[0001] The present invention relates to a method and an apparatus for the manufacture of
clinker from mineral raw materials, e.g. cement clinker, including substantially removing
from the clinker chlorides, sulfur and alkalis (potassium, sodium) in a kiln plant
in which the raw materials are preheated, optionally precalcined and then burned and
sintered into clinker in the kiln proper, and during which process it is desirable
to reduce the contents of harmful compounds, such as chlorides and alkalis, in the
manufactured product or to reduce the amount of such compounds circulating in the
plant and thereby causing process drawbacks
[0002] US patent No. 3,365,521 discloses e.g. a kiln plant for the manufacture of clinker,
which plant consists of a rotary kiln having a multistep suspension preheater of the
cyclone type and a precalciner coupled before the kiln for expelling CO
2 from the treated raw materials and with a cooler coupled after the kiln for cooling
the treated product. The raw materials are counter-currently preheated in the suspension
preheater by the hot flue gases from the kiln and/or the precalciner, the flue gases
thereby being cooled through heat exchange with the raw materials before the gases
are directed to a flue gas filter to be purified before being discharged into the
atmosphere
[0003] Generally the raw materials used contain varying but often quite considerable amounts
of easily evaporating compounds, such as chlorine, sulfur, potassium and sodium, which
are harmful to the product proper and to the manufacturing process. In a conventional
kiln plant of the above mentioned type such compounds, even though a major part of
them evaporate from the clinker during the sintering process, will be recovered in
condensing during the passage of the flue gases up through the preheater or the precalciner
and then together with the added raw materials be returned to the kiln. Thus, the
chloride and alkali content continues to increase during the manufacturing process
until a critical value of the precipitated compounds is reached resulting in the risk
of said compounds depositing as blockings and bakings in the riser pipes, the precipitator
cyclones and the smoke chamber of the kiln
[0004] As also disclosed in the above mentioned US patent specification, the plant may be
provided with a bypass to counteract the above mentioned drawbacks so that part of
the kiln flue gases is diverted from the preheater and the precalciner and passed
into a separat filter. A bypass for 5-10% of the flue gas is normally sufficient to
reduce the amount of chlorine compounds or chlorides in the flue gas, while a reduction
of the remainder of the volatile components (e.g. sulfur, potassium, sodium) requires
a bypass for 30-60% of the amount of flue gas. The bypass according to said patent
specification removes chloride from the kiln system by quenching or cooling the bypassed
flue gas with air, thereby causing the chlorides to condense and subsequently to precipitate
together with material dust contained in the flue gas in a separate bypass filter
and then to be removed from the process. However, the method according to the US patent
specification suffers from the drawback that such a plant requires two filters the
primary filter and the bypass filter, and that the material dust precipitated in the
bypass filter has to be removed completely from the process together with the harmful
uncondensed chlorides without allowing the reuse of the material dust in the process
in an economical manner, thereby improving the operating economy of the plant.
[0005] GB No 1,319,180 discloses a kiln plant having a bypass without a separat bypass filter
and in which plant the bypassed flue gas is fed directly into the primary filter and
purified in same together with the dust-laden flue gas from the preheater. The bypass
contains a cyclone precipitator for precipitating larger particles of material with
insignificant chloride and alkali content for reuse in the process, whereas all material
dust precipitated in the primary filter has to be diverted from the process due to
its contents of chlorides and alkalis the harmful effects of which prevent it from
being reused Thus, the advantage of using one filler only in this type of plant is
compensated by the disadvantage in having completely to remove all the dust precipitated
in the primary filter from the process.
[0006] Danish patent application No. 2483/86 (corresponding to EP application No. 0209961)
discloses a bypass installation in a kiln plant having only one filter also, but said
bypass being limited to treating only flue gas from burning clinker having a relatively
insignificant amount of added chloride (0.015-0.1 percent by weight).
