a central portion thereof, the ink 553 within cap at a lower level than the ink exhaust
port 552 can not be sucked with the suction pump, and so remains within the cap, as
shown.
[0168] As another conventional example, one constitution has been proposed in which an ink
exhaust port 552 is provided on an end portion of head cap 551, as shown in Fig. 26,
so that the ink does not remain within cap.
[0169] In the head cap as shown in Fig. 26, when recording head is used in a lateral orientation
(horizontally), accordingly, the head cap 551 is stood from the illustrated orientation
and used in the U attitude with its concave side directed laterally, the ink can be
exhausted without remaining, while when recording head is used in a downward directed
orientation, accordingly, it is used with the concave side of head cap 551 directed
upward, as shown in Fig. 26, the ink 553 may remain within cap 551.
[0170] On the contrary, in a cap of this example, as a suction port 35c is biased to a lower
edge side and has associated therewith a slit 35b for collecting ink (see Fig. 8A),
the ink can be collected into the slit with the surface tension, and sucked through
the suction port located downwardly, as shown in Fig. 24C. Accordingly, irrespective
of whether the printer is used in a horizontal orientation, or vertical orientation,
the performance of cap is not degraded. Note that the thinner the width of slit 35b,
the stronger the tensile force of ink, whereby an excellent result could be obtained
with 0.4 - 0.7 mm.
[0171] Fig. 27 is a perspective view from the front side of another example of a cap according
to the present invention, and Fig. 28 is a longitudinal cross-sectional view of Fig.
29.
[0172] In Figs. 27 and 28, 721 is a sealing portion which is made contact with a discharge
port face 501 of head cartridge (recording head) 601, 722 is an ink exhaust port provided
on an end portion of inner plane (cavity portion) in head cap 522, and 723 is an ink
exhaust passage connecting the ink exhaust port 722 to suction recovery means 515
such as a suction pump.
[0173] On the inner plane of head cap 522, the cavity portion 724 tapered in a direction
of converging toward the ink exhaust port 722 is provided.
[0174] The above-mentioned portions 721, 722, 723 and 724 are all integrally formed.
[0175] Next, the operation of head cap 522 as shown in Figs. 27 and 28 will be described.
[0176] First, the sealing portion 721 of cap 522 is closely affixed to the discharge port
face 501 of recording head 601, so that the interior of cap is placed in an enclosed
state. And a suction pump 515 is activated to place the interior of cap in a negative
pressure state, and thereby the ink is sucked through discharge ports of recording
head 601, filling the cap 522, so that the ink passes through the ink exhaust port
722 and ink exhaust passage 523 into the suction pump 515.
[0177] Next, the head cap 522 is separated from the discharge port face of recording head,
wherein the cap has remaining ink within its interior.
[0178] Therefore, the ink within cap 522 is sucked and exhausted by activating the suction
pump 515 again.
[0179] Fig. 29 is a typical longitudinal cross-sectional view showing a state in which the
pump suction for exhausting ink within the head cap is being performed, with the head
cap 522 separated from the discharge port face 501, after the suction recovery for
the discharge port face 501 of recording head 601 is performed with the head cap 522.
[0180] Fig. 29 shows an instance where an ink jet recording head 601 is attached in a horizontal
attitude, and the discharge direction of the recording head is directed horizontally,
accordingly, a concave side of head cap 522 is directed horizontally.
[0181] In Fig. 29, the ink 725 within head cap 522 flows in a gravitational direction along
tapered slant face (cavity portion) 724 as shown, and all ink 725 is exhausted through
the ink exhaust port 722 toward the suction pump 515.
[0182] Fig. 30 shows an instance where an ink jet recording apparatus using a head cap 522
as shown in Figs. 27 - 29 is placed in a vertical attitude, i.e., the discharge direction
of recording head 601 is directed downward, and a concave side of head cap 522 is
directed upward.
