BACKGROUND OF THE INVENTION
Field of the Invention:
[0001] This invention relates to a detergent-softening composition. More specifically, the
present invention relates to softening/anti-static compositions adapted for use in
the wash cycle of a laundering operation, the composition including as essential ingredients
a nonionic detergent, an anionic detergent, a cationic fabric softener-anti-static
agent and a soil release promoting polymer of the polyethylene terephthalate-polyoxyethylene
terephthalate (PET-POET) type.
Description of the Prior Art
[0002] Compositions useful for treating fabrics to improve the softness and feel characteristics
thereof are known in the art.
[0003] When used in domestic laundering, the fabric softeners are typically added to the
rinse water during the rinse cycle having a duration of only from about 2 to 5 minutes.
Consequently, the consumer is required to monitor the laundering operation or take
other precautions so that the fabric softener is added at the proper time. This requires
the consumer to return to the washing machine either just prior to or at the beginning
of the rinse cycle of the washing operation which is obviously burdensome to the consumer.
In addition, special precaution has to be taken to use a proper amount of the fabric
softener so as to avoid over dosage which may render the clothes water repellant by
depositing a greasy film on the fabric surface, as well as imparting a certain degree
of yellowness to the fabrics.
[0004] As a solution to the above-noted problems, it has been known to use fabric softeners
which are compatible with common laundry detergents so that the softeners can be combined
with the detergents in a single package for use during the wash cycle of the laundering
operation. Examples of such wash cycle added fabric softening compositions are shown
in U.S. Patents 3,351,438, 3,660,286 and 3,703,480 and many others. In general, these
wash cycle fabric softening compositions contain a cationic quaternary ammonium fabric
softener and additional ingredients which render the softening compounds compatible
with the common laundry detergents.
[0005] It is also known, however, that the cationic softening compounds added to the wash
cycle, either as an ingredient in a detergent-softener composition or as a wash cycle
softener, interfere with the brightening activity, as well as the cleaning efficiency
of the detergent. As a result, it has been sought to offset to some degree this interference
in detergent-softening compositions by using nonionic surfactants, higher levels of
brightener compound, carboxymethylcellulose, anti-yellowing compounds, bluing agents
and so forth. However, little improvement has been made in wash cycle softening compositions
using a variety of detergents, most of which are anionics.
[0006] There have been many disclosures in the art relating to detergent compositions containing
cationic softening agents, including the quaternary ammonium compound softening agents,
and nonionic surface-active compounds. As representative of this art, mention can
be made of U.S. Patents 4,264,457; 4,239,659; 4,259,217; 4,222,905; 3,951,879; 3,360,470;
3,351,483; 3,644,203; etc. In addition, U.S. Patents 3,537,993; 3,583,912; 3,983,079;
4,203,872, and 4,264,479, specifically disclose combinations of nonionic surface-active
agent, cationic fabric softener and another ionic surfactant or modifier, such as
zwiterionic surfactants, amphoteric surfactants, and the like.
[0007] While many of these prior art formulations provide satisfactory cleaning and/or softening
under many different conditions they still suffer from the defects of not providing
adequate softening - e.g. comparable to rinse cycle - added softeners.
[0008] U.S. Patent 3,920,565 discloses a liquid rinse cycle fabric softener composition
containing 2 to 15% of a cationic fabric softener and 0.5 to 4.0% of an alkali metal
salt of a fatty acid of from 16 to 22 carbon atoms (soap) and optionally, up to 2%
of a nonionic emulsifier, the balance water. The di-higher alkyl dimethyl ammonium
chlorides are the preferred cationics, although mono-higher alkyl quats are also mentioned.
[0009] It is generally accepted in the art that the monohigher alkyl quaternary ammonium
compounds, such as, for example, stearyltrimethyl ammonium chloride, being relatively
water-soluble, are less effective softeners that the di-higher alkyl cationic quaternary
softeners (see, for example, U.S. Patent 4,326,965), and, therefore, their use in
conjunction with, for example, anionic detergents, such as fatty acid soaps, with
which they are capable of forming softening complexes has been suggested for use as
rinse cycle fabric softeners:
[0010] The present inventor previously discovered that stable, fabric softening compositions
having improved dispersibility in cold water as used in the rinse cycle, are provided
by a cationic quaternary ammonium compound, as the sole softener, and an anionic sulfonate
at a weight ratio of cationic to anionic of from about 80:1 to 3:1 (see U.S. Patent
3,997,453). This patent discloses both mono-higher and di-higher alkyl cationic quaternary
softening compounds and also discloses alkyl benzene sulfonates as the anionic compound.
According to this patent, the addition of minor amounts of the anionic sulfonate to
water dispersions of the excess amount of quaternary softener reduces the viscosity
of the dispersion and produces a homogeneous liquid which is readily dispersible in
cold water (i.e. the rinse cycle of an automatic washing machine).
[0011] As mentioned above, however, it has been recognized for some time that it would be
highly desirable as a matter of convenience to employ the fabric softening formulation
concurrently with the detergent in the wash cycle of the washing machine.
[0012] U.S. Patent 4,222,905 to Cockrell, Jr. discloses laundry detergent compositions which
may be in liquid form and which are formulated from certain nonionic surfactants and
certain cationic surfactants, including mono-higher alkyl quaternary ammonium compounds,
such as tallowalkyltrimethyl ammonium halide, at a nonionic:cationic weight ratio
of from 5:1 to about 1:1. This patent teaches that the amount of anion-producing materials
should be minimized and preferably totally avoided, but in any case, anionic materials
having a dissociation constant of less than 1 x 10⁻⁵, such as sodium C
11.8 linear alkylbenzene sulfonate, should be contained only in amounts up to 10%, by
weight, of the cationic surfactant.
[0013] Nonionic/cationic mixed surfactant detergent compositions having a nonionic:cationic
weight ratio of from about 1:1 to 40:1 in which the nonionic surfactant is of the
class having a hydrophilic-lipophilic balance (HLB) of from about 5 to about 17, and
the cationic surfactant is of the class of mono-higher alkyl quaternary ammonium compounds
in which the higher alkyl has from about 20 to about 30 carbon atom, are disclosed
by Murphy in U.S. Patent 4,239,659. This patent provides a general disclosure that
other adjunct components may be included in their conventional art-established levels
for use which is stated to be from about 0 to about 40%. A broad list of adjunct components
is given including semi-polar nonionic, anionic, zwitterionic and ampholytic cosurfactants,
builders, dyes, fillers, enzymes, bleaches, and many others. There are no examples
using, and no disclosure of, anionic surfactants, however, it is stated that the cosurfactants
must be compatible with the nonionic and cationic and can be any of the anionics disclosed
in U.S. Patent 4,259,217 to Murphy.
[0014] This latter Murphy patent discloses surfactant mixtures of nonionic surfactants having
an HLB of from about 5 to about 17 and a cationic surfactant, inclusive of mono-higher
alkyl quaternary ammonium compounds, at a nonionic:cationic weight ratio of from 5.1:1
to about 100:1. According to this patent, the detergent compositions may contain up
to about 50%, preferably from about 1 to about 15%, of anionic surfactants and/or
zwitterionic surfactants. The anionic surfactants include, among others, linear alkyl
benzene sulfonates and alkyl ether sulfates. Example XV in column 40 of this patent
describes a heavy duty liquid laundry detergent composition of the following formula:

[0015] The following heavy duty liquid detergent composition is shown in Example XVII (column
41):

