| (19) |
 |
|
(11) |
EP 0 457 518 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
07.12.1994 Bulletin 1994/49 |
| (22) |
Date of filing: 10.05.1991 |
|
|
| (54) |
Infrared illuminant
Infrarot-Beleuchtungsvorrichtung
Dispositif d'éclairage à infra-rouge
|
| (84) |
Designated Contracting States: |
|
AT BE CH ES GR LI NL |
| (43) |
Date of publication of application: |
|
21.11.1991 Bulletin 1991/47 |
| (73) |
Proprietor: THIOKOL CORPORATION |
|
Ogden
Utah 84401 (US) |
|
| (72) |
Inventors: |
|
- Nielson, Daniel B.
Brigham City,
Utah 84302 (US)
- Jones, Leon L.
Ogden,
Utah 84414 (US)
|
| (74) |
Representative: Bankes, Stephen Charles Digby et al |
|
BARON & WARREN
18 South End
Kensington London W8 5BU London W8 5BU (GB) |
| (56) |
References cited: :
DE-A- 3 506 222 DE-C- 840 049 FR-A- 2 346 634 GB-A- 2 176 178 US-A- 3 733 223 US-A- 3 733 223
|
DE-C- 291 891 FR-A- 2 316 204 GB-A- 1 277 528 US-A- 2 373 799 US-A- 3 733 223
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The invention relates to infrared illuminant compositions and flares produced therefrom
and useful to enhance the use in night vision devices such as goggles. The invention
also relates to a process for producing infrared illuminant flares to prevent chunking
out of pieces of the illuminant at pressing increments during burning.
[0002] Infrared illuminant flares have been proposed for use in enhancing the use of night
vision devices such as night vision goggles. Generally, it is desirable that such
flares be ones that produce light predominantly or almost exclusively in the infrared
region with the production of little or substantially no visible light. Such infrared
illuminant flares are quite useful where it is desirable to conduct operations in
a hidden, sheltered, masked or concealed manner, i.e. in a manner not generally visible
to others or those without benefit of the aforementioned night vision devices.
[0003] US-A-3,733,233 discloses an infrared illuminant flare comprising a binder, silicon
and hexamine as main fuel components, KNO₃, RbNO₃ or CsNO₃ as an oxidant.
[0004] Infrared illuminant compositions and flares proposed heretofore have suffered from
a number of drawbacks. Among the drawbacks is the low infrared intensity, slow burn
rate and the side burning and the related chunking out of big pieces of illuminant
at pressing increments of the illuminant composition in the flares during burning.
Another serious drawback to such proposed infrared illuminants is the undesirable
presence of visible light during burning of the compositions.
[0005] Thus, a need exists for an infrared illuminant composition and flares produced therefrom
that exhibits an increased or accelerated burning rate, and also exhibits an increased
infrared intensity while maintaining a low visible light intensity. A further need
exists for such improved infrared illuminant flares that are substantially free of
side burning and the related chunking out of big pieces of illuminant at the pressing
increments in the flares during burning. It is desirable that an infrared illuminant
composition and flares therefrom be provided which enhance the use of the night vision
sensitive devices such as infrared goggles by producing increased illumination without
any significant increase in visible light. A further object of this invention is to
provide an infrared illuminant composition and flares therefrom that provide increased
infrared intensity in the wavelengths of from about 700 to about 1100 nanometers.
A still further object of this invention is to provide an infrared illuminant composition
and flares therefrom which have reduced or substantially no soot formation during
burning. It is highly desirable that an infrared illuminant be provided that has maximum
infrared light intensity, minimal visible light intensity, increased burn rate and
no chunking out of pieces of illuminant during burning.
[0006] In the accompanying drawings:
FIG. 1 is a plan view of a multi-stepped pressing foot employed to produce improved
infrared illuminant flares; and
FIG. 1A shows an enlarged detail of Figure 1.
[0007] Infrared illuminant compositions and infrared illuminant flares produced therefrom
are provided by a composition comprising potassium nitrate, cesium nitrate, hexamine,
silicon, boron, ferric oxide and a suitable binder. Infrared illuminant flares are
provided with substantially no side burning or chunking out of pieces of illuminant
during burning by use of a multi-stepped pressing foot to pack the illuminant composition
in flare tubes.