[0183] In Fig. 30, as an inner plane 724 of cap 522 is tapered in the direction of converging
toward an ink exhaust port 722, the ink 725 remaining within a head cap 522 flows
along a slant face 724 to the ink exhaust port 722, and all ink is exhausted from
the ink exhaust port 722 through an ink exhaust passage 723 into a pump 515.
[0184] Fig. 31 is a typical perspective view showing another example of a head cap 522 according
to the present invention.
[0185] In the head cap 522 as shown in Figs. 27 - 30, corner portions of cap inner plane
are angled, while in this example, these corner portions are curved with a certain
roundness.
[0186] The head cap 522 of this example and the ink jet recording apparatus using that head
cap are different in the above-described respect from those of the previous example,
but other portions have substantially the same construction.
[0187] Generally, if any angled portion exists within the cap 522, remaining ink is liable
to stay on that portion.
[0188] Thus, in the cap as shown in Figs. 27 and 28, as corner portions within cap 522 are
all curved and tapered in the direction of converging toward the ink exhaust port
722, the ink within the cap can be passed into the ink exhaust port 722 more securely,
and accordingly, all ink 725 (Fig. 29) can be exhausted through the ink exhaust port
722 into suction means 515 rapidly and securely.
[0189] Here, the operation of the timing gear 21 in the aforementioned suction recovery
operation will be described again.
[0190] If the timing gear 21 is further rotated, the cap 35 is separated a little from the
discharge port face by the cap cam 21h, and then the ink on the discharge port face
and within the cap 35a is sucked owing to a residual negative pressure, so that remaining
ink is eliminated from those portions.
[0191] Next, if the timing gear 21 is rotated reversely (in a direction as indicated by
the arrow I in Fig. 14D), the piston reset cam 21i pulls the piston return roller
30, thereby moving the piston shaft 27 is a direction of arrow J as shown in Fig.
16B. At this time, since the piston 28 can move after the piston carrier 27c of piston
shaft 27 comes into contact therewith, a clearance Δ1 is generated between an end
face 28h of piston 28 and the piston presser 27b.
[0192] With the movement of piston shaft 27 and piston 28, waste ink sucked within the pump
chamber 42 passes through the clearance Δ1 as described, further passing through the
groove 27f of piston shaft, ink flow passage 24c of cylinder 24 and waste ink tube
24g, and exhausted into a near central portion of waste ink absorbing member 37. Note
that the ink flow passage 24e of cylinder 24 is enclosed by the piston at the early
time of the operation of piston 28, waste ink does not flow backward toward the cap.
[0193] Note that after termination of the pump operation, the piston 28 further moves and
comes not to enclose the ink flow passage 24e of cylinder 24, wherein as the waste
ink absorbing member 37 exists in the communication passage from the cap 35 to the
atmosphere, the interior of cap is maintained in moist atmosphere, and almost any
evaporation of ink does not occur, so that the discharge ports and liquid channels
are not dried.
[0194] The ink remaining within the cylinder 24 is collected by the piston absorbing member
241 to be passed via the flow passage absorbing member 242 to the waste ink absorbing
member 37, and thereby prevented from flowing backward toward the cap.
[0195] It should be noted that the constitution for preventing such back flow is not limited
to that as shown in Fig. 9, but may be made as shown in Figs. 32A - 32C.
[0196] First, Fig. 32A shows a constitution in which the piston absorbing member 241 is
extended to come into direct contact with the waste ink absorbing member 37, i.e.,
the flow passage absorbing member 242 is integrally formed.
[0197] Next, Fig. 32B shows a constitution in which an inward directed click 24g is provided
on an end face of cylinder 24 to restrict the drift of piston absorbing member in
the axial direction, whereby the piston absorbing member 241 is inserted, the click
is snapped into place to serve as a draft stop. Also, Fig. 32C shows a constitution
in which a fastener 24m consisting of more than one click provided on a thin plate
formed from an elastic material for preventing the drift of piston absorbing member
241 is inserted into the piston ring afterwards and fixed therein.