[0007] US patent specifications Nos. 3,212,764 and 3,288,450 disclose examples of kiln plants
provided with a bypass for part of the flue gas said bypass containing a precipitator
cyclone for precipitaing alkalis from the flue gas, the filter dust from the filter
of the kiln plant being directed to the precipitator cyclone of the bypass as a coolant
causing the alkali vapours in this cyclone to condense upon the dust particles which
are subsequently precipitated and discharged completely from the process. The method
according to these patent specifications implies the condensation of the alkalis upon
the dust particles at a temperature of 500-700°C, the cooling obtained by means of
recirculated filter dust or by adding other fine-grained material being relatively
insignificant. Thus, in practice it will prove difficult to obtain a sufficient cut
size of the precipitator cyclone through this method to ensure an effective alkali
purification of the smoke.
[0008] A similar method involving identical problems is described in DE 32 15 793 A1. The
method described in said document further comprises the step of injecting water into
a reactor for the purpose of supporting sulphur bonding reactions.
[0009] French patent No. 2,127,665 discloses a method of manufacturing clinker whereby a
part of the flue gas is bypassed and fed in a hot state into a rector vessel wherein
fine droplets of water are sprayed from the top of the vessel. The intention with
this process is to make chloride and alcali vapour precipitate on the surface of the
water droplets, forming particles which will drop to the bottom of the vessel from
where they can be collected while the cleaned gas together with evaporated water is
conveyed to the primary gas cleaning filter. Practical experiments have shown that
this process does not yield satisfactory results, The effeciency in terms of removing
chloride and alkali from the gas is too low which is believed to be attributable to
the fact that the surface area of the water droplets is insufficient for the purpose,
Furthermore, the product collected from the bottom of the reactor is voluminous containing
a mixture of chloride and alcali together with water and kiln feed, The removal and
disposal of this product represents a considerable cost.
[0010] Therefore, it is the object of the invention to provide a method and an apparatus
for an improved treatment of bypass flue gas from a kiln plant to remedy the above
mentioned drawbacks, and which allow the reuse of precipitated dust both from the
primary filter of the plant and from the treatment of the bypass flue gas,
[0011] This object is obtained in a method of the type described in the preamble of claim
1 and which is characterized by the features stated in the characterizing part of
the claim.
[0012] A particularly preferred embodiment of the method is stated in claim 2.
[0013] Furthermore, the object is obtained by means of an apparatus for carrying out the
method in the manner stated in claim 6.
[0014] The present invention is particularly advantageous in that the bypassed flue gas
is humidified during its treatment in a bypass reactor, e.g. of the gas suspension-absorption
type, enabling by way of a large issue of moistened particles and using the surfaces
of these particles to make chlorides and alkalis to deposit upon these particles and
to be transported together with them up through the reactor, the alkalis and the salts
thus being dissolved on the wet particle surfaces and then through the evaporation
of the water in the reactor at a reactor temperature of about 150°C to precipitate
as salt or dust particles in the reactor flue gas. The particles are then precipitated
from the flue gas in the subsequent separator so as to reduce the risk of deposits
upon and hence blockings of or backings in adjacent plant parts,
[0015] The material dust precipitated from the bypass reactor may be recirculated to same
before being discharged from the process, 90-95% of the chlorides and alkalis contained
in the bypassed flue gas are precipitated in the bypass, the bypassed flue gas which
is then fed to the primary filter of the plant being thus almost completely purified
of harmful compounds which makes it possible to reuse in the kiln system proper all
material dust precipitated in the primary filter, said dust being added to the preheater
in a known way together with added raw materials. Furthermore, the filter installation
of a kiln plant constituting an essential part of the total plant investments may
due to the present flue gas purification requirements and operating and control equipment
herefore be reduced to a single filter, namely the primary filter.
[0016] The inevitably larger total calorie consumption of the plant using a bypass according
to the invention is compensated partly by a more profitable end product due to the
better quality of the latter (low alkali content), partly by the reduction of the
risk of plant stops due to blockings of exposed parts of the plant.
[0017] The invention will be explained in further detail in the following with reference
to the drawing which diagramatically and without being limiting illustrates an example
of a rotary kiln plant having a precalciner and a one-stringed suspension preheater
and being provided with a bypass installation according to the invention.