[0016] A liquid laundry detergent and fabric softener composition which contains about 3-35%
by weight of a nonionic surfactant, about 3-30% by weight mono-higher alkyl quaternary
ammonium compound cationic surfactant and a mixture of anionic surfactants including
(a) C₄-C₁₀ alcohol sulfates and (b) C₁₂-C₂₂ alcohol ethoxylated ether sulfates or
carboxylates is disclosed in U.S. Patent 4,264,457 to seeks and Wysocki. The mole
ratio of total cationic surfactant to total anionic surfactant can vary from 0.8:1
to 10:1. According to the patentees, the selection of and proportions of the two specific
anionic surfactants to the exclusion of other known anionic surfactants is essential
to obtain the maximal effectiveness for detergency, softness and anti-static properties.
[0017] The present inventor has also previously discovered that softening and anti-static
performance of a detergent compound and a cationic mono-higher alkyl quaternary ammonium
compound fabric softening agent is significantly enhanced by using the cationic softener
as an approximately 1:1 complex with an anionic surfactant which is a linear alkyl
aromatic sulfonate. This discovery is the subject matter of Applicant's copending
application Serial No. 661,775, filed October 17, 1984, the disclosure of which is
incorporated herein by reference. Furthermore, this enhancement of the softening/anti-static
performance was achieved without sacrificing, and in some cases, with significant
improvement in the whitening and cleaning performance.
[0018] While excellent softening and anti-static benefits have been provided by the liquid
nonionic detergent compositions based on the complex of the cationic fabric softener
and linear alkyl benzene sulfonate, the present inventor has also previously discovered
that further improvements in overall cleaning performance and the ability to form
complexes of the mono-higher alkyl quaternary fabric softener with a broader range
of commercially available anionic detergents can both be attained by adding to the
composition an additional surfactant compound which is a sulfosuccinamate compound.
This discovery is the subject matter of Applicant's copending Serial No. 873,486,
filed June 12, 1986, the disclosure of which is incorporated herein by reference.
The incorporation of the sulfosuccinamate compound significantly boosts detergency
of the nonionic/cationic mixture with or without the additional benefits of other
anionic surfactants.
[0019] The use of polyethylene terephthalate-polyoxyethylene terephthalate (PET-POET) soil
release promoting polymers is well documented in the patent literature. Representative
examples of the patent literature disclosing the use of PET-POET and similar polymers
in the treatment of synthetic textile materials, in general, and in laundry detergent
compositions, in particular, include, among others, U.S. Patents 3,557,039 (and its
corresponding British Patent Specification 1,088,984); 3,652,713; 3,723,568; 3,959,230;
3,962,152; 4,125,370; 4,132,680; 4,569,772; and British Patent Specifications 1,154,370;
1,317,278; 1,377,092; and British Pubished Patent Application 2,123,848 A.
[0020] U.S. Patent 3,557,039 to McIntyre et al. shows the preparation of such copolymers
by the ester interchange and subsequent polymerization of dimethyl terephthalate (DMT)
and ethylene glycol (EG) in the presence of a mixed catalyst system of calcium acetate
hemihydrate and antimony trioxide. A similar reaction is shown in U.S. Patent 3,959,280
to Hays, this patent further using polyethylene oxide as one reactant in addition
to DMT and EG monomers. The PET-POET copolymers of Hays are characterized by a molar
ratio of ethylene terephthalate units to polyethylene oxide terephthalate units of
from about 25:75 to about 35:65, by the polyethylene oxide of the polyethylene oxide
terephthalate having a molecular weight of from about 300 to 700, by a molecular weight
of about 25,000 to about 55,000, and by a melting point below 100°C.
[0021] U.S. Patent 3,652,713 forms antistatic fibers, films and other shaped articles from
compositions in which polyethylene terephthalate is mixed with a polyether-polyester
block copolymer such that the polyether segment constitutes from 0.1 to 10.0% by weight
based on the total weight of the mixture. The polyether-polyester block copolymer
can be prepared by melt-polymerizing (condensation polymerization) polyethylene terephthalate
of number average molecular weight of from 1,000 to 2,000 with polyethylene glycol
having a number average molecular weight of from 1,000 to 50,000 at a highly reduced
pressure and elevated temperature in the presence of antimony trioxide and trimethyl
phosphate.
[0022] According to British 1,317,278 to Ambler et al. high molecular weight (e.g., spinnind-grade-
or film-forming) polyethylene terephthalate is reacted with polyethylene glycol (MW
= 300 to 30,000) at temperatures in the range of 100°C to 300°C, preferably at atmospheric
pressure in the presence of conventional ester exchange catalyst, for example, antimony
oxides, calcium acetate, tetralkyltitanates and stannous octoate.
[0023] U.S. Patent 4,125,370 to Nicol discloses PET-POET soil release promoting random copolymers
having an average molecular weight in the range of about 5,000 to about 200,000, with
a molar ratio of ethylene terephthalate to polyethylene oxide terephthalate of from
about 20:80 to 90:10, the polyethylene oxide linking unit having a molecular weight
in the range from about 300 to 10,000. These polymers can be prepared according to
the procedure disclosed in the aforementioned Patent 3,959,280 to Hays or by the process
described in U.S. Patent 3,479,212 to Robertson et al.
[0024] PET-POET soil release promoting polymers are also commercially available, for example,
the products Alkaril QCJ and QCF from Alkaril Chemicals, Inc.; Milease T from ICI
America; and Zelcon from E. I. duPont de Nemours & Co.
[0025] While satisfactory soil release promoting property has been obtained from the commercially
available products and as described in the literature, there have been problems with
regard to the stability, as well as effectiveness, of these copolymers during storage
and under actual use conditions. Thus, U.S. Patent 4,125,370 teaches providing a concentration
of certain hardness ions to promote deposition of the soil release polymers on the
fabrics being washed and to promote soil release performance. U.S. Patent 4,569,772
teaches that detergent compositions containing PET-POET polymers tend to lose their
soil release promoting properties on storage, if the compositions contain alkaline
builders. The patentees overcome this tendency by co-melting the PET-POET copolymer
with a water-soluble alkali metal polyacrylate and converting the melt to solid particles.
British Published Patent Application 2,123,848 A overcomes this tendency by uniformly
distributing the PET-POET copolymer throughout the particulate detergent product by
preparing particles of a builder or a mixture of builders for a non-ionic detergent,
dissolving and/or dispersing in such non-ionic detergent in liquid state a substantially
anhydrous soil release promoting PET-POET polymer, and spraying such liquid non-ionic
detergent-polymer mixture onto moving surfaces of the builder particles to distribute
such non-ionic detergent and polymer over such particles.
[0026] While excellent softening and anti-static benefits have been provided by the liquid
non-ionic detergent compositions based on the complex of the cationic fabric softener
and anionic detergents such as linear alkyl benzene sulfonate, and while stable compositions
of PET-POET polymers with non-ionic detergents have been achieved, there still exists
a problem of incompatibility when formulating liquid detergents containing both cationic
fabric softeners and commercially available PET-POET soil release promoting copolymers.
In particular, when a commercially available PET-POET soil release promoting copolymer,
such as Alkaril QCJ, is added to a liquid detergent containing a non-ionic surfactant
and an anionic surfactant, the liquid is slightly turbid, but the suspension is stable
over time. When a cationic fabric softener is added to this liquid, the suspension
becomes unstable, and a fine precipitate settles out over a period of time. This fine
precipitate considerably degrades the appearance of the product to the consumer, especially
when packaged in translucent containers and subjected to long-term storage prior to
sale.
SUMMARY OF THE INVENTION
[0027] As a result of the inventor's further research, it has now been discovered that a
stable liquid detergent composition containing both cationic fabric softener and PET-POET
soil release promoting copolymer can be attained by utilizing a water-soluble fraction
of the conventional PET-POET copolymer in lieu of the conventional PET-POET copolymer
when fomulating the liquid detergent.
[0028] Accordingly, it is an object of this invention to improve the soil release performance
of detergent compositions containing non-ionic detergent compositions, anionic detergent
compositions, and cationic fabric softener-anti-static agents.
[0029] It is another object of this invention to formulate stable, liquid detergent compositions
using non-ionic detergent compositions, anionic detergent compositions, cationic fabric
softener-anti-static agents and PET-POET-type soil release promoting copolymers.
[0030] These and other objects of the invention which will become apparent hereinafter are
achieved by providing an aqueous laundry detergent composition useful for washing
and softening soiled fabrics comprising a nonionic detergent, an anionic detergent,
a cationic fabric softener-anti-static agent and a water-soluble fraction of a polyethylene
terephthalate-polyoxyethylene terephthalate soil release promoting polymer.
DETAILED DESCRIPTION OF THE INVENTION
[0031] The nonionic surfactants which are contemplated can generally be any of the nonionics
known to be useful as detergents for cleaning soiled fabrics.
[0032] Suitable nonionic surface active agents are commercially available and are derived
from the condensation of an alkylene oxide or equivalent reactant and a reactive-hydrogen
hydrophobe. The hydrophobic organic compounds may be aliphatic, aromatic or heterocyclic,
although the first two classes are preferred. The preferred types of hydrophobes are
higher aliphatic alcohols and alkyl phenols, although others may be used such as carboxylic
acids, carboxamides, mercaptans, sulphonamides, etc. The ethylene oxide condensates
with higher-alkyl phenols or higher fatty alcohols represent preferred classes of
nonionic compounds. Usually, the hydrophobic moiety should contain at least about
6 carbon atoms, and preferably at least about 8 carbon atoms, and may contain as many
as about 50 carbon atoms or more, a preferred range being from about 8 to 22 carbon
atoms, especially from 10 to 18 carbons for the aliphatic alcohols, and 12 to 20 carbons
for the higher alkyl phenols. The amount of alkylene oxide will vary considerably
depending upon the hydrophobe but as a general guide and rule, at least about 3 moles
of alkylene oxide per mole of hydrophobe up to about 200 moles, preferably from about
3 to 50 moles, more preferably 5 to 20 moles of alkylene oxide per mole hydrophobe
will provide the required cleaning performance and compatibility with the other components.
[0033] Preferred classes of nonionic surfactants are represented by the formulae