[0198] Fig. 17 shows generically the sequence of predischarge and suction recovery as above
described. Particularly, the figure shows the sequence in which the blade 17 waits
in a wiping ready state (set state, see Fig. 14B), and after wiping, is inclined to
the absorbing member 23 (reset state, see Fig. 14A), and then, set in the wiping ready
state immediately before the set lever 20 returns to its original position.
[0199] Note that the recovery operation is performed once again immediately after the power
is turned on, for example, when the power has not been turned on for three or more
days. Also, it can be appropriately performed in accordance with the operation of
start switch.
[0200] The wiping of blade is performed in a direction of discharge port array (longitudinal
direction) once per about 60 seconds during the printing, as well as immediately before
the closing of cap and the start of printing.
[0201] The predischarge is performed such that, for example,
(1) When the power is turned on.
50 times x 64 discharge ports (500 Hz)
(2) Immediately before the start of printing.
50 times x 64 discharge ports (500 Hz)
(3) During the printing.
15 times for every about 12 seconds x 64 discharge ports (500 Hz)
[0202] Note that it is assumed that the penetrating amount of blade into head is 0.7 ± 0.3
[mm], and the penetrating amount of blade into absorbing member is 1.15 ± 0.6 [mm].
However, in the wait state, it is preferred that the blade is placed in a free state
where it is not in contact with the absorbing member.
[0203] The suction pressure minus 4 is approximately -6 [mAq] (the cap pressure welding
force is above 60 [g]), and the amount of ink suction is approximately 0.1 (+0.04,
-0.025) [cc].
[0204] Next, the recording sheet conveying mechanism will be described from the recording
to the paper exhaust in the apparatus of this example, with reference to Figs. 3A
and 3B.
[0205] In these figures, 38 is a paper presser plate formed of fluorocarbon resin or carbon
fiber blended material as previously described, serving to exert the pressing force
against a recording sheet fed thereto so that the discharge port face of recording
head 9 and the recording sheet are spaced a predetermined interval. The pressing force
of paper presser plate 38 relies on the elastic force of spring 38D. That mechanism
is shown in detail in Figs. 18A and 18B.
[0206] Fig. 18A is a view showing a state where the paper presser plate 38 exerts a pressing
force against the paper feed roller. In this case, a cut-away portion of shaft 38A,
which is formed as D shape by cutting away a part of circle linearly and is slidable
with the paper presser plate 38 in a rotational direction, is at a position confronted
to an end portion 38F of spring plate 38D, whereby an end portion 38E of paper presser
plate is urged upward in the figure by the spring plate 38D. Thereby, the paper presser
plate 38 attempts to rotate in a clockwise direction around the shaft 38A, thus exerting
the pressing force against the paper feed roller 36.
[0207] On the other hand, Fig. 18B shows a state where the action of pressing force with
the paper presser plate 38 is released. In this case, the shaft 38A rotates, and a
circular arc portion of shaft 38A presses on the end portion 38F. Then, the spring
plate 38D is wholly depressed downward in the figure. As a result, the end portion
38E is not urged by the spring plate 38D.
[0208] In this state with the urging force released, as the shaft 38A and the paper presser
plate 38 are engaged with a certain friction force, the paper presser plate 38 does
not change its rotation position greatly. Thereby, even when the pressing force of
paper presser plate 38 is required to release, the movement of recording head can
not be prevented by the paper presser plate.
[0209] Also, the above paper presser mechanism is one in which the pressing force enough
not to prevent the appropriate conveyance of recording sheet with the paper feed roller
36 in a limited space can be provided.
[0210] That is, since elastic member is not used for the paper presser plate itself, and
the pressing force is generated by a leaf spring disposed along and on a bottom portion
of chassis 1 which is normally a dead space, the degree of freedom for setting the
pressing force with the adjustment of length of leaf spring is increased, and the
paper presser member can be miniaturized.
[0211] Note that the leaf spring 38D is attached to the chassis 1 by a securing member,
not shown.