[0008] Infrared illuminant compositions of improved burn rate, increased infrared light
intensity with minimal visible light intensity and substantially no chunking out of
illuminant during burning of an infrared illuminant flare is provided by a composition
which comprises the following compositions:

wherein the total weight of all the components together comprises 100%.
[0009] As a binder for the composition one may employ any suitable binder that does not
adversely affect the characteristic of the infrared illuminant composition or the
flares produced therefrom. Preferably, the polymer will be, for example, a polyester
containing short carbon fragments in the backbone so as to reduce or eliminate soot
formation during burning. As an example of a suitable binder there may be mentioned
Formrez F 17-80 polyester of Witco Chemical Corp. and more particularly, a curable
polyester resin composition comprising, by weight, from 81 to 83% to, preferably 82.5%
Formrez 17-80 polyester resin, 15 to 17%, preferably about 16.5% epoxy such as ERL
510 of Ciba-Geigy Corporation and 0 to 2%, preferably 1% of a catalyst such as iron
linoleate. Most preferably about 4% by weight of a binder comprised of 82.5% Formrez
17-80 polyester resin, 16.5% ERL 510 epoxy and 1% iron linoleate is employed in the
preferred infrared illuminant compositions of this invention. Such a binder composition
is hereinafter simply referred to as WITCO 1780.
[0010] A preferred infrared composition of this invention comprises the following composition:
| Component |
Weight percent |
| Potassium nitrate |
about 60% |
| Cesium nitrate |
about 9% |
| Hexamine |
about 15% |
| Silicon |
about 7% |
| Boron |
about 2% |
| Ferric oxide |
about 1% |
| WITCO 1780 |
about 6%. |
[0011] A most preferred infrared illuminant composition of this invention comprises:

[0012] As other examples of infrared illuminant compositions of this invention there may
be mentioned the following exemplary compositions:

[0013] With the infrared compositions of this invention infrared intensity and burn rate
were increased significantly. Infrared intensity increases of up to 150% and burn
rate increases of up to 110% were achieved without adversely increasing the visible
light compared to the herebefore proposed infrared illuminants comprising, based on
weight, 70% potassium nitrate, 10% silicon, 16% hexamine and 4% of a fluorocarbon
binder such as a fluorocarbon based on a copolymer of vinylidene fluoride and hexafluoropropylene
available from EI duPont as VITON A.
[0014] The infrared illuminant compositions were evaluated based on a concealment index
which is the ratio of infrared light of visible light observed when burning. The test
equipment for determining the index comprised a photometric silicon detector and a
photovoltaic silicon detector. The photometric detector has a filter that follows
the response of the human eye (visible detector). The photovoltaic detector uses a
filter that blocks out all light below 700 nanometer and allows only light greater
than 700 nanometer to pass (infrared detector). The upper limit of the photovoltaic
detector is 1,100 nanometers, providing the filtered detector a range of between 700
to 1,100 nanometers.
[0015] In the compositions of this invention silicon and hexamine are employed as the main
fuel components because their combustion products have minimal visible light output,
i.e. both have good concealment indexes. Potassium nitrate is employed as an oxidizer
in the compositions of this invention. While potassium perchlorate was found to increase
the burn rate of infrared illuminant compositions when employed as an oxidizer therein
it also undesirably and unacceptably increased the visible light even at reduced percentage
levels in the composition. Potassium nitrate produced a very low visible light output
and thus had a good concealment index, however, the burn rate was neither fast enough
or increased sufficiently to produce an acceptable infrared illuminant flare.
[0016] As burn rate catalysts both boron and magnesium were evaluated at low levels in the
composition to increase the burn rate. However, magnesium produced too much visible
light to be acceptable. Boron, on the other hand, was found to increase the burn rate
by up to 50% with only slight increases in visible light when employed at 2 to 3%
by weight in the composition. When ferric oxide was employed in the composition at
about 1% by weight it had no effect on burn rate. However, it was unexpectedly discovered
that when boron and ferric oxide were used together in the compositions dramatic increases
in the burn rate could be achieved. For example, burn rate increases of up to 110%
were observed with sight increases in the visible light when 2% boron and 1% ferric
oxide were employed in the compositions. In addition increases measuring 150% in the
infrared light intensity were also observed.