[0034] werein R is a primary or secondary alkyl chain of from out 8 to 22 carbon atoms and
n is an average of from 5 to 50, preferably 5 to 20, especially 6 to 13;
and

[0035] werein R¹ is a primary or secondary alkyl chain of from 4 to 12 carbon atoms, and
m is an average of 5 to 50, preferably 5 to 20, especially 6 to 13.
[0036] The preferred alcohols from which the compounds of formula (I) are prepared include
lauryl, myristyl, cetyl, stearyl and oleyl and mixtures thereof. Especially preferred
values of R are C₁₀ to C₁₈ with the C₁₂ to C₁₅ alkyls and mixtures thereof being especially
preferred.
[0037] The preferred values of R¹ in formula (II) are from C₆ to C₁₂, with C₉ and C₉, including
octyl, isooctyl and nonyl being especially preferred.
[0038] Typical examples of a nonionic compound of formula (I) are lauryl alcohol condensed
with 5 or 7 or 11 moles ethylene oxide. Typical examples of a nonionic compound of
formula (II) are isooctyl phenol or nonyl phenol condensed with 3 to 8 moles ethylene
oxide.
[0039] Other nonionic compounds which may be used include the polyoxyalkylene esters of
the organic acids such as the higher fatty acids, the rosin acids, tall oil acids,
acids from petroleum oxidation products, etc. These esters will usually contain from
about 10 to about 22 carbon atoms in the acid moiety and from about 3 to about 30
moles of ethylene oxide or its equivalent.
[0040] Still other nonionic surfactants are the alkylene oxide condensates with the higher
fatty acid amides and amines. The fatty acid group will generally contain from about
8 to about 22 carbon atoms and this will be condensed with about 3 to about 30 moles
of ethylene oxide as the preferred illustration. The corresponding carboxamides and
sulphonamides may also be used as substantial equivalents.
[0041] Although ethylene oxide has been exemplified as the alkylene oxide group present
in the nonionic surfactants, it is also within the scope of the invention to use nonionic
surfactants formed with propylene oxide, preferably mixture of ethylene oxide and
propylene oxide. For example, the nonionic surfactants sold under the well-known Plurafac
series, such as Plurafac B-26, the reaction product of a higher linear alcohol and
a mixture of ethylene and propylene oxides, containing a mixed chain of ethylene oxide
and propylene oxide, terminated by a hydroxyl group.
[0042] In the preferred poly-lower alkoxylated higher alkanols, to obtain the best balance
of hydrophilic and lipophilic moieties, the number of lower alkoxides will usually
be from 40% to 100% of the number of carbon atoms in the higher alcohol, preferably
40 to 60% thereof and the nonionic detergent will preferably contain at least 50%
of such preferred poly-lower alkoxy higher alkanol. Higher molecular weight alkanols
and various other normally solid nonionic detergents and surface active agents may
be contributory to gelation of the liquid detergent formulations and consequently,
will preferably be omitted or limited in quantity in the present liquid compositions,
although minor proportions thereof may be employed for their cleaning properties,
etc. With respect to both preferred and less preferred nonionic detergents, the alkyl
groups present therein will most preferably be linear although a minor degree of slight
branching may be tolerated, such as at a carbon next to or two carbons removed from
the terminal carbon of the straight chain and away from the ethoxy chain, if such
branched alkyl is no more than three carbon: in length. Normally the proportion of
carbon atoms in such a branched configuration will be minor, rarely exceeding 20%
of the total carbon atom content of the alkyl. Similarly, although linear alkyls which
are terminally joined to the ethylene oxide chains are highly preferred and are considered
to result in the best combination of detergency, biodegradability and non-gelling
characteristics, medial or secondary joinder to the ethylene oxide in the chain may
occur. It is usually in only a minor proportion of such alkyls, generally less than
50% but, as is in the case of, for example, the Tergitols, may be greater. Also when
propylene oxide is present in the lower alkylene oxide chain, it will usually be less
than 20% thereof and preferably less than 10% thereof, although higher percentages
may also be used as in some of the Plurafacs.
[0043] The amount of the nonionic will generally be the minimum amount which when added
to the wash water will provide adequate cleaning performance. Generally, amounts ranging
from about 1 to about 50%, preferably from about 10 to about 40%, and especially preferably
from about 12 to 35% by weight of the composition, can be used.
[0044] A second essential ingredient in the instant formulations is the cationic fabric
softener. Softening agents are used to render fabrics or textiles soft, and the terms
"softening" and "softener" refer to the handle, hand, touch or feel; this is the tactile
impression given by fabrics or textiles to the hand or body and is of aesthetic and
commercial importance. The cationic fabric softeners used in the present invention
are the mono-higher alkyl quaternary ammonium compounds represented by the following
formula:

wherein R² is a long chain aliphatic radical having from 10 to 22 carbon atoms, and
the three R³'s are, independently, lower alkyl or hydroxy alkyl radicals and X is
a water-soluble, salt-forming anion such as halide, i.e. chloride, bromide, iodide;
sulfate; citrate, acetate; hydroxide; methosulfate; ethosulfate; phosphate; or similar
inorganic or organic solubilizing radical. The carbon chain of the aliphatic radical
containing 10 to 22 carbon atoms, especially 12 to 20, preferably 12 to 18, and especially
preferably 16 to 18 carbon atoms, may be straight or branched, and saturated or unsaturated.
The lower alkyl radicals have from 1 to 4 carbon atoms, preferably 1 or 2 carbon atoms,
especially preferably methyl, and may contain a hydroxyl radical. Preferably, the
long carbon chains are obtained from long chain fatty acids, such as those derived
from tallow and soybean oil. The terms "soya" and "tallow", etc., as used herein refer
to the source from which the long chain fatty alkyl chains are derived. Mixtures of
the quaternary ammonium compound fabric softeners may be used. The preferred ammonium
salt is a mono-higher alkyl trimethyl ammonium chloride wherein the alkyl group is
derived from tallow, hydrogenated tallow or stearic acid. Specific examples of quaternary
ammonium softening agents of the formula III) suitable for use in the composition
of the present invention include the following: tallow trimethyl ammonium chloride,
hydrogenated tallow trimethyl ammoniun chloride, trimethyl stearyl ammonium chloride,
triethyl stearyl ammonium chloride, trimethyl cetyl ammonium chloride, soya trimethyl
ammonium chloride, stearyl dimethylethyl ammonium chloride, tallow-diisopropylmethyl
ammonium chloride, the corresponding sulfate, methosulfate, ethosulfate, bromide and
hydroxide salts thereof, etc.
[0045] Another useful class of commercially available quaternary ammonium fabric softener
compounds are the ethoxylated compounds of formula (IV):

wherein X, R² and R³ are as defined for formula (III) and x and y are each positive
numbers of at least 1 and the sum x + y is from 2 to 15.
[0046] An especially preferred compound of formula (IV) is sold by Armak under the trademark
Ethoquad 18/12 (R³ = CH₃-, R² = C₁₈ alkyl, x + y = 2).
[0047] The amount of the monoalkyl quaternary cationic fabric softener can generally range
from about 1 to about 20%, preferably from about 2 to about 16%, and especially preferably
from about 2 to 10%, by weight of the composition.
[0048] The weight ratio of the nonionic surface active agent to the cationic fabric softener
can be within the range of from about 1:1 to 15:1, preferably from about 1.5:1 to
10:1, especially preferably from about 2:1 to 8:1.
[0049] The anionic detergents which are contemplated can generally be any of the anionics
known to be useful in the formulation of detergents for cleaning soiled fabrics.
[0050] The most preferred anionic detergent is a sulfosuccinamate surfactant.
[0051] These compounds are characterised by having a 10 to 22 open chain hydrocarbon substituent
bonded to the nitrogen atom of the carbonamide

group present at one carboxy terminal end group of the succinamate moiety, and by
the sulfonyl (-SO₃-) group bonded to one of the carbon atoms at the alpha- or beta-position
with respect to the carbonamide group.
[0052] Examples of the sulfosuccinamate compound include disodium N-octadecyl sulfosuccinamate
(available as Alkasurf SS-TA from Alkaril Chemicals, or as ASTROMID 18 from Alco Chemical
Corp.), disodium N-oleyl sulfosuccinamate (available from Alkaril Chemicals as Alkasurf
SS-OA); tetrasodium N-(1,2-dicarboxyethyl)N-octadecyl sulfosuccinamate (available
as ASTROMID 22 from Alco Chemical Corp., as Monawet SNO-35 from Mona Industries, Inc.
or Aerosol 22 from American Cyanamid Corp.).
[0053] More generally, however, suitable sulfosuccinamate compounds can be represented by
the following general formula (V):