[0212] Referring to Figs. 3A and 3B again, 60 is a paper exhaust roller for exhausting recording
sheet that has been recorded, and 61 is a spur for giving the pressing force to recording
sheet to be conveyed by the paper exhaust roller 60, restraining the exhausting direction
of recording sheet, and generating the conveying force.
[0213] 62 is a transmission roller for transmitting the rotation of paper feed roller 36
to the paper exhaust roller 60, and which is disposed in an intermediate portion between
the paper exhaust roller 60 and the paper feed roller 36. The transmission of rotation
is performed with the friction force between both rollers placed in contact. The paper
exhaust roller 60 is of a cylindrical shape having different radii on both end portions
and its intermediate portion, wherein the transmission roller 62 is made in contact
with the intermediate portion of paper exhaust roller 60 with smaller radius. Accordingly,
both end portions with larger radius are rotated at slightly higher peripheral speed
than that of paper feed roller 36. Consequently, in exhausting, recording sheet is
pulled slightly and conveyed, so that record face is excellently formed.
[0214] Note that the rotation shafts of transmission roller 62 and spur 61 are formed using
coil springs with appropriate elastic coefficients, respectively. The mechanism will
be detailed with reference to Fig. 19, and using an instance of spur 61.
[0215] In Fig. 19, 61A is a shaft formed of a coil spring, which extends through a central
portion of spur 61 to both sides thereof and rotatably engages the spur 61. 103B is
a shaft support member in which both end portions of rotation shaft 61A are supported,
and which is formed as a part of inner cover 103 as shown in Fig. 1. The shaft support
member 103B supports the shaft 61A slidably in the axial direction. 103C is restraint
member for restraining the movement of spur 61 in a rotational axis direction and
a direction perpendicular thereto and provided on both sides of spur 61. The restraint
member 103C is formed as a part of inner cover 103, like the shaft support member
103B.
[0216] With the above constitution, the shaft 61A can obtain the pressing force of spur
61 against the paper exhaust roller 60 with its bending elastic force, as well as
supporting the spur 61.
[0217] The inner cover 103 has a spring member 103A on its rear end portion, as shown in
Fig. 3A, which receives the pressing force in a direction toward the paper exhaust
roller owing to the reaction against a case 101. The interaction between this pressing
force and the elastic force of rotation shaft 61A allows the spur 61 to exert an appropriate
pressing force to the paper exhaust roller 60.
[0218] Also, by the inner cover 103 receiving the pressing force as above indicated, the
engagement between the securing member 103D of inner cover 103 and the rotation shaft
60C of paper exhaust roller 60 is made more secure, as shown in Fig. 3A. As a result,
the positional relation between the spur 61 and the paper exhaust roller 60 can be
always maintained constant, or otherwise, can be maintained in high precision by securing
in abutment with a member for stopping the rotation shaft 60C, irrespective of the
precision of inner cover.
[0219] Also, in the transmission roller 62, the feature of rotation shaft 62A consisting
of a coil spring is the same, wherein the abutting force onto the paper feed roller
36 and the paper exhaust roller 60 is obtained with the elastic force of shaft 62A.
[0220] The paper exhaust roller 60 is of a shape with the radius of its intermediate portion
being smaller than the radii of both end portions, as previously described. The detail
of this constitution is shown in Fig. 20.
[0221] In Fig. 20, 60A is a cover member made of a rubber material, and 60D is a core member
with the radius of intermediate portion being made smaller than the radii of both
end portions. The paper exhaust roller 60 is formed by covering the cover member 60A
of pipe shape onto the core member 60D.
[0222] As a result, the paper exhaust roller can be obtained comparatively easily and inexpensively
without integrally forming such a shape with rubber material.
[0223] Note that a groove 60B provided continuously on one end portion of paper exhaust
roller 60 serves to stop a terminal portion of recording sheet exhausted by the paper
exhaust roller 60, whereby the exhaust of recording sheet can be made more secure,
even when recording sheet is deviated out of place.