[0017] Cesium nitrate is present in the compositions of this invention as an oxidizer and
also to aid in accelerating the burn rate. More importantly, however, cesium nitrate
has been found to broaden the infrared spectral output and improve the infrared efficiency.
The potassium nitrate and cesium nitrate appear to augment the action of each other.
[0018] All these ingredients have been found to favorably affect the burn rate significantly
without adversely affecting the visible light output. Ferric oxide, boron and cesium
nitrate when used together in the infrared illuminant compositions of this invention
increase the burn rate from 0.64 to 1.4 mm/sec (from 0.025 to 0.055 in./sec) and more
than double the infrared intensity from 400 to 1,060 watts/steradian while only increasing
the visible light intensity from 2,000 to 3,000 candlepower.
[0019] The compositions of this invention may be prepared in any suitable manner such as
for example mixing all the ingredients in an acetone slurry in the following manner.
The binder, for example, WITCO 1780, is dissolved in acetone in a 20% solution and
the proper weight of this solution is added to potassium nitrate in a Hobart mixer.
Additional acetone is added to the mix to produce a paste. The other components are
added and then mixing is continued under an air flow until the mixture appears dry,
i.e. about 4% moisture.
[0020] Infrared illuminant flares are produced by pressing the illuminant composition into
suitable flare cases, such as for example, 2.75 in. (69.85 mm) diameter suitably lined
aluminum cases. The tubes or flares can be any suitable length but are preferably
about 9 or 18 inches (228.6 or 457.2 mm) in length. While the illuminant composition
can be pressed into the case in any suitable manner it has been discovered that by
the use of a novel multi-stepped pressing foot designed for this purpose flares with
reduced chunking out and side burning can be produced. Such a multi-stepped pressing
foot is disclosed in Figure 1. The use of such a multi-stepped pressing foot to press
the infrared illuminant compositions into flare cases produces flares which are substantially
free of chunking and essentially eliminates the separation and ejection of pressed
increments of the illuminant composition by increasing the illuminant density near
the case wall. This essentially eliminates the low density illuminant areas where
side burning occurs. Thus, by reducing side burning, the related chunking is also
reduced. Pressing is generally accomplished at a pressure of about 8,000 to about
10,000 psi (55.6 to 68.95 MPa). The pressed material is extremely hard which makes
illuminant cutback nearly impossible. For the longer 18 in. (457.2 mm) cases the illuminant
composition is pressed into the case in about 12 increments and the resulting grain
is about 13.3 in. (337.82 mm), while for the shorter 9 in. (228.6 mm) cases the illuminant
composition is pressed into the case in about 6 increments an the resulting grain
is about 4.3 in. (109.22 mm) in length.
[0021] Referring to Figure 1 a multi-stepped pressing foot suitable for use in producing
illuminant flares is illustrated. The multi-stepped pressing foot, designated generally
by the reference numeral 10, comprises a main cylindrical body member 12. At one end
14, body number 12 is provided with an inwardly tapered portion (tapered toward the
axis of cylindrical body 12) which is connected to a mounting post 16 having attaching
means 17 for attaching the foot 10 to a suitable pressure-providing device (not shown).
At the other end 18 of said cylindrical body 12 the body is likewise provided with
an inwardly tapered first step portion which is connected to a plurality, preferably
three, of progressively smaller diameter inwardly tapered, trapezoidally shaped (parallel
in the axial direction) circular steps 20, 22 and 24. In a preferred embodiment of
this multi-stepped pressing foot for use in filing 2.75 in. (59.85 mm) diameter flare
cases, the outside diameter of body 12 is 2.34 in. (59.436 mm), the angle of taper
at ends 14 and 18 is 30% from the axis of body 12, and the angle of taper of steps
20, 22 and 24 is about 20° from the axis of body 12 (Fig. 1A). The smaller diameter
of step 24 is 1.0 in. (25.4 mm) and its larger diameter 1.12 in. (28.45 mm). For step
22 its smaller diameter is 1.264 in. (32.106 mm) and the larger diameter is 1.384
in. (35.15 mm). For step 20 its smaller diameter is 1.528 in. (38.81 mm) and its larger
diameter is 1.648 in. (41.86 mm).