[0054] where Z is a monovalent salt-forming cation, such as alkali metal, ammonium and amine,
[0055] R⁴ is hydrogen, lower alkyl, carboxy(lower alkyl), or 1,2-dicarboxy(lower alkyl),
and
[0056] R⁵ is an open chain hydrocarbon of from 10 to 22 carbon atoms.
[0057] As the alkali metal sodium potassium, or lithium are preferred and sodium is especially
preferred.
[0058] The monovalent amine salt forming cation may be, for example, a mono-, di-, or tri-lower
alkanolamine, such as mono-, di-, or triethanolamine.
[0059] The "lower alkyl" group can have from 1 to 5, preferably 1 to 3, especially preferably
1 to 2 carbon atoms.
[0060] The open chain hydrocarbon for R⁵ may be saturated or unsaturated, and may be a straight
chain or branched chain group, preferably an alkyl or alkenyl of from 14 to 18, especially
16 to 18 carbon atoms, such as, for example, tallow, hydrogenated tallow, fractionated
tallow, oleyl, octadecyl, stearyl, etc.
[0061] When R⁴ is carboxy(lower alkyl) or 1,2-dicarboxy(lower alkyl), such as carboxyethyl,
carboxypropyl, carboxy-2-methyl-ethyl, 1,2-dicarboxyethyl, etc., the carboxyl group
or groups may be in the form -COOY where Y is the group Z or lower alkyl; preferably
Y is Z, especially preferably sodium.
[0062] The amount of the sulfosuccinamate must be carefully selected depending on such factors
as the nature and amount of ithe nonionic surfactant and cationic fabric softener,
the particular sulfosuccinamate, as well as the anticipated washing conditions, including,
for example, type of fabrics, soils, wash temperature, water hardness, etc. Generally,
however, best cleaning performance has been achieved when the amounts of sulfosuccinamate
surfactant, nonionic surfactant and mono-higher alkyl cationic fabric softener are
each in the following ranges -in parts by weight based on the total composition:

