Field of The Invention
[0001] The present invention relates to a process for the dehalogenation of organic compounds.
More particularly, the invention relates to the degradation and detoxification of
organic compounds containing halogen atoms.
Background of The Invention
[0002] Organic halogenated compounds are obtained in relatively large amounts as by-products
of various industrial processes. Representative - but not limitative - examples of
such compounds are chloro- or bromo-aromatic compounds, such as polychlorinated and
polybrominated biphenyls (PCBs and PBBs), polychloro heterocyclic compounds, such
as p-hexachlorocyclohexane, and organic solvents such as chlorobenzene. These products
are toxic and hazardous, and must be disposed of in an effective manner.
[0003] Disposal of PCBs by incineration is expensive, due to the thermal stability of these
compounds and it is complicated because highly toxic substances, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin
may be emitted during the process. Only a few specialized incinerators are licensed
to handle such dangerous materials, and the facilities in which these processes are
carried out are accused of causing environmental pollution [New Scientist, 14.10.89].
Because of these problems, many efforts have been made in the art to develop effective
and safe processes for the chemical degradation of halogenated organic compounds,
especially PCBs.
The Prior Art
[0004] Many processes have been provided in the art, including processes for the chemical
treatment and reclamation of oils and liquids containing various quantities of halogenated
hydrocarbons. Processes of this type can be divided into two main categories. The
first type of process includes the reductive dehalogenation, wherein the organic substances
are treated with hydrogen gas (e.g., US 4,840,721, US 4,818,368, EP 306,164 and EP
299,149), or with other hydrogen donating compounds such as alkali hydride (GB 2,189,804),
hypophosphite (US 4,618,686), sodium borohydride (US 6,794,928). These processes present
several severe drawbacks, because they usually involve either complicated hydrogenation
processes using explosive gases at high temperatures and pressures, which must be
performed in specially designed reactors, or they involve the use of special reagents
which are unfavored in industry for economical and safety reasons. Furthermore, HCl
is produced in the process, which, as will be apparent to a skilled chemist, represents
an added complication.
[0005] The second type of dehalogenation processes involves the reactions of metals, alkali
earth metals, alkali metals, or compounds of these metals which are chemically capable
of causing the degradation of a carbon-halogen bond, and which lead to the transformation
of the organic halogen into an inorganic halogen bonded to the metal. Some examples
of such processes are the use of metal or metals compounds such as tin, lead, aluminum,
chloroaluminates, titanium, aluminum oxide, etc. (EP 277,858, EP 184,342 and US 4,435,379).
The most used compounds are alkali metals and alkali metal compounds such as sodium/sodium
hydroxide (US 4,755,628, CA 1,185,265 and EP 99,951), sodium naphthalene, sodium polyethylene
glycol (EP 140,999 and EP 60,089), sodium carbonate, bicarbonate, alcoholates, etc.
(US 4,631,183 and EP 306,398).
[0006] Processes of this type also present considerable drawbacks. For the less reactive
metals, dehalogenation usually involves high temperatures, in the order of 500-1000°C,
which are needed for the cleavage of the stable carbon-chlorine bond, and for the
purpose of bringing the metal into contact with the organic compound in the form of
molten salt, fine dispersion, etc.
[0007] Active metallic compounds, on the other hand, may react at lower temperatures, in
the order of 300-600°C. However, a large excess of expensive reagents are needed,
and the process involves separation and purification steps which render it both complicated
and expensive.
[0008] Metallic compounds capable of inducing the dehalogenation at low temperatures are
very reactive, and therefore their handling and use are limited by the need for rigorous
anhydrous conditions and inert atmosphere, which are required to avoid the danger
of uncontrolled exothermic decomposition of these compounds. These processes, therefore,
are highly hazardous and expensive.
[0009] It is therefore clear that it would be highly desirable to provide a process for
the dehalogenation of waste organic compounds which is both simple and inexpensive.
SUMMARY OF THE INVENTION
[0010] It is an object of the present invention to provide such a process, which overcomes
the drawbacks of the prior art, which does not require specially designed equipment,
which is simple, inexpensive and non-hazardous.