[0022] The multi-stepped pressing foot as illustrated in the drawing is suitable for use
in producing infrared illuminant flares from the novel compositions of this invention
to produce flares with decreased chunking and side burning.
Claims for the following Contracting State(s): AT, BE, CH, GR, LI, NL
1. An infrared illuminant flare composition comprising:
| Component |
Weight percent |
| Potassium nitrate |
at least 50% |
| Cesium nitrate |
9 to 20% |
| Hexamine |
14 to 18% |
| Silicon |
5 to 10% |
| Boron |
1 to 3% |
| Ferric oxide |
½ to 1½% |
| Binder |
4 to 8% |
wherein the total weight of all the components together comprises 100%.
2. An infrared illuminant flare composition according to claim 1 which comprises:
| Component |
Weight percent |
| Potassium nitrate |
about 60% |
| Cesium nitrate |
9 to 10% |
| Hexamine |
15 to 16% |
| Silicon |
6 to 7% |
| Boron |
about 2% |
| Ferric oxide |
about 1% |
| Binder |
about 6% |
3. An infrared illuminant flare composition according to claim 1 or claim 2 wherein the
binder is a curable polyester resin composition.
4. An infrared illuminant flare composition according to claim 3 which comprises:
| Component |
Weight percent |
| Potassium nitrate |
about 60% |
| Cesium nitrate |
about 9% |
| Hexamine |
about 15% |
| Silicon |
about 7% |
| Boron |
about 2% |
| Ferric oxide |
about 1% |
| Curable polyester binder |
about 6% |
5. An infrared illuminant flare composition according to claim 3 which comprises:
| Component |
Weight percent |
| Potassium nitrate |
58.75% |
| Cesium nitrate |
9.79% |
| Hexamine |
15.67% |
| Silicon |
6.85% |
| Boron |
1.96% |
| Ferric oxide |
0.98% |
| Curable polyester binder |
6.00% |
6. An infrared illuminant flare composition according to any one of claims 3 to 5 wherein
the curable polyester comprises a polyester resin, an epoxy resin and optionally a
cure catalyst.
7. An infrared illuminant flare composition according to claim 6 wherein the iron linoleate
is present as a cure catalyst.
8. An infrared illuminant flare composition according to any preceding claim which upon
burning has a burn rate of from 0.055 in./sec (1.4 mm/sec), an infrared intensity
of about 1,060 watts/steradian and visible light intensity of less than 3000 candlepower.
9. An infrared illuminant flare comprising a flare casing packed with an infrared illuminant
composition according to any preceding claim.
10. A process for making an infrared illuminant flare which comprises pressing an infrared
illuminant composition according to any one of claims 1 to 8 into a flare case, wherein
a multi-stepped pressing foot (10) is used for pressing the composition in the case.
11. A process according to claim 10 wherein the multi-step pressing foot exerts a pressure
on the infrared illuminant composition in the case of 8000 to 10,000 psi (55.16 to
68.95 M Pa).
Claims for the following Contracting State(s): ES
1. An infrared illuminant flare comprising a flare casing packed with an infrared illuminant
flare composition, characterised in that said flare composition comprises:
| Component |
Weight percent |
| Potassium nitrate |
at least 50% |
| Cesium nitrate |
9 to 20% |
| Hexamine |
14 to 18% |
| Silicon |
5 to 10% |
| Boron |
1 to 3% |
| Ferric oxide |
½ to 1½% |
| Binder |
4 to 8% |
wherein the total weight of all the components together comprises 100%.