Within the above ranges the weight ratios of (a):(b), (a):(c) and (b):(c) are also
important, although again, the optimum values may differ for different compounds and
different washing conditions. For most cases, however, the ratios (a):(b) and (a):(c)
are in the range of from about 15:1 to 1:1, preferably 10:1 to 1.5:1, especially preferably
8:1 to 2:1. The weight ratio of (b):(c) should generally be within the range of from
about 3:1 to 1:3, preferably from about 2:1 to 1:2, especially preferably from about
1.3:1 to 1:2. further, the weigh ratio of (a):(b)+(c) is from about 10:1 to 1:1, preferably
6:1 to 1.5:1.
[0063] For example, in accordance with one preferred embodiment of the invention wherein
the nonionic is a C₁₂-C₁₅ alcohol ethoxylated with an average of 7 moles ethylene
oxide per mole of alcohol, (such as the Shell Oil Co. product Neodol 25-7) in an amount
of from about 15 to 25% by weight of the total composition, the monoalkyl quaternary
fabric softener is tallow trimethyl ammonium chloride, and the sulfosuccinamate is
tetrasodium N-(1,2-dicarboxyethyl)-N-octadecyl sulfosuccinamate (e.g. Monawet SNO-35)
the preferred ratios of the nonionic to quaternary and quaternary to the sulfosuccinamate
are in the range of from about 12:1 to 4:1 and from about 1:1 to 1:2, respectively,
under typical washing conditions, e.g. 120°F, 0.2% product concentration, 100 ppm
hardness ions, for a broad range of fabrics and soils.
[0064] Other anionic detergents may be utilized in the present invention, in lieu of the
sulfosuccinamate surfactant, but in a particularly preferred embodiment of the invention
the sulfosuccinamate surfactant is utilized in conjunction with an anionic surfactant.
[0065] Thus, as disclosed in the Applicant's aforementioned copending application Serial
No. 661,775, the softening and antistatic performance of the mixture of nonionic surfactant
and mono-higher alkyl quaternary ammonium compound fabric softening agent is significantly
enhanced by the use of a linear alkyl aromatic sulfonate surfactant, preferably as
a 1:1 molar complex with the quaternary fabric softener.
[0066] Examples of suitable anionic surfactants include the water-soluble salts, e.g. the
sodium, potassium, ammonium, alkylolammonium salts of higher linear alkyl aromatic
sulfonates containing about 8 to 26 carbon atoms, preferably 10 to 22 carton atoms,
in the alkyl radical. (The term alkyl includes the alkyl portion of the higher acyl
radicals.)
[0067] Preferred examples of the linear alkyl aromatic sulfonates are those containing from
10 to 16 carbon atoms in the linear alkyl radical, e.g., the sodium, potassium, and
ammonium salts of higher linear alkyl benzene sulfonates, higher linear alkyl toluene
sulfonates, higher linear alkyl phenol sulfonates, and higher linear alkyl naphthalene
sulfonates. The linear higher alkyl benzene sulfonates such as the C₁₀-C₁₆ alkyl,
especially C₁₀-C₁₄ alkyl, for example C₁₂ (n-dodecyl) alkyl benzene sulfonates, are
especially preferred anionic surfactants.
[0068] In addition to the linear alkyl aromatic sulfonates another preferred class of anionic
surfactants which can enhance the overall performance, especially anti-static and
softening, of the invention detergent compositions include the alkyl ether sulfates
of formula R⁶O(CH₂CH₂O)p-SO₃M,
[0069] where R⁶ is higher alkyl having from 8 to 20, especially 10 to 18, carbon atoms,
[0070] M is a solubilizing salt-forming cation, such as an alkali metal ion, alkaline earth
metal ion, ammonium ion, ammonium ion substituted with from 1 to 3 lower alkyls, or
mono-, di- and tri-alkanolamines having 2 to 3 carbon atoms in the alkanol group or
groups, and p is a number of from 2 to 8, preferably 2 to 6 (especially from 1/5 to
1/3 or 1/2 the number of carbon atoms in R⁶). A preferred polyethoxylated alcohol
sulfate surfactant is available from Shell Chemical Company and is marketed as Neodol
25-3S. This material, the sodiun salt, is normally sold as a 60% active ingredient
product in an aqueous solvent medium. Although Neodol 25-3S is the sodium salt, the
potassium salt and other suitable soluble salts of the triethenoxy higher alcohol
(12 to 15 carbon atoms) sulfate and other such compounds herein described, such as
have already been referred to and those described below, may also be used in partial
or complete substitution for the sodium salts. An with the various materials of the
present compositions, mixtures thereof may be utilized.
[0071] Examples of the higher alcohol polyethenoxy sulfates which may be employed as the
anionic surfactant constituent of the present liquid detergents or as partial substitutes
for this include: mixed C₁₂₋₁₅ normal or primary alkyl triethenoxy sulfate, sodium
salt; myristyl triethenoxy sulfate, potassium salt; n-decyl diethenoxy sulfate, diethanolamine
salt; lauryl diethenoxy sulfate, ammonium salt; palmityl tetraethenoxy sulfate, sodium
salt; mixed C₁₄₋₁₅ normal primary alkyl mixed tri- and tetraethenoxy sulfate, sodium
salt; stearyl pentaethenoxy sulfate, trimethylamine salt; and mixed C₁₀₋₁₈ normal
primary alkyl triethenoxy sulfate, potassium salt. Minor proportions of the corresponding
branched chain and medially alkoxylated detergents, such as those described above
but modified to have the ethoxylation at a medial carbon atom, e.g. one located four
carbons from the end of the chain, may be employed and the carbon atom content of
the higher alkyl will be the same. Similarly, the joinder to the normal alkyl may
be at a secondary carbon one or two carbon atoms removed from the end of the chain.
In either case, as previously indicated, only minor proportions should be present,
such as 10 or 20%, in the usual case.
[0072] As is the case with the preferred nonionic detergents, the present poly-lower alkoxy
higher alkanol sulfates are readily biodegradable and of better detergency when the
fatty alkyl is terminally joined to the poly(lower oxyalkylene) chain, which is terminally
joined to the sulfate. Again, as in the case of the nonionic detergents, a small proportion,
for example, mot more than 10%, of branching, and medial joinder are tolerable. Generally,
it will be preferred for the alkyl in the anionic alkoxylate surfactant as in the
nonionic detergent to be a mixture of different chain lengts, as 11, 12, 13, 14 and
15 carbon atoms or 12 and 13 carbon atom chains, rather than all of one chain length.
Nevertheless, the invention is applicable to liquid detergents containing pure nonionic
and anionic components.
[0073] Of course, ethylene oxide is the preferred lower alkylene oxide of the anionic alkoxylate
surfactant, as it is with the nonionic detergent, and the proportion thereof in the
polyethoxylated higher alkanol sulfate is preferably 2 to 5 mols of ethylene oxide
groups present per mol of anionic surfactant and in more preferred compositions from
2 to 4 mols will be present, with three mols being most preferred, especially when
the higher alkanol is of 12 to 13 carbon atomns or 11 or 12 to 15 carbon atoms. To
maintain the desired hydrophile-lipophile balance, when the carbon atom content of
the alkyl chain is in the lower portion of the 10 to 18 carbon atom range, the ethylene
oxide content of the detergent may be reduced to about two mols per mol; whereas,
when the higher alkanol is of 16 to 18 carbon atoms, in the higher part of the range,
the number of ethylene oxide groups may be increased to 4 or 5 and in some cases to
as high as 8 or 9. Similarly, the salt-forming cation may be altered to obtain the
best solubility. It may be any suitable solubilizing metal or radical but will most
frequently be alkali metal, e.g. sodium, or ammonium. If lower alkylamine or alkanolamine
groups are utilized, the alkyls and alkanols will usually contain from 1 to 4 carbon
atoms and the amines and alkanolamines may be mono-, di- and tri-substituted, as in
monoethanolamine, diisopropanolamime and trimethylamine.
[0074] The poly-lower alkoxy higher alkanol sulfates and the linear alkyl aromatic sulfonates,
are highly preferred anionic surfactants in the present compositions but other anionic
surfactants may be employed with them or in place of such compounds. Particularly,
alpha-olefin sulfonates, paraffin sulfonates and higher alcohol sulfates may be used.
The olefin sulfonate salts generally contain long chain alkenyl sulfonates or long
chain hydroxyalkane sulfonates (with the OH being on the carbon atom which is not
directly attached to the carbon atom bearing the -SO₃H group). The olefin sulfonate
detergent usually comprises a mixture of such types of compounds in varying amount,
often together with long chain disulfonates or sulfate-sulfonates. Such olefin sulfonates
are described in many patents, such as U.S. patent Nos. 2,061,618; 3,409,637; 3,332,880;
3,420,875; 3,428,654; 3,506,580 and British Patent No. 1,129,158. The number of carbon
atoms in the olefin sulfonate is usually within the range of 10 to 25, more commomly
10 to 20, or 12 to 18, e.g. a mixture principally of C₁₂, C₁₄ and C₁₆, having an average
of about 14 carbon atoms, or a mixture principally of C₁₄, C₁₆ and C₁₄, having an
average of about 16 carbon atoms.
[0075] Another class of useful anionic surfactant is that of the higher paraffin sulfonates.
These may be primary or secondary paraffin sulfonates made by reacting long chain
alpha-olefins and bisulfites, e.g. sodium bisulfite, or paraffin sulfonates having
the sulfonate groups distributed along the paraffin chain, such as the products made
by reacting a long chain paraffin with sulfur dioxide and oxygen under ultraviolet
light, followed by neutralization with sodium hydroxide or other suitable base (as
in U.S. Patents 2,503,280; 2,507,088; 3,260,741; 3,372,188, and German Patent 735,096).
The paraffin sulfonates preferably contain from 13 to 17 carbon atoms and will normally
be the monosulfonate but if desired, may be di-, tri- or higher sulfonates. Typically,
the di- and poly-sulfonates will be employed in admixture with a corresponding monosulfonate,
for example, as a mixture of mono- and di-sulfonates containing up to about 30% of
the disulfonate. The hydrocarbon substituent thereof will preferably be linear but
if desired, branched chain paraffin sulfonates can be employed, although they are
not as good with respect to biodegradability. The paraffin sulfonate may be terminally
sulfonated or the sulfonate substituent may be joined to the 2-carbon or other carbon
atom of the chain and, similarly, any di- or higher sulfonate employed may have the
sulfonate groups distributed over different carbons of the hydrocarbon chain.
[0076] The paraffin sulfonates and olefin sulfonates are used in the form of their alkali
metal, e.g. sodium and potassium, ammonium, or mono-, di-, and tri-loweralkanol-amine
salts, or mixtures thereof. Triethanolamine is the preferred alkanolamine salt forming
cation. The linear alkylbenzene sulfonates and alkyl ether sulfates are especially
preferred as the anionic surfactant.
[0077] These anionic surfactants can not only interact with the mono-higher alkyl quaternary
compound to improve softening and anti-static performance but also function to cause
various additional optional detergent adjuvants, as described in detail more fully
below, especially optical brighteners, to deposit more effectively on the fabrics
being laundered.
[0078] Although no specific rules can be applied for every combination of ingredients and
for all washing conditions, it has been observed as a general rule that as between
the two preferred classes of anionic surfactants, the linear alkyl benzene sulfonates
are usually slightly more effective than the alkyl ether sulfates in terms of softening
performance but slightly inferior in terms of cleaning performance - although the
addition of any anionic surfactant often provides only slight improvements in cleaning
performance as compared to the same composition without anionic surfactant. Naturally
mixtures of two or more of the anionic surfactants can be used.
[0079] Since the anionic surfactant presumably forms a complex with the cationic softener
to provide the enhanced softening/anti-static performance without interfering with,
or slightly improving, the cleaning performance of the nonionic or with the brightener,
in the detergent formula, the ratio of cationic to anionic is particularly critical
since large excesses of either component could interfere with overall performance.
Accordingly, ratios of cationic to anionic of from about 1.3:1 to 1:1,5, preferably
1.2:1 to 1:1.2, especially preferably 1.1:1 to 1:1.1 and most preferably about 1:1
will provide improved softening performance and anti-static performance, as well as
improved whitening and perhaps cleaning.
[0080] The total amount of the cationic/anionic softener mixture in the composition generally
will range from about 2 to 20%, preferably 5 to 15%, by weight based on the total
composition. Moreover, the total amount of cationic softener and anionic surfactant
will generally be in the range of from about 20 to 100%, preferably 30 to 80%, by
weigt, based on the nonionic surfactant. Furthermore, within the above amounts and
ratios, the cationic/anionic softener mixture will be compatible with the nonionic
surfactant, sulfosuccinamade and the optical brightemer, etc.
[0081] In any event, the total amount of anionic detergent should be within the range of
1 to 30% by weight of the total composition, preferably, 2 to 26% by weight. Preferably,
the anionic detergent comprises a sulfosuccinamate compound and an anionic surfactant
selected from the group consisting of linear higher alkyl aromatic sulfonate, poly(lower
alkoxy)higher alkanol sulfonate, olefin sulfonate and paraffin sulfonate with the
sulfosuccinamate compound being present in an amount of 2 to 20% by weight of the
total composition and the anionic surfactant being present in an amount of up to 10%
by weight of the total composition. Most preferably, the weight ratio of the cationic
fabric softener-anti-static agent to the sulfosuccinamide compound is in the range
of from about 3:1 to 1:3; and the weight ratio of the cationic fabric softener-anti-static
agent to said anionic surfactant selected from the group consisting of linear higher
alkyl aromatic sulfonate, poly(lower alkoxy)higher alkanol sulfonate, olefin sulfonate
and paraffin sulfonate is in the range of from about 1.3:1 to 1:1.5. Additionally,
it is preferred that the weight ratio of the sulfosuccinamate compound to the anionic
surfactant selected from the group consisting of linear higher alkyl aromatic sulfonate,
poly(lower alkoxy)higher alkanol sulfonate, olefin sulfonate and paraffin sulfonate
is in the range of from about 1.3:1 to about 1:1.5, most preferably, about 1.2:1 to
1:1.2.
[0082] The soil release promoting polymer which as a water-soluble fraction is an essential
component of the compositions of this invention is a polymer of polyethylene terephthalate
and polyoxyethylene terephthalate which is dispersible in water and is depositable
from wash water containing nonionic detergent onto synthetic organic polymeric fibrious
materials, especially polyesters and polyester blends, so as to impart soil release
properties to them, while maintaining them comfortable to a wearer and not preventing
or significantly inhibiting vapor transmission through them. Such polymers have also
been found to possess anti-redeposition properties. They tend to maintain soil, such
as oily soil, dispersed in wash water during washing and rinsing, so that it is not
redeposited on the laundry. Useful products are copolymers of ethylene glycol or another
suitable source of ethylene oxide moiety, such as polyoxyethylene glycol and terephthalic
acid or a suitable source of the terephthalic moiety. The copolymers may also be considered
to be condensation products of polyethylene terephthalate, sometimes referred to as
ethylene terephthalate polymer, and polyoxyethylene terephthalate. While the terephthalate
moiety is preferred as the sole dibasic acid moiety in the polymer, it is within the
scope of the invention to utilize relatively small proportions of isophthalic acid
and/or orthophthalic acid (and sometimes other dibasic acids) to modify the properties
of the polymer. However, the proportions of such acids will normally be less than
10% of the phthalic moieties present in the final polymer, and, preferably, less than
5%.
[0083] The weight average molecular weight of the polymer may be as low as 8,000 or as high
as 60,000. In the polymers utilized the polyoxyethylene will be of a molecular weight
in the range of about 500 to 10,000 preferably about 2,500 to 5,000, more preferably
3,000 to 4,000. In such polymers, the molar ratio of polyethylene terephthalate units
(A)