[0224] Note that the shape of core member 60D is not limited to the above-described one,
but may be such a shape in which the groove portion 60B is extended in original shape
with intermediate portion made smaller, whereby cylindrical shape can be obtained
by covering a rubber member thereon.
[0225] Next, the vertical service of an ink jet recording apparatus of this example will
be described with reference to Figs. 21 and 22.
[0226] The vertical service condition of apparatus is used in cases where an automatic feeder
200 is used, and a thick paper such as an envelope is fed through a paper feed opening
on the back side of apparatus, as shown in those figures.
[0227] When the automatic feeder is used with normal recording sheet, an upper cover 102
can be used as a stacker for recording sheets exhausted. In this case, the upper cover
102 is fixed at a different angle from that when used as a paper guide for feeding
paper.
[0228] The condition where the upper cover 102 is used as stacker is as follows.
[0229] A position where an exhausted recording sheet itself, which is conveyed in the air
with its nervy characteristic, will come into contact with the upper cover 102 or
recording sheet already stacked is set near an upper edge portion 102A of the upper
cover 102. Thereby, The portion where exhausted recording sheet may slide on recording
sheet already stacked is limited to only a leading portion of recording sheet, so
that the sliding can be avoided to the utmost, and the stain of recording sheet due
to unfixed ink can be prevented.
[0230] Such a constitution requires that the upper end portion 102A is located near a common
tangential line for the paper feed roller 36 and the paper exhaust roller 60, in a
direction for exhausting sheet, and the lower end portion 102B is lowered.
[0231] Further, it is constituted that when a trailing end portion of recording sheet which
is stopped at the upper end portion 102A is completely exhausted, it descends at the
same position and is stacked without sliding.
[0232] With such constitution the length of upper cover 102 in the direction for exhausting
sheet (the length from upper end 102A to lower end 102B) is essential, wherein when
recording sheet ordinarily used is exhausted almost horizontally like this example,
its length is 60%-90% the length of recording sheet, and more preferably, 70%-80%.
[0233] Note that when the paper exhaust direction is different from the above-described
one with different constitution or service condition of recording apparatus, the length
of stacker should be determined, taking into consideration the first factor as above
described.
[0234] 108 as shown in Figs. 21 and 22 is an entrainment prevention piece for preventing
recording sheet to be stacked from entering into the paper feed opening.
[0235] Moreover, another example of an ink jet recording apparatus to which this example
is preferably applied will be described.
[0236] In Fig. 33, a head cartridge 1101 is mounted on a carriage 1102 reciprocating along
a recording medium (sheet-like recording medium such as a paper or plastic thin plate)
P.
[0237] The head cartridge 1101 has a recording head (ink jet recording head) and an ink
tank integrally formed, wherein a discharge port face 1001 having formed discharge
ports is provided on an opposed face to the recording medium P.
[0238] The recording head 1101 is an ink jet recording head for discharging ink by the use
of the heat energy, comprising electricity-heat converters for generating the heat
energy.
[0239] Also, the ink jet recording head 1101 performs the recording by discharging the ink
through discharge ports by growth of bubbles due to film boiling caused by the heat
energy applied by the electricity-heat converters.
[0240] A lead screw 1005 constituting a guide shaft of carriage 1102 is driven and rotated
via transmission gears 1011, 1009 for the driving force in accordance with the positive
or reverse rotation of driving motor 1013.
[0241] The carriage 1102 engaged with a spiral groove 1004 of the lead screw 1005 is driven
for reciprocating motion in the direction of the arrow P or R in accordance with the
rotation of the lead screw 1005.
[0242] The recording medium P is pressed against a platen 1024 disposed along the moving
direction of carriage.
[0243] On a left end portion of recording apparatus, photo coupler 1007, 1008 as home position
detection means are installed, and are constituted to sense the existence of a lever
106 of the carriage when the carriage 1102 reaches a home position at the left end,
and then switch the rotation direction of driving motor 1013.