2. An infrared illuminant flare according to claim 1 wherein the flare composition comprises:
| Component |
Weight percent |
| Potassium nitrate |
about 60% |
| Cesium nitrate |
9 to 10% |
| Hexamine |
15 to 16% |
| Silicon |
6 to 7% |
| Boron |
about 2% |
| Ferric oxide |
about 1% |
| Binder |
about 6% |
3. An infrared illuminant flare according to claim 1 or claim 2 wherein the binder is
a curable polyester resin composition.
4. An infrared illuminant flare according to claim 3 wherein the flare composition comprises:
| Component |
Weight percent |
| Potassium nitrate |
about 60% |
| Cesium nitrate |
about 9% |
| Hexamine |
about 15% |
| Silicon |
about 7% |
| Boron |
about 2% |
| Ferric oxide |
about 1% |
| Curable polyester binder |
about 6% |
5. An infrared illuminant flare according to claim 3 wherein the flare composition comprises:
| Component |
Weight percent |
| Potassium nitrate |
58.75% |
| Cesium nitrate |
9.79% |
| Hexamine |
15.67% |
| Silicon |
6.85% |
| Boron |
1.96% |
| Ferric oxide |
0.98% |
| Curable polyester binder |
6.00% |
6. An infrared illuminant flare according to any one of claims 3 to 5 wherein the curable
polyester comprises a polyester resin, an epoxy resin and optionally a cure catalyst.
7. An infrared illuminant flare according to claim 6 wherein the iron linoleate is present
as a cure catalyst.
8. An infrared illuminant flare according to any preceding claim wherein the flare composition
upon burning has a burn rate of from 0.055 in./sec (1.4 mm/sec), an infrared intensity
of about 1,060 watts/steradian and visible light intensity of less than 3000 candlepower.
9. A process for making an infrared illuminant flare according to any preceding claim
which comprises pressing the infrared illuminant composition into a flare case, wherein
a multi-stepped pressing foot (10) is used for pressing the composition in the case.
10. A process according to claim 9 wherein the multi-step pressing foot exerts a pressure
on the infrared illuminant composition in the case of 8000 to 10,000 psi (55.16 to
68.95 M Pa).
Patentansprüche für folgende(n) Vertragsstaat(en): AT, BE, CH, GR, LI, NL
1. Infrarot-Beleuchtungseinrichtungszusammensetzung mit:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
wenigstens 50 % |
| Caesiumnitrat |
9 bis 20 % |
| Hexamin |
14 bis 18 % |
| Silicium |
5 bis 10 % |
| Bor |
1 bis 3 % |
| Eisen-III-oxid |
½ bis 1½ % |
| Bindemittel |
4 bis 8 % |
worin das Gesamtgewicht aller Komponenten zusammen 100 % umfaßt.
2. Infrarot-Beleuchtungseinrichtungszusammensetzung nach Anspruch 1 mit:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
wenigstens 60 % |
| Caesiumnitrat |
9 bis 10 % |
| Hexamin |
15 bis 16 % |
| Silicium |
6 bis 7 % |
| Bor |
etwa 2 % |
| Eisen-III-oxid |
etwa 1 % |
| Bindemittel |
etwa 6 % |
3. Infrarot-Beleuchtungseinrichtungszusammensetzung nach Anspruch 1 oder Anspruch 2,
worin das Bindemittel eine härtbare Polyesterharzzusammensetzung ist.
4. Infrarot-Beleuchtungseinrichtungszusammensetzung nach Anspruch 3 mit:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
etwa 60 % |
| Caesiumnitrat |
etwa 9 % |
| Hexamin |
etwa 15 % |
| Silicium |
etwa 7 % |
| Bor |
etwa 2 % |
| Eisen-III-oxid |
etwa 1 % |
| härtbares Polyesterbindemittel |
etwa 6 % |
5. Infrarot-Beleuchtungseinrichtungszusammensetzung nach Anspruch 3 mit:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
58,75 % |
| Caesiumnitrat |
9,79 % |
| Hexamin |
15,67 % |
| Silicium |
6,85 % |
| Bor |
1,96 % |
| Eisen-III-oxid |
0,98 % |
| härtbares Polyesterbindemittel |
6,00 % |
6. Infrarot-Beleuchtungseinrichtungszusammensetzung nach einem der Ansprüche 3 bis 5,
worin der härtbare Polyester ein Polyesterharz, ein Epoxyharz und gegebenenfalls einen
Härtungskatalysator umfaßt.