[0011] The process for the dehalogenation of organohalides according to the invention comprises
reacting an organohalide or a mixture of two or more organohalides with an alkali
hydroxide in an alcoholic solution and in the presence of a catalytically effective
amount of a heterogeneous transfer hydrogenolysis catalyst.
Detailed Description of The Invention
[0012] Preferably, the alcohol found in the alcoholic solution is a lower alcohol. The preferred
alkali hydroxide is sodium or potassium hydroxide, although of course other hydroxides
may be employed.
[0013] As to the catalyst, any transfer hydrogenolysis catalyst may be employed, as long
as a catalytically effective amount is provided. A preferred catalyst would be, e.g.,
palladium-on-carbon. This catalyst is usually provided as 5% or 10% palladium-on-carbon.
[0014] The process of the invention is very convenient as far as temperatures are concerned.
Preferred reaction temperatures are comprised between 500 and 150°C. Although higher
temperatures could be employed, this is generally not required. Likewise, the reaction
can proceed at low pressures, e.g., atmospheric pressure in an open vessel. Normally
it will be preferred to carry out the reaction in a closed reactor at pressures lower
than 3-4 atmospheres. This, as will be apparent to a skilled person, is a considerable
advantage over the prior art, which requires considerably higher temperatures and
pressures.
[0015] Furthermore, the process of the invention does not require anhydrous conditions and
may be conveniently carried out in the presence of high water concentrations (e.g.,
25%). This is an additional advantage of the invention, since anhydrous conditions
require efforts and expenses.
[0016] Preferably, the concentration of the organohalides in the reaction mixture is comprised
between 0.1-10% of the reaction mixture, and the alkali hydroxide is present in a
stoichiometric excess over the organohalides. Usually, the concentration of organohalides
remaining in the reaction mixture under normal conditions is lower than the detection
limits.
[0017] The catalyst used in the reaction can be quantitively recovered after completion
of the reaction, washed with water, and reused in a subsequent reaction. Therefore,
this process is highly efficient also from the point of view of catalyst usage.
[0018] The invention also encompasses a process for the purification and the reclamation
of fluids which are contaminated with organohalides, which process comprises contacting
the fluid to be purified with a stoichiometric excess of an alkali hydroxide, with
respect to the organohalide, in an alcoholic solution and in the presence of a catalytically
effective amount of a heterogeneous transfer hydrogenolysis catalyst. Examples of
such contaminated fluids are, e.g., mineral oils, silicon oils, lube oils, gas oils,
transformation oils, which may be contaminated, e.g., with chlorinated organic compounds
in a concentration range of about 0.1-60%.
[0019] The above and other characteristics and advantages of the invention will now be better
understood through the following illustrative and non-limitative examples of preferred
embodiments thereof. In the following examples a commercial dielectric liquid "Pyralene"
was used to determine the effectiveness of the process. "Pyralene" is a trade name
for a dielectric fluid produced by "Progil Fabrique-France". Pyralene contains about
40% by weight trichlorobenzene and 60% PCBs mixture. Total chlorine contents in Pyralene
is approximately 60%. Quantification of total PCB contents in Pyralene was performed
according to the method of A. Kuchen, O. Blaster and B. Marek [Fresenius Z. Anal.
Chem.,
326, 747 (1987)], using sodium aluminum hydride for analytical reductive dehalogenation.
A value of 22% by weight of dehalogenated biphenyl was obtained.
Example 1
[0020] 0.2 ml, 286 mg Pyralene, 780 mg sodium hydroxide (19.5 mmol) and 30 mg palladium
on carbon 10% (0.03 mA palladium) were placed in a glass reactor and 2.5 ml methanol
were added. The reactor was purged twice with nitrogen, sealed and heated to 100°C
for 16 hours. At the conclusion of the reaction, the catalyst was separated by filtration
or centrifugation, washed with tetrahydrofuran (THF) and methanol, and the combined
filtrates were subjected to GC and HPLC analysis.