[0018] Raw materials are fed into the plant at 9, preheated counter-currently by flue gas
from a rotary kiln 1 in a cyclone preheater consisting of cyclones 6, 7 and 8 and
appertaining riser pipes 15, 16 and 17 and material ducts 12, 13 and 14, precalcined
in a suspension precalciner 4, precipitated from the flue gas in a cyclone separator
5 and directed to the kiln 1 as preheated and precalcined raw material via a duct
11. Combustion air is conveyed to the precalciner 4 partly as kiln flue gas via a
kiln riser pipe 2, partly as spent cooler air via a duct 3 from a material cooler
(not shown) coupled after the kiln 1. Fuel is fed into the precalciner at 34, The
kiln and precalciner flue gases are drawn up through the preheater by a fan 10 and
conveyed through the duct 18 to a filter 31, e.g. an electrofilter, in which the flue
gases are purified of entrained material dust which is discharged through an outlet
33 and optionally via homogenizing bins (not shown) recirculated to the kiln plant
for renewed treatment in same together with the raw materials introduced at 9. Purified
flue gas is discharged into the atmosphere from the filter 31 via a fan and a stack
32. The kiln riser pipe 2 is provided with a bypass installation 20-30 for diverting
part of the kiln flue gas from the precalciner and preheater to the filter 31. After
quenching by means of recirculated, cooled bypass dust introduced via a conveyer 28
and by means of recirculated, cooled flue gas introduced via a duct 22 to a quenching
or mixing chamber 21 mounted in the bypass duct 20, the flue gas is conveyed to a
cylindrical reactor 23 having a conical bottom with a central inlet therein for flue
gas. Simultaneously with the feeding of flue gas into the reactor 23 water is injected
into same through a nozzle 24 in or near the bottom of the reactor. Quenching by means
of recirculating cooled dust and flue gas causes salts, including chlorides, in the
flue gas to condense and solidify, thereby removing their sticking effect prior to
the treatment in the reactor 23, and the introduction of water through the nozzle
24 causes a dispersion of the water upon the dust particles and hence an evaporation
of the water in the reactor from same particles, thereby further reducing the flue
gas temperature in the reactor down to about 150°C. The salts and the dust particles
introduced with the flue gas are caught upon the surfaces of the moistened recirculated
dust particles, thereby causing said particles to grow in size and be transported
up through the reactor 23 on evaporation of the water. These particles are then precipitated
from the flue gas in a separator 25 coupled after the reactor 23, and from the separator
25 the precipitated particles are then fed into a bin 26 to be returned to the reactor
23 either via the conveyor 28 or to the mixing chamber 21 via a duct 28', or to be
discharged from the process via an outlet 27. On the effect from a fan 30 purified
bypass smoke gas is transported through a duct 29 to the filter 31 for a final purification
of the last fine residue of material dust together with the purification of the flue
gas from the preheater. By means of a throttle valve 34 in the duct 29 and via the
duct 22 part of the purified, cooled bypass flue gas may be recirculated to the mixing
chamber 21 to be used as coolant in the latter for the bypassed flue gas from the
kiln 1.
[0019] Calculations have shown that the increase in the running costs of a bypass installation
plant according to the invention is modest in that the increase is mainly due to an
additional electric power consumption for the fan 30, and that the pressure loss over
the reactor 23 and the separator 25 may be limited to 100-200 mmWC which is only slightly
more than the pressure loss over a conventional cooling tower being replaced according
to the invention by these parts of the bypass installation.
1. A method for the manufacture of clinker from mineral raw materials, e. g. cement clinker,
said method comprising
preheating the raw materials by conveying them through a suspension preheater (6,
7, 8) countercurrently to hot flue gas,
burning and sintering the preheated raw materials in a kiln (1) to form the clinker,
cooling the clinker removed from the kiln in a cooler,
cleaning the flue gas discharged from the preheater by conveying it through a flue
gas cleaning filter (31),
diverting a part of the flue gas discharged from the kiln and conveying it through
a flue gas by-pass (20-30) wherein it is treated with cooled dust or particles in
a mixing chamber (21), conveyed to a reactor (23) wherein water is injected and subsequently
into a separator wherein the major part of the particles formed in said reactor (23)
and comprising chlorides sulphur and alkalis are separated from the flue gas,
conveying the flue gas from the separator to the flue gas cleaning filter, and
recirculating a part of the particles from the separator to the mixing chamber,
characterized in that
by injecting said water into said reactor (23) the flue gas temperature is brought
down to about 150 °C,
whereby wet particles are formed in the reactor, which upon their surfaces dissolve
the alkalis and the salts and then following evaporation of the water in the reactor
form precipitated salt/dust particles, which are transported upwards in the reactor
and separated from the flue gas by means of a cyclone separator.