to polyoxyethylene terephthalate units (B)

will be within the range of 2:1 to 6:1, preferably 5:2 to 5:1, most preferably 3:1
to 4:1. The proportion of ethylene oxide to phthalic moiety in the polymer will be
at least 10:1, preferably 20:1 or more, and most preferably within the range of 20:1
to 30:1.
[0084] Although suitable methods for making these polymers are described in the literature,
such polymers may be considered as having been randomly constructed from polyethylene
terephthalate and polyoxyethylene terephthalate moieties such as may be obtained by
reacting polyethylene terephthalate (e.g., spinning-grade) and polyoxyethylene terephthalate
or reating the ethylene and polyoxyethylene glycols and acid (or acid precursor) thereof.
[0085] The described materials are available from various sources. Useful copolymers for
the manufacture of the water-soluble fraction of the present invention are marketed
by Alkaril Chemicals, Inc. and commercial products of such company are sold by them
under the trademarks Alkaril QCJ and Alkiril QCF. Products available from them in
limited quantities, designated 2056-34B and 2056-41 have also been found to be useful.
The QCJ product, normally supplied as an aqueous dispersion (about 15% solids) is
also available as an essentially dry solid, i.e. the QCF product. When it is anhydrous
or low in moisture content (less than about 2% moisture), it looks like a light brown
wax in which the molar ratio of ethylene oxide to phthalic moiety is about 22:1. In
a 16% dispersion, the viscosity at 100°F is about 96 centistokes. The 2056-41 polymer
is like a hard, light brown wax and the ethylene oxide to phthalic moiety ratio is
about 16 to 1, with the viscosity, under the same conditions as previously mentioned,
being about 265 centistokes. The 2056-34B polymer appears to be a hard, brown wax
in which the molar ratio of ethylene oxide to phthalic moiety is about 10.9 to 1,
and its viscosity, under the same conditions as previously mentioned, is about 255
centistokes. The QCJ/QCF polymers have melting points (differential thermal analysis)
of about 50-60°C, a carboxyl analysis of 5 to 30 equivalents/10⁶ grams, and a pH of
6-8 in distilled water at 5 weight % concentration.
[0086] In order to produce the water-soluble fraction of the polymer utilized in the present
invention, the above-noted polymers are subjected to a cold filtration process while
in aqueous dispersion.
[0087] This cold filtration process separates a "water-insoluble" fraction as a precipitate
which is rich in polyethylene terephthalate and exhibits little or no soil release
activity. The filtrate contains a "water-soluble" fraction which exhibits soil release
activity and is rich in polyoxyethylene terephthalate. The filtrate may be further
separated into active fractions by extraction with an organic solvent, e.g., a polar
organic solvent such as an alkyl halide, especially a lower alkyl halide, e.g., methylene
chloride.
[0088] In particular, a 5-10% by weight aqueous dispersion of the polyethylene terephthalate-polyoxyethylene
terephthalate polymer is chilled to less than 40°F and then filtered to recover insoluble
material. The filtrate, so-produced, constitutes the "water-soluble" fraction of a
polyethylene terephthalate-polyoxyethylene terephthalate soil release promoting polymer
used in the present invention. This "water-soluble" fraction may be further extracted
with an alkyl halide solvent, such as methylene chloride, to form two sub-fractions
either of which may be used in lieu of the total "water-soluble" fraction.
[0089] As will be readily recognized, filtration may be replaced by any other technique
suitable for solid-liquid separation, e.g., decantation, centrifugation, etc. Likewise,
the "water-soluble" fraction may be recovered by drying of the dispersion(s).
[0090] The liquid carrier for the instant liquid detergent composition is preferably an
aqueous one, and may be water alone or may be substantially water with additional
solvents added for solubilizing particular ingredients, as is well known in the art.
Because of the availability of water and its minimum cost, it is preferred to use
water as the major solvent present. Yet, amounts of other solvents, generally up to
20%, and preferably a maxinum of 15% of the total content, may be used. Generally,
such a supplementing solvent will be either a lower alkanol or a lower diol or polyol,
e.g. ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol, or the like.
Etheric polyols such as diethylene glycol and those known as cellosolves may also
be used.
[0091] In addition to the supplemental solvent, it is also generally preferred to include
a hydrotropic material in the formulation to maximize the compatibility of all of
the active ingredients and to make the liquid formulation more homogeneous and stable.
Examples of suitable hydrotropes include the alkali metal aryl sulfonates, such as
sodium benzene sulfonate, sodium toluene sulfonate, sodium xylene sulfonate, and the
corresponding potassium salts. The hydrotrope can be used in amounts up to about 15%,
preferably up to 10% by weight of the total composition, for example, 1 to 8%, or
2 to 6%. Although the aqueous carriers are preferred, non-aqueous liquid carriers,
such as the organic cosolvents mentioned above, may be used as the sole or major liquid
carrier, i.e. the non-aqueous liquid carriers may comprise from about 50 to 100% by
weight of the liquid carrier, the balance, if any, constituting water and/or hydrotropic
material. Mixtures of two or more organic solvents may also be used.
[0092] Various selected compatible adjuvants may also be present in the detergent composition
to give it additional desired properties, either of functional or aesthetic nature.
Thus, there may be included in the formulation: enzymes, e.g. proteases, amylases,
lipases, etc., and mixtures thereof; bleaching agents; bleach activators and stabilizers;
soil-suspending or anti-redeposition agents, e.g. polyvinyl alcohol, sodium carboxymethyl
cellulose, hydroxypropyl methyl cellulose; dyes, bluing agents, pigments, optical
brighteners, e.g., cotton, amide and polyester brighteners; bactericides, e.g. hexachlorophene;
preservatives, e.g. methyl parasept or sodium benzoate; ultraviolet absorbers; pH
modifying agents, e.g. amines, pH buffers; opacifying agents, e.g. behenic acid, polystyrene
suspensions, etc.; and perfumes. The adjuvants, of course, will be chosen to be compatible
with the main constituents of the detergent formulation.
[0093] Of the adjuvants mentioned perhaps the most important for functional effect are the
optical brighteners because the modern housewife has come to expect that washed clothing
will no longer merely be clean and white but will also be bright in appearance. The
optical brighteners are substantive to textiles being washed (such substantivity may
be selective) and sometimes are of comparatively low solubilities. Accordingly, it
is important that they be maintained in solution in the liquid detergent composition
and, even more important, they must be immediately dispersed in the wash water so
as to avoid producing a was containing noticeable brightened spots, rather than a
uniformly bright appearance. Here, the choice of brightener to obtain best results
will be ascertainable to one of skill in the art. It has been found that relatively
small quantities of brighteners should be used, so as not exeed the limits of solubilities.
Also, within the class of these naterials certain brighteners have been found to be
especially readily dissolved, and thus are suitable for incorporation in these products.
Fortunately, such preferred brighteners include both cotton and amide-polyester-brighteners,
making them suitable for use with laundries containing a variety of material and syntheric
materials. Among the commercial brighteners that are used in the present system are
Tinopal UNPA, Tinopal CBS, Tinopal 5BM (Ciba-Geigy), Arctic White CC, Artic White
CWD (Hilton Davis), and the following Phorwhites from BHC, BKL, BUP, BBH solution
BRV solution, DCR liquide, DCBVF, EV liquid, DBS liquide and ANR.
[0094] Other types of optical brighteners which give superior whitening effects are those
components having no sulfonate moieties. The preferred class of brighteners for use
in the present invention include the 2-(4-styrylphenyl)-2H-naphthol[1,2-d] triazoles,
4,4′-bis(1,2,3-triazol-2-yl)stilbenes, 4,4′-bis(styryl) bisphenyls, and the y-aminocoumarins.
Specific examples of these brighteners include 4-methyl-7-dimethylamino coumarin,
1,2-bis(benzimidazol-2-yl)ethylene, and the 1,3-diphenyl-phrazolines, as well as 2,5-bis(benzoxazol-2-yl)
thiophene, 2-styryl-naphth [1,2-d] oxazole-, and 2-(stilben-4-yl)-2H-naphtho[1,2-d]triazole.
[0095] The optical brightener content of the liquid composition will normally be from about
0.2% to about 3.0%, and preferably from 0.25 to 2.7%. Such concentrations are soluble
in the described liquid detergents and are effective in noticeably brightening the
washed clothing. As mentioned above, the presence of the anionic surfactant can enhance
the uniform deposition of the optical brightener.
[0096] The contents of the other adjuvants is preferably maintained at less than 5%, preferably
less than 3%, by weight of the product. Use of more than the described proportions
of the such compounds can often significantly change the properties, e.g. stability,
of the liquid detergent, and therefore should be avoided.
[0097] Although the liquid detergent softener composition of the present invention is a
stable, clear one-phase liquid, a compatible opacifying agent may be added to inmpart
a creamy appearance to the formulation.
[0098] Still another optional but highly preferred ingredient in the present detergent compositions
is an ethoxylated fatty amine, such as the Ethomeen® series of compounds of Armak
Company and the Varonic® series from Ashland Chemicals. These compounds can be represented
by the general formula