[0021] No observable remainder of Pyralene were detected. Organic products were mainly benzene
and biphenyl (68 mg, 24.5% weight of starting Pyralene) indicating total dehalogenation
of PCBs, based on dechlorination quantification. The dehalogenated reaction mixture
was subjected to GC analysis using EC detector. The chromatogram (Fig. 1) reveals
that none of the components of the starting Pyralene remained in any detectable amount
after the dehalogenation. The chromatogram of 12 ppm solution of Pyralene (Fig. 2)
consists of 8-10 components with retention times of 43-206 min. Taking into account
that 10% of these components would still be observable, one can conclude that the
concentration of Pyralene components dropped from 120,000 ppm to less than 1.0 ppm,
which means over 99.999% decomposition.
Example 2
[0022] Example 1 was repeated but without introduction of catalyst. No change in the starting
Pyralene was observed in GC-EC analysis and no biphenyl was detected, as observed
in GC-FID and HPLC analysis.
Example 3
[0023] Example 1 was repeated but without nitrogen purging. No residual Pyralene was observed,
indicating less than 1.0 ppm PCBs contents. Biphenyl (24.5% weight) was determined
by GC and HPLC, indicating total hydrogenolysis of PCBs.
Example 4
[0024] Example 1 was repeated but 0.25 ml water was introduced in addition to the methanol.
Biphenyl (25% weight) was determined after the reaction was concluded. GC analysis
revealed that no residual Pyralene components were left. A sole product with low retention
time (20 min.) was detected in a concentration scale 1/10,000 lower than the starting
Pyralene.
Example 5
[0025] 1 ml (1.475 gr) of Pyralene, 3.6 gr sodium hydroxide (90 mmol) and 50 mg palladium
on carbon 10% were placed in a 100 ml flask provided with a magnetic stirrer and a
reflux condenser. 8 ml methanol and 2 ml water were added and the mixture was heated
with stirring to 80°C for 18 hours. At the conclusion of the reaction the catalyst
was separated and the filtrate was analyzed by GC.
[0026] No observable remainders of Pyralene were detected by GC-EC detector. Traces of products
with lower retention times were detected. After completion of the reaction, 385 mg
of biphenyl (26%) were found in the mixture by GC analysis.
Example 6
[0027] Catalyst from example 5 was washed with water and with THF and then dried under vacuum
at 100°C to constant weight (57 mg). This catalyst was added together with 1.54 gr
Pyralene, 3.6 gr sodium hydroxide, 10 ml methanol and 2 ml water into the reaction
flask. The mixture was heated to 80°C for 18 hours.
[0028] At the conclusion of the reaction 308 mg biphenyl (20% weight) were determined in
the mixture, indicating that the recycled catalyst is effective.
Example 7
Reclamation of Mineral Oil
[0029] Example 1 was repeated but 0.5 ml mineral oil contaminated with 0.2 ml (280 mg) Pyralene
were added to the dehalogenation mixture. After completion of the reaction, the oil
was separated from the methanol by means of phase separation. The solid was washed
with methanol and the combined methanol fractions were subjected to GC and HPLC analysis.
The oil phase was dissolved in THF and was subjected to GC and HPLC analysis.
[0030] No observable remainders of Pyralene were detected in the solutions. Organic products
contain mainly benzene and biphenyl (68.6 mg), 24.5% weight of starting Pyralene.
Examples 8-20
[0031] Various halogenated compounds were dehalogenated according to the following procedure.
[0032] Halogenated compound (1 mmol), 0.72 gr sodium hydroxide (18 mmol), and 10 mg 10%
palladium on carbon (0.01 mAtom Pd) were placed in a glass reactor, and 2.5 ml of
methanol were added to this mixture. The reactor was purged twice with nitrogen, sealed
and heated to 100°C for 16 hours.
[0033] The results of these reactions are summarized in Table I below.
Example 21
[0034] Example 1 was repeated, but with 1 gr (18 mmol) of potassium hydroxide as a base.
After the conclusion of the reaction, no residual Pyralene was detected by GC (EC
detector) analysis. Biphenyl (70.5 mg, 24.5% weight) was determined by GC and HPLC,
indicating a highly efficient dehalogenation reaction.
Example 22
[0035] Example 1 was repeated but with 2.5 ml of ethanol as a hydrogen donor and solvent.