2. A method according to claim 1, characterized in that part of the flue gas which is purified and cooled in the bypass after having
passed the bypass separator (25) is recirculated to the quenching step (21) of the
bypass as cooling air for the bypass flue gas from the kiln.
3. A method according to claim 2, characterized by the recirculation of the purified and cooled by-pass gas being controlled by means
of a throttle valve (34) arranged in the duct leading from the separator to the flue
gas filter.
4. A method according to claim 1, 2 or 3, characterized by quenching the by-pass flue gas by means of recirculated cooled dust and flue gas
to make salts including chlorides to condense and solidify prior to the treatment
with water in the reactor.
5. A method according to any of the claims 1 through 4, characterized by recirculating part of the particles from the separator into the reactor.
6. An apparatus for carrying out the method according to any one of the claims 1 through
5 with the purpose of substantially removing chlorides, sulphur and alkalis from the
by-pass flue gas, wherein said by-pass comprises
a mixing chamber (21) connected to receive the diverted part of the kiln flue gas
and to receive recirculated cooled particles,
a reactor (23) connected to receive gas with suspended particles from the mixing chamber
and provided with at least one water injection nozzle,
a cyclone separator (25) connected to receive gas with suspended particles from the
reactor, adapted for separating a major part of the particles from the gas and connected
to convey the separated gas to the flue gas filter,
a bin adapted for receiving particles discharged from the separator and from where
the particles may be discharged from the process,
and means (28') for recirculating part of the particles discharged from the separator
to the mixing chamber.
7. An apparatus according to claim 6, characterized by comprising means (22,34) for recirculating cooled, purified by-pass flue gas as
cooling air to the mixing chamber (21).
8. An apparatus according to claim 7, characterized by comprising a throttle valve means (34) for controlling the recirculation of cooled,
purified flue gas to the mixing chamber (21).
9. An apparatus according to claim 6, 7 or 8, characterized by comprising means for recirculating part of the particles discharged from the separator
to the reactor.
10. An apparatus according to any of claims 6 through 9, characterized by the reactor being designed as a cylindrical vessel having a conical bottom with
a central inlet therein for kiln flue gas.
1. Verfahren zur Herstellung von Klinker aus mineralischen Rohmaterialien, z.B. Zementklinker,
welches Verfahren umfaßt
Vorwärmen der Rohmaterialien, indem sie durch einen Schwebegasvorwärmer (6, 7, 8)
in Gegenstrom zu heißem Rauchgas gefördert werden,
Brennen und Sintern der vorgewärmten Rohmaterialien in einem Ofen (1), um den Klinker
zu bilden,
Kühlen des aus dem Ofen entnommenen Klinkers in einem Kühler,
Reinigen des aus dem Vorwärmar ausgestoßenen Rauchgases, indem es durch ein Rauchgasreinigungsfilter
(31) gefördert wird,
Umleiten eines Teils des aus dem Ofen ausgestoßenen Rauchgases und Fördern durch einen
Rauchgasbeipass (20-30), in dem es in einer Mischkammer (21) mit gekühltem Staub oder
Partikeln behandelt wird, zu einem Reaktor (23), in dem Wasser eingespritzt wird,
und anschließend in einen Abscheider gefördert wird, in dem der Hauptteil der in dem