where R⁷ is a fatty alkyl group of from about 10 to 22, preferably 12 to 18, carbon
atoms and the sum of x + y is from about 2 to about 15. The R⁷ group may be saturated
or unsaturated, and, for example, may be derived from coco fatty acid, oleic acid,
soya fatty acid, tallow fatty acid, stearic acid, or mixtures of these acids.
[0099] The ethoxylated amines contribute to improve cleaning, softening and static control.
Usually amounts of the ethoxylated amine up to about 15%, preferably up to about 10%,
for example 1-10%, or 1-8%, especially 2-8%, by weight of the total liquid composition
are satisfactory.
[0100] To assist in solubilizing the detergents and optical brighteners which may be present
in the liquid detergents a small proportion of alkaline material or a mixture of such
materials is often included in the present formulations. Suitable alkaline materials
include mono-, di- and trialkanolamines, alkyl amines, ammonium hydroxide and alkali
metal hydroxies. Of these, the preferred materials are the alkanolamines, preferably
the trialkanolamines and of these, especially triethanolamine. The pH of the final
liquid detergent, containing such a basic materia will usually be neutral or slightly
basic. Satisfactory pH ranges are from, 7 to 10, preferably about 7.5 to 9.5, but
because of pH reading of the liquid detergent, using a glass electrode and a reference
calomel electrode, may be inaccurate, due to the detergent system often being essentially
non-aqueous, a better indication is obtained by measuring the pH of a 1% solution
of the liquid detergent in water. Such a pH will also normally be in the range of
about 7 to 10, preferably 7.5 to 9.5. In the wash water, the pH will usually be in
this range or might be slightly more acidic, as by 0.5 to 1 pH unit, due to the organic
acid content of soiled laundry. For the liquid formulations, the viscosity at 25°C
will be in the range of 40 to 1000 centipoises, preferably from 40 to 500 centipoises,
according to measurements that are made with a Brookfield viscosimeter at room temperature,
suing a No. 1 spindle at 12 revolutions per minute.
[0101] The liquid composition is usually added to wash water in an automatic washing machine
of either the top loading or front loading type so that the concentration thereof
in the wash water may range from about 0.05 to-1.5%, usually 0.1 to 1.2%. Generally,
depending on the type of machine and the degree of loading with the soiled fabrics,
the amount of the liquid formulation to be added will range from about 1/4 cup to
about 1 1/4 cup, with the typical amount being about 1/2 cup (120 milliliters).
[0102] The wash water used may be a fairly soft water or water of reasonable hardness, and
will generally and preferably be used at elevated temperature, especially at about
100°F or higher, such as 120°F to 180°F or higher. The composition of the present
invention is also useful in laundering clothes in very hard waters and at lower temperatures.
Thus, water hardness may range from 0 to over 300 parts per million calculated as
calcium carbonate, and washing temperatures may be from 40° to 120°F or higher. Washing
will be effected in an automatic washing machine in which the washing is followed
by rinsing and spin or other draining or wringing cycles or operations. Of course,
the detergent composition may also be used for hand washing of laundry, in which case
it may sometimes be used full strength oncertain strains on the laundry, or the laundry
may be soaked in a higher concentration solution of detergent before washing.
[0103] The washing operations will generally take from three minutes to one hour, depending
on the fabrics being washed and the degrees of soiling observed. After completion
of washing and the spinning, draining or wringing operations, it is preferred to dry
the laundry in an automatic dryer soon thereafter but line drying may also be employed.
[0104] The present detergent-softener composition dissolves very easily whether the was
water is warm or cold, and very effectively cleans, softens and elimimates static
charge on clothing and other items of laundry without imparting a water repellant
finish thereto. It may be used in either top loading or front loading washing machines
and may be desirably adjusted to foam to the correct extent. The product is an attractive
clear, stable liquid which maintains its activity and uniformity over a long shelf
life. In tests in which the effects of using it are compared to those from the employment
of commercial liquid laundry detergents, it rated very favorably.
[0105] This product may be prepared by simply admixing the various ingredients at room temperature
with agitation to ensure solubilization thereof in the aqueous medium. The order of
addition of ingredients and the temperature of compounding may bevaried without adversely
affecting the formation of the single phase, clear liquid product of instant invention.
[0106] The detergent-softener composition of the present invention exhibits many desirable
characteristics with regard to both physical properties and performance in use. As
to its physical properties, the liquid compositions are pourable and free-flowing
from the container as manufactured and after aging. They exhibit a high degree of
stability upon storage at normal room temperature of the order of about 70°F over
a period of many months without any appreciable precipitation. As a result, the consumer
can utilize them conventionally by addition of very small portions to a laundering
bath, and the detergent and softener will be present in constant composition in each
portion.

Example 2 - Preparation of an Aqueous Laundry Detergent Composition
[0107] The following ingredients were mixed to form an aqueous laundry detergent composition:

[0108] The liquid was clear initially and remained clear after storage for 1 week at 110°F.
[0109] In contrast, when QCF (i.e. untreated QCF) is utilized While compatible adjuvant
materials may be added to render the final product translucent or opaque as desired,
the requirement for a one phase solution of the main ingredients insures that effective
washing and softening power will be obtained with each portion and promotes the stability
and homogeneity of the product. The composition may be packaged in any suitable container
or packaging material such as metal, plastic or glass.
[0110] The following specific examples illustrate various embodiments of the present invention.
It is to be understood, however, that such examples are presented for purpose of illustration
only, and the present invention is in no way to be deemed as limited thereby.
EXAMPLE 1 - Preparation of Water-Soluble Fraction of Polyethylene Terephthalate-Polyoxyethylene
Terephthalate Polymer
[0111] 10,0 grams of Alkaril QCF (Alkaril Chemicals, Inc.) was dissolved/dispersed in 120
ml of water at 95°C with stirring for five minutes. The dispersion/solution was chilled
to near freezing and then filtered to recover 2.2 grams of insoluble material (Fraction
1). The filtrate was extracted with methylene chloride and then the extract was evaporated
to recover 3.5 grams of a second solid (Fraction 2). The remaining aqueous dispersion/solution
was then evaporated to dryness and 3.0 grams of a third solid (Fraction 3) was recovered.
Each of the fractions was characterized as set forth in the following Table 1. in
lieu of the water-soluble fraction, a fine precipitate settles out on aging within
1 day at 110°F.
Example 3 - Dirty Motor Oil Release Tests
[0112] Clean swatches of various types were washed in a standard automatic washing machine
of the loading type, having a washing drum of 17 U.S. gallons capacity. After addition
of the swatches in a standard wash load of about eight pounds, sufficient liquid detergent
composition was added to the wash water to provide a detergent composition concentration
of 0.22% by weight, the wash water being of about 100 ppm hardness, as calcium carbonate,
and having a temparature of 120°F. Two swatches were employed for each of three different
fabrics, i.e. single knit Dacron® , double knit Dacron® , and Dacron®/cotton blend
(65/35) . The fabrics were washed using a normal wash cycle for the washing machine,
including rinsing, and subsequently the swatches were dried.
[0113] After drying, the swatches were soiled in the center thereof with equal volumes (about
three drops) of used dirty motor oil and then they were rewashed with the same detergent
composition. Whiteness readings (Rd Values) of the stained areas of the swatches were
taken, using a reflectometer. Because such readings represent whiteness and the used
motor oil was black, the readings were directly proportional to effectiveness of the
soil release promoting action of the detergent containing the polyethylene terephthalate-polyoxyethylene
terephthalate copolymer or fraction thereof. The same test was run on controls, in
which the swatches were first washed in the detergent composition minus the polyethylene
terephthalate-polyoxyethylene terephthalate copolymer, subsequently, stained with
the dirty motor oil, and then rewashed with same control composition. Tests were conducted
on freshly prepared detergent compositions (initial) and aged detergent compositions
(1 wk at 110°Ff). The results are set forth in Table 2.