[0244] Between a recording area (substantially an area of platen 1024) and the home position,
a head cap 1022 for capping the discharge port face of recording head 1101 is provided.
[0245] The head cap 1022 is supported by a cap holder 1016.
[0246] The interior of head cap 1022 is connected via an opening 1023 to suction means 1015
such as a suction pump, in which the suction recovery of recording head (head cartridge)
is performed by activating suction means 1015 with the discharge port face 1001 being
capped.
[0247] Between the head cap 1022 and the platen 1024, a cleaning blade 1017 for wiping the
discharge port face of recording head 1101 is disposed.
[0248] The cleaning blade 1017 is carried by a holder 1019 movable in the forward and backward
directions, and the holder 1019 is attached to a support member 1018 movable in the
forward and backward directions.
[0249] Note that the cleaning member 1017 can use well known various forms, besides the
form as shown.
[0250] Numeral 1020 is a cam for switching the driving force of the driving motor 1013 with
a clutch, wherein when the carriage 1102 reaches the home position, the carriage engages
and moves the cam 1020, thereby moving the lever 1021 for starting the suction for
the suction recovery, so that the state in which the suction recovery operation can
be performed for the discharge ports of recording head at the home position is set.
[0251] Capping means 1022, cleaning means 1017, and suction recovery means 1015 as above
described are constituted to perform desired processings at a desired timing at their
corresponding positions, with the action of lead screw 1005, when the carriage 1102
reaches the home position area.
[0252] Figs. 34 and 35 are external perspective views showing an ink jet recording apparatus
comprising a head cap according to the present invention, which can record in two
forms of vertical and horizontal conditions.
[0253] In the vertical condition as shown in Fig. 34, a main body is supported by a support
saddle 156, wherein as the ink from the recording head is discharged downward as indicated
by the arrow X, the head cap 1022 placed in opposed relation to the recording head
is attached with its concave portion directed upward, as shown in Fig. 30.
[0254] Note that in Fig. 34, 1151 is an insertion opening for recording medium (e.g., paper)
1152 when used in the vertical condition, the recording medium conveying passage within
apparatus is formed almost horizontally.
[0255] Thus, an ink jet recording apparatus can be obtained in which it is capable of recording
in both forms of vertical and horizontal conditions and comprises a head cap 1022
having tapered surface for guiding ink to ink exhaust port 1222 within cap 1222 easily
and securely.
[0256] The present invention brings about excellent effects particularly in an ink jet recording
apparatus having an ink jet recording head of the ink jet system for recording by
forming fine liquid droplets with the heat energy among the various ink jet recording
systems.
[0257] As to its representative constitution and principle, for example, one practiced by
use of the basic principle disclosed in, for example, U.S. Patents 4,723,129 and 4,740,796
is preferred. This system is applicable to either of the so-called on-demand type
and the continuous type. Particularly, the case of the on-demand type is effective
because, by applying at least one driving signal which gives rapid temperature elevation
exceeding nucleus boiling corresponding to the recording information on electricity-heat
converters arranged corresponding to the sheets or liquid channels holding a liquid
(ink), heat energy is generated at the electricity-heat converters to effect film
boiling at the heat acting surface of the recording head, and consequently the bubbles
within the liquid (ink) can be formed corresponding one by one to the driving signals.
By discharging the liquid (ink) though an opening for discharging by growth and shrinkage
of the bubble, at least one droplet is formed. By making the driving signals into
pulse shapes, growth and shrinkage of the bubble can be effected instantly and adequately
to accomplish more preferably discharging of the liquid (ink) particularly excellent
in response characteristic.
[0258] As the driving signals of such pulse shape, those as disclosed in U.S. Patents 4,463,359
and 4,345,262 are suitable. Further excellent recording can be performed by employment
of the conditions described in U.S. Patent 4,313,124 of the invention concerning the
temperature elevation rate of the above-mentioned heat acting surface.