Reaktor (23) gebildeten Partikel, die Chloride, Schwefel und Alkali enthalten, von
dem Rauchgas getrennt werden,
Fördern des Rauchgases von, dem Abscheider zu dem Rauchgasreinigungsfilter, und
Rezirkulieren eines Teils der Partikel von dem Abscheider Zu der Mischkammer,
dadurch gekennzeichnet, daß
durch das Einspritzen des Wassers in den Reaktor (23) die Rauchgastemperatur auf etwa
150 °C abgesenkt wird,
wobei nasse Partikel in dem Reaktor gebildet werden, welche auf ihren Oberflächen
die Alkalis und Salze auflösen und dann auf die Verdampfung des Wasser in den Reanktor
folgend ausgefällte Salz-/Staubpartikel bilden, die dann in dem Reaktor nach oben
transportiert werden und mittels eines Zyklonabscheiders von dem Rauchgas getrennt
werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil des Rauchgases, welches im Beipass gereinigt und gekühlt wird, nachdem
es den Beipassabscheider (25) durchlaufen hat, zur Abschreckstufe (21) des Beipasses
als Kühlluft für das Beipassrauchgas von dem Ofen rezirkuliert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Rezirkulation des gereinigten und gekühlten Beipassgases mittels eines in
der Rohrleitung zwischen dem Abscheider und dem Rauchgasfilter angebrachten Drosselventils
(34) geregelt wird.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß das Beipassrauchgas mittels rezirkuliertem, gekühltem Staub und Rauchgas abgeschreckt
wird, um die Chloride enthaltenden Salze vor der Behandlung mit Wasser im Reaktor
zum Kondensieren und Erstarren zu bringen.
5. Verfahren nach jeden beliebigen Ansprüchen von 1 bis 4, dadurch gekennzeichnet, daß ein Teil der Partikel von dem Abscheider in den Reaktor rezirkuliert wird.
6. Vorrichtung zur Ausführung des Verfahrens nach einem der Ansprüche von 1 bis 5 zu
dem Zweck, im wesentlichen Chloride, Schwefel und Alkali aus dem Beipdssrauchgas zu
entfernen, bei welcher der Beipass enthält
eine Mischkammer (21), die zur Aufnahme des umgeleiteten Teils des Ofenrauchgases
und Aufnahme der rezirkulierten, gekühlten Partikel angeschlossen ist,
einen Reaktor (23), der zur Aufnahme von Gas mit Schwebepartikeln von der Mischkammer
angeschlossen ist und mit mindestens einer Wassereinspritzdüse versehen ist,
einen Zyklonabscheider (25), der zur Aufnahme von Gas mit Schwebepartikeln von dem
Reaktor angeschlossen ist und so ausgelegt ist, daß er einen Hauptteil der Partikel
aus dem Gas abscheidet, und zum Fördern des abgeschiedenen Gases zu dem Rauchgasfilter
angeschlossen ist,
einen Behälter, der so ausgelegt ist, daß er aus dem Abscheider ausgetragene Partikel
aufnimmt, und aus dem die Partikel aus dem Prozess ausgetragen werden können,
und eine Einrichtung (28') zum Rezirkulieren eines Teils der aus dem Abscheider in
die Mischkammer ausgetragenen Partikel.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß sie Mittel (22,34) zur Rezirkulation gekühlten, gereinigten Beipassrauchgases
als Kühlluft zur Mischkammer (21) umfaßt.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß sie ein Drosselventilmittel (34) zur Regelung der Rezirkulation des gekühlten,
gereinigten Rauchgases zur Mischkammer (21) umfaßt.
9. Vorrichtung nach Anspruch 6, 7 oder 8, dadurch gegennzeichnet, daß sie Mittel zur Rezirkulation eines Teils der vom Abscheider ausgetragenen Partikel
zum Reaktor umfaßt.
10. Vorrichtung nach jeden beliebigen Ansprüchen von 6 bis 9, dadurch gekennzeichnet, daß der Reaktor als ein zylindrischer Behälter mit einem konischen Boden mit einem
Zentraleinlaß darin für Ofenrauchgas ausgelegt ist.