[0114] Thus, besides exhibiting excellent physical stability, the "water-soluble" fraction
compositions exhibited excellent chemical stability.
1. A physically stable aqueous laundry detergent composition useful for washing and softening
soiled fabrics comprising a nonionic detergent, an anionic detergent, a cationic fabric
softener-anti-static agent and a water-soluble fraction of a polyethylene terephthalate-polyoxyethylene
terephthalate soil release promoting polymer.
2. The detergent composition of claim 1 wherein said anionic detergent comprises a sulfosuccinamate
compound of the formula (V)

where
Z is a monovalent salt forming cation,
R₄ is hydrogen, lower alkyl, carboxy(lower alkyl) or 1,2-dicarboxy(lower alkyl),
and
R₅ is an open chain hydrocarbon of from 10 to 22 carbon atoms.
3. The detergent composition of claim 1 wherein said anionic detergent is an anionic
surfactant selected from the group consisting of linear higher alkyl aromatic sulfonate,
poly(lower alkoxy) higher alkanol sulfate, olefin sulfonate and paraffin sulfonate.
4. The detergent composition of claim 1 wherein said anionic detergent comprises a sulfosuccinamate
compound of the formula (V) :

where
Z is a monovalent salt forming cation,
R₄ is hydrogen, lower alkyl, carboxy (lower alkyl) or 1, 2-dicarboxy (lower alkyl),
and
R₅ is an open chain hydrocarbon of from 10 to 22 carbon atoms; and an anionic surfactant
selected from the group consisting of linear higher alkyl aromatic sulfonate, poly(lower
alkoxy) higher alkanol sulfonate, olefin sulfonate and paraffin sulfonate.
5. The detergent composition of claim 4, wherein in formula (I):
Z is an alkali metal, ammonium or amine,
R₄ is hydrogen, methyl, ethyl, carboxymethyl, carboxyethyl, 1,2-dicarboxymethyl
or 1,2-dicarboxyethyl, and
R₅ is a saturated or unsaturated, straight or branched chain alkyl or alkenyl group
of from about 14 to 18 carbon atoms.
6. The detergent composition of claim 4, wherein said sulfosuccinamate compound is disodium
N-octadecyl sulfosuccinamate, disodium N-oleyl sulfosuccinamate, or tetrasodium N-(1,2-dicarboxyethyl)N-octadecyl
sulfosuccinamate.
7. The detergent composition of claim 1, which comprises 10 to 50% by weight of said
nonionic detergent, 1 to 30% by weight of said anionic detergent, 1 to 20% by weight
of said cationic fabric softener-anti-static agent, and 0.5 to 20% by weight of said
water-soluble fraction of a polyethylene terephthalate-polyoxyethylene terephthlate
soil release promoting polymer.
8. The detergent composition of claim 7, which comprises 12 to 35% by weight of said
nonionic detergent, 2-26% by weight of said anionic detergent, 2-16% by weight of
said cationic fabric softener-anti-static agent, and 1 to 10% by weight of said water-soluble
fraction of a polyethylene terephthalate-polyoxyethylene terephthalate soil release
promoting polymer.
9. The detergent composition of claim 8, wherein said water-soluble fraction of a polyethylene
terephthalate-polyoxyethylene terepthalate soil release promoting polymer is present
in an amount of 2-5% by weight.
10. The detergent composition of claim 4, wherein the weight ratio of said nonionic detergent
to said cationic fabric softener-anti-static agent is within the range of from about
15:1 to 2:1; the weight ratio of said cationic fabric softener-anti-static agent to
said sulfosuccinamate compound is in the range of from about 3:1 to 1:3; and the weight
ratio of said cationic fabric softener-anti-static agent to said compound selected
from the group consisting of linear higher alkyl aromatic sulfonate, poly(lower alkoxy)
higher alkanol sulfonate, olefin sulfonate and paraffin sulfonate is in the range
of from about 1.3:1 to 1:1.5.
11. The detergent composition of claim 1, wherein said water-soluble fraction of a polyethylene
terephthalate-polyoxyethylene terephthalate soil release promoting polymer is produced
by forming a first 5-10% by weight aqueous dispersion of a polyethylene terephthalate-polyoxyethylene
terephthalate copolymer having a weight average molecular weight of from about 8,000
to 60,000, wherein the polyoxyethylene has a molecular weight in the range of about
500 to 10,000, the molar ratio of polyethylene terephthalate units to polyoxyethylene
terephthalate units is in the range of 2:1 to 6:1 and the proportion of ethylene oxide
to phthalate moiety is at least 10:1; chilling said dispersion to produce a precipitate;
removing said precipitate from said first aqueous dispersion to form second aqueous
dispersion, and recovering said water-soluble fraction from said second aqueous dispersion.
12. The detergent composition of claim 1, wherein prior to recovery of said water-soluble
fraction from said second aqueous dispersion, said second aqueous dispersion is extracted
with methylene chloride.
13. A physically stable aqueous liquid detergent composition for cleaning and softening
soiled fabrics and which can be added to the wash cycle of an automatic laundry machine,said
composition comprising:
(A) from about 10 to 50% by weight of a nonionic detergent selected from the group
consisting of compounds of formulae (I) and (II) :
RO (CH₂CH₂O)nH (I)
wherein R is a primary or secondary alkyl group of from about 8 to 22 carbon atoms
and n is an average of from about 5 to 20;

wherein R₁ is a primary or secondary alkyl group of from 4 to 12 carbon atoms and
m is an average of from about 5 to 20;
(B) from about 1 to 20% by weight of a mono-higher alkyl quaternary ammonium compound
of formulae (III) or (IV):

wherein R₂ is a long chain aliphatic radical of from about 10 to 22 carbon atoms,
each of the R₃'s in formula (III) and the R₃ in formula (IV) are independently lower
alkyl or hydroxy(lower alkyl),
X is a water-soluble salt-forming anion, and
x and y are each positive numbers of at least 1 and the sum x+y is from 2 to 15;
(C) from about 1 to 20% by weight of a sulfosuccinamate detergent compound of the
formula (V):

wherein Z is a monovalent salt forming cation,
R₄ is hydrogen, lower alkyl, carboxy(lower alkyl) or 1,2-dicarboxy(lower alkyl), and
R₅ is an open chain hydrocarbon of from 10 to 22 carbon atoms;
(D) from about 0.5 to 20% by weight of a water-soluble fraction of a polyethylene
terephthalate-polyoxyethylene terephthalate soil release promoting polymer;
(E) up to about 10% by weight of an amionic surfactant selected from the group consisting
of linear higher alkyl aromatic sulfonates, poly(lower alkoxy) higher alkanol sulfates,
olefin sulfonates and paraffin sulfonates;
(F) up to about 3% by weight of an optical brightener;
(G) up to about 15% by weight of an ethoxylated amine;
(H) up to about 5% by weight of an alkaline substance
(I) up to about 3% by weight of enzymes; and
(J) aqueous solvent carrier.
14. The aqueous liquid detergent composition of claim 13, wherein the anionic detergent
(E) is present at a ratio of (C):(E) of from about 1.3:1 to about 1:1.5.
15. The aqueous liquid detergent composition of claim 13, which comprises:
(A) from about 12 to 35%,
(B) from about 2 to 16%,
(C) from about 2 to 16%,
(D) from about 1 to 10%,
(E) in an amount to provide a ratio of (C):(E) of from about 1.2:1 to 1:1.2,
(F) 0.2 to 2%,
(G) up to about 10%,
(H) up to about 3%
(I) up to about 2%,
(J) balance.
16. The aqueous liquid detergent composition of claim 15, wherein said water-soluble fraction
of a polyethylene terephthalate-polyoxyethylene terephtalate soil release promoting
polymer is present in an amount of 2-5% by weight.
17. The composition of claim 15 wherein
(A) is a compound of formula (1) wherein R is a C12 to C₁₅ alkyl or mixture thereof
and n is a number of from about 6 to 13;
(B) is tallowtrimethyl ammonium chloride;
(C) is disodium N-octadecyl sulfosuccinamate, disodium N-oleyl sulfosuccinamate, or
tetrasodium N-(1,2-dicarboxyethyl) N-octadecyl sulfosuccinate, and
(E) is linear dodecylbenzene sulfonate or triethenoxy (C₁₂-C₁₅) alkanol sulfate.
18. The composition of claim 13 which comprises
(A) from about 15 to 25% of a compound of formula (I) wherein R is a C₁₀ to C₁₈ primary
or secondary alkyl and n is from about 6 to 13;
(B) from about 2 to 16% of the sulfosuccinamate compound of formula (V) wherein R⁵
has from about 14 to 18 carbon atoms and R⁴ is hydrogen or 1,2 -dicarboxyethyl, and
an aqueous liquid carrier.
19. The composition of claim 18 wherein the ratio of (B):(C) is in the range of from about
1:1 to about 1:2.
20. The composition of claim 18 which further comprises (D) a linear higher alkyl benzene
sulfonate or polyethoxy higher alkanol sulfate in an amount to provide a ratio of
(C):(D) of from about 1.1:1 to about 1:1.1.
21. The composition of claim 20 wherein the ratio of (B):(C) is in the range of from about
1.5:1 to about 3:1.