[0259] As the constitution of the recording head, in addition to the combination of the
discharging orifice, liquid channel, and electricity-heat converter (linear liquid
channel or right-angled liquid channel) as disclosed in the above-mentioned respective
specifications, the constitution by use of U.S. Patent 4,558,333, or 4,459,600 disclosing
the constitution having the heat acting portion arranged in the flexed region is also
included in the present invention.
[0260] In addition, the present invention can be also effectively made the constitution
as disclosed in Japanese Laid-Open Patent Application No. 59-123670 which discloses
the constitution using a slit common to a plurality of electricity-heat converters
as the discharging portion of the electricity-heat converter or Japanese Laid-Open
patent Application No. 59-138461 which discloses the constitution having the opening
for absorbing pressure wave of heat energy correspondent to the discharging portion.
[0261] Further, as the recording head of the full line type having a length corresponding
to the maximum width of a recording medium which can be recorded by the recording
device, either the constitution which satisfies its length by a combination of a plurality
of recording heads as disclosed in the above-mentioned specifications or the constitution
as one recording head integrally formed may be used, and the present invention can
exhibit the effects as described above further effectively.
[0262] In addition, the present invention is effective for a recording head of the freely
exchangeable chip type which enables electrical connection to the main device or supply
of ink from the main device by being mounted on the main device, or a recording head
of the cartridge type having an ink tank integrally provided on the recording head
itself.
[0263] Also, addition of a restoration means for the recording head, a preliminary auxiliary
means, etc. provided as the constitution of the recording device of the present invention
is preferable, because the effect of the present invention can be further stabilized.
Specific examples of these may include, for recording head, capping means, cleaning
means, pressurization or suction means, electricity-heat converters or another type
of heating elements, or preliminary heating means according to a combination of these,
and it is also effective for performing stable recording to perform preliminary mode
which performs discharging separate from recording.
[0264] Further, as the recording mode of the recording device, the present invention is
extremely effective for not only the recording mode only of a primary color such as
black etc., but also a device equipped with at least one of plural different colors
or full color by color mixing, whether the recording head may be either integrally
constituted or combined in plural number.
[0265] Further, a recording apparatus according to the present invention is provided integrally
or separately as an image output terminal for the information processing equipment
such as a word processor or computer, a copying machine in combination with a reader,
or a facsimile terminal equipment having the transmission and reception feature.
[0266] As clearly seen from the above description, according to the present invention, a
suction recovery device capable of sucking waste ink smoothly and a reliable ink jet
recording apparatus using that device can be obtained.
[0267] According to the present invention, by comprising a cap made of an elastic member
formed integrally with an ink communication member having formed suction passage,
and connecting a rigid ink communication member of main body of suction system to
the elastic ink communication member of cap, high face accuracy for the discharge
port formation face of recording head in the non-capping state can be retained, and
the equalization of cap for the discharge port formation face in the capping state
can be achieved excellently.
[0268] According to the present invention, as a channel portion for guiding ink is provided
in connection with a suction port on the inner wall of cap, the ink received in the
discharge recovery operation can be efficiently conducted into the suction port and
exhausted therefrom, so that ink remaining within cap can be eliminated. Further,
in whatever attitude the cap or apparatus is used, the exhaust can be performed excellently.
[0269] According to the present invention, it is possible to concentrate the suction force
when suction recovery means is operated, and to achieve an excellent recording performance
in any form of vertical and horizontal conditions as the ink is sucked and received
in any attitude with above constitution.
[0270] A suction recovery device of ink jet recording apparatus comprises a cap which can
contact with or separate from a face formed with discharge ports for recording by
discharging the ink, said cap communicating to a suction system for performing the
suction recovery through said discharge ports via said cap, said cap having a groove
portion for guiding ink, and formed of an elastic material integrally with an ink
communication member for communicating to said suction system via a suction port provided
on an inner wall of said cap, and said suction system having a cylinder and a piston
reciprocating within said cylinder, and having disposed ink absorbing member in an
ink exhaust portion within said cylinder.