1. Procédé de fabrication de clinkers à partir de matières premières minérales par exemple
fabrication de clinkers de ciment, ledit procédé comprenant
le préchauffage des matières premières en les acheminant à travers un préchauffeur
à suspension (6, 7, 8) à contre-courant du gaz de fumée chaud,
la calcination et le frittage des matières premières préchauffées dans un four (1)
pour former les clinkers, le refroidissement dans un refroidisseur des clinkers enlevés
du four, le nettoyage du gaz de fumée venant du préchauffeur en les acheminant à travers
un filtre de nettoyage (31) de gaz de fumée, la déviation d'une partie de gaz de fumée
venant du four et l'acheminement de celle-ci à travers un by-pass (20-30) de gaz de
fumée où celle-ci est traitée avec de la poussière ou des particules refroidies dans
une chambre de mélange (21), convoyée vers un réacteur (23) dans lequel de l'eau est
injectée et ensuite dans un séparateur où la plus grande partie des particules formées
dans ledit réacteur (23) et comprenant des chlorures, du souffre et des alcalis sont
séparées du gaz de fumée, le convoyage du gaz de fumée du séparateur au filtre de
nettoyage du gaz de fumée et
la recirculation d'une partie des particules du séparateur à la chambre de mélange,
caractérisé en ce que,
par l'injection de ladite eau dans ledit réacteur (23), la température du gaz de fumée
est réduite à environ 150°C
par quoi les particules humides sont formées dans le réacteur qui, sur leurs surfaces,
dissolvent les alcalis et les sels et qui, à la suite de l'évaporation de l'eau dans
le réacteur, forment ensuite des particules de sel/poussière précipitées qui sont
transportées vers le haut dans le réacteur et sont séparées du gaz de fumée au moyen
d'un séparateur à cyclone.
2. Procédé selon la revendication 1, caractérisé en ce qu'une partie du gaz de fumée, étant purifiée et refroidie dans le by-pass
après avoir passé le séparateur (25) du by-pass, est récirculée au refroidissement
brusque (21) du by-pass comme air de refroidissement pour le gaz de fumée venant du
four.
3. Procédé selon la revendication 2, caractérisé par la récirculation du gaz du by-pass purifié et refroidi étant commandé au moyen
d'un papillon (34) monté dans la conduite reliant le séparateur au filtre de gaz de
fumée.
4. Procédé selon la revendication 1, 2 ou 3, caractérisé par le refroidissement brusque du gaz de fumée du by-pass au moyen de la poussière
et du gaz refroidis et récirculés dans le but de faire condenser et solidifier les
sels, les chlorures y compris, avant le traitement à l'eau dans le réacteur.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé par la récirculation d'une partie des particules du séparateur vers le réacteur.
6. Appareil destiné à l'exécution du procédé selon l'une des revendications 1 à 5 dans
le but d'enlever la plupart des chlorures, du souffre et des alcalis des gaz de fumée
du by-pass, où ledit by-pass comprend
une chambre de mélange (21) branchée pour recevoir la partie de gaz de fumée déviée
venant du four et pour recevoir les particules refroidies et recirculées,
un réacteur (23) branché pour recevoir le gaz avec les particules en suspension venant
de la chambre de mélange et qui est muni d'au moins une lance d'injection d'eau, un
séparateur à cyclone (25) branché pour recevoir le gaz avec les particules en suspension
venant du réacteur, adapté pour séparer la plupart des particules du gaz et branché
pour acheminer le gaz séparé vers le filtre de gaz de fumée,
un réservoir adapté pour recevoir les particules déchargées du séparateur et à partir
duquel les particules peuvent être déchargées du procédé,
et des moyens (28') pour recirculer une partie des particules déchargées du séparateur
vers la chambre de mélange.
7. Appareil selon la revendication 6, caractérisé par les moyens (22, 34) pour récirculer le gaz de fumée refroidi et nettoyé du by-pass
comme air de refroidissement vers la chambre de mélange (21).
8. Appareil selon la revendication 7, caractérisé par le papillon (34) pour commander la récirculation du gaz de fumée refroidi et
nettoyé du by-pass vers la chambre de mélange (21).
9. Appareil selon la revendication 6, 7 ou 8, caractérisé en ce qu'il comprend des moyens pour la récirculation des particules déchargées du
séparateur vers le réacteur.
10. Appareil selon l'une quelconque des revendications 6 à 9, caractérisé par le réacteur étant conçu comme un récipient cylindrique avec un fond conique à
entrée centrale pour le gaz de fumée du four.