After the conclusion of the reaction no observable remainders of Pyralene were detected
in the solution, using GC (EC detector) analysis. Biphenyl (70.0 mg, 24.8 weight %)
and benzene were the main organic products in the GC and HPLC analysis. An additional,
unidentified minor organic product was eluted at lower retention time (24 min.) in
GC analysis.
Example 23
[0036] Defluorination of fluoroaromatic compounds also takes place using similar reaction
conditions. For example, 190 mg (1 mmol) 4,4'-difluorobiphenyl was subjected to the
reaction conditions described for Examples 8 - 20. However, a longer reaction time
was needed. When the reaction was continued for 70 hr., no starting difluorobiphenyl
was detected in the solution. 4-Fluorobiphenyl (17 mg, 0.1 mmol, 10%) and biphenyl
(123 mg, 0.8 mmol) were determined by GC as sole products in the reaction.
[0037] In the described process the environmental considerations are satisfied with regard
to high efficiency of PCBs destruction and also to the recycling or disposal of all
other reagents involved in the process.
[0038] Dehalogenated organic products may be used as a source of heat and contribute to
an additional energy credit of the process. Inorganic products are harmless salts
such as sodium chloride and sodium formate. The latter is a useful and saleable product,
and the resulting revenue may reduce operating costs.
[0039] A schematic flow diagram for a dechlorination unit, according to one process of the
invention, is shown in Fig. 3. The work-up process after the conclusion of the reaction
starts with the evaporation of the solvents through condenser (1) and recycling the
methanol using a solvent still and condenser (2). The non-volatile residue is washed
with water into a liquid-liquid extraction unit, useful for the recovery of purified
oils. The basic aqueous solution may be reused in the following dehalogenation process
or may be neutralized with hydrochloric acid, followed by evaporation of water to
dryness. Methanol is then added, allowing separation of soluble sodium formate from
sodium chloride, which is disposed to waste.
[0040] The above description and examples have been provided for the purpose of illustration
and are not meant to limit the invention. Many modifications can be effected in the
process of the invention: for instance, various compounds can be dehalogenated using
different catalysts, solvents and hydroxides, different reaction conditions can be
used, or different fluids can be decontaminated, all without exceeding the scope of
the invention.

1. A process for the dehalogenation of organohalides wherein an organohalide or a mixture
of two or more organohalides is brought into contact with an alkali hydroxide in an
alcoholic solution and in the presence of a catalytically effective amount of a heterogeneous
transfer hydrogenolysis catalyst.
2. A process according to claim 1, wherein the alcoholic solution comprises a lower alcohol.
3. A process according to claim 1 or 2, wherein the alkali hydroxide is selected from
the group consisting essentially of sodium and potassium hydroxide.
4. A process according to any one of claims 1 to 3, wherein the transfer hydrogenolysis
catalyst is a palladium-on-carbon catalyst.
5. A process according to any one of claims 1 to 4, wherein the dehalogenation reaction
is carried out at a temperature comprised between about 50° and about 150°C.
6. A process according to claim 5, wherein the dehalogenation reaction is carried out
at a pressure below about 4 atmospheres.
7. A process according to claim 5 or 6, wherein the reaction is carried out in an atmosphere
containing air.
8. A process according to any one of claims 1 to 7, wherein the concentration of the
organohalides in the reaction mixture is comprised between 0.1-10% of the reaction
mixture.
9. A process according to any one of claims 1 to 8, wherein the reaction is continued
until less than 10 ppm of organohalide remains in the reaction mixture.
10. A process according to any one of claims 1 to 9, wherein the catalyst is recovered
after completion of the reaction, washed and reused in a subsequent reaction.
11. A process for the purification and reclamation of fluids contaminated with organohalides,
comprising contacting the fluid to be purified with a stoichiometric excess of an
alkali hydroxide, with respect to the organohalide, in an alcoholic solution and in
the presence of a catalytically effective, amount of a heterogeneous transfer hydrogenolysis
catalyst.
12. A process according to claim 11, wherein the fluid to be purified comprises mineral
oils, silicon oils, lube oils, gas oils, transformator oils and the like.