7. Infrarot-Beleuchtungseinrichtungszusammensetzung nach Anspruch 6, worin als ein Härtungskatalysator
Eisenlinolat vorliegt.
8. Infrarot-Beleuchtungseinrichtungszusammensetzung nach einem der vorausgehenden Ansprüche,
die beim Verbrennen eine Brenngeschwindigkeit von 0,055 Inch/sec (1,4 mm/sec), eine
Infrarotintensität von etwa 1,060 Watt/Sterad und einen Intensität von sichtbarem
Licht von weniger als 3000 Kerzenstärken hat.
9. Infrarot-Beleuchtungseinrichtung mit einem Beleuchtungseinrichtungsgehäuse, das mit
einer Infrarot-Leuchtzusammensetzung nach einem der vorausgehenden Ansprüche gepackt
ist.
10. Verfahren zur Herstellung einer Infrarot-Beleuchtungseinrichtung, bei dem man einen
Infrarot-Leuchtzusammensetzung nach einem der Ansprüche 1 bis 8 in ein Beleuchtungseinrichtungsgehäuse
preßt, wobei ein mehrstufiger Preßfuß (10) zum Pressen der Zusammensetzung in das
Gehäuse verwendet wird.
11. Verfahren nach Anspruch 10, bei dem der mehrstufige Preßfuß einen Druck von 8000 bis
10 000 psi (55,16 bis 68,95 MPa) auf die Infrarot-Leuchtzusammensetzung in dem Gehäuse
ausübt.
Patentansprüche für folgende(n) Vertragsstaat(en): ES
1. Infrarot-Beleuchtungseinrichtung mit einem Beleuchtungseinrichtungsgehäuse, das mit
einer Infrarot-Beleuchtungseinrichtungszusammensetzung gepackt ist,
dadurch gekennzeichnet, daß die Beleuchtungseinrichtungszusammensetzung folgendes umfaßt:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
wenigstens 50 % |
| Caesiumnitrat |
9 bis 20 % |
| Hexamin |
14 bis 18 % |
| Silicium |
5 bis 10 % |
| Bor |
1 bis 3 % |
| Eisen-III-oxid |
½ bis 1½ % |
| Bindemittel |
4 bis 8 % |
worin das Gesamtgewicht aller Komponenten zusammen 100 % umfaßt.
2. Infrarot-Beleuchtungseinrichtung nach Anspruch 1, worin die Beleuchtungseinrichtungszusammensetzung
foglendes umfaßt:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
wenigstens 60 % |
| Caesiumnitrat |
9 bis 10 % |
| Hexamin |
15 bis 16 % |
| Silicium |
6 bis 7 % |
| Bor |
etwa 2 % |
| Eisen-III-oxid |
etwa 1 % |
| Bindemittel |
etwa 6 % |
3. Infrarot-Beleuchtungseinrichtung nach Anspruch 1 oder Anspruch 2, worin das Bindemittel
eine härtbare Polyesterharzzusammensetzung ist.
4. Infrarot-Beleuchtungseinrichtung nach Anspruch 3, worin die Beleuchtungseinrichtungszusammensetzung
folgendes umfaßt:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
etwa 60 % |
| Caesiumnitrat |
etwa 9 % |
| Hexamin |
etwa 15 % |
| Silicium |
etwa 7 % |
| Bor |
etwa 2 % |
| Eisen-III-oxid |
etwa 1 % |
| härtbares Polyesterbindemittel |
etwa 6 % |
5. Infrarot-Beleuchtungseinrichtung nach Anspruch 3, worin die Beleuchtungseinrichtungszusammensetzung
folgendes umfaßt:
| Bestandteil |
Gewichtsprozente |
| Kaliumnitrat |
58,75 % |
| Caesiumnitrat |
9,79 % |
| Hexamin |
15,67 % |
| Silicium |
6,85 % |
| Bor |
1,96 % |
| Eisen-III-oxid |
0,98 % |
| härtbares Polyesterbindemittel |
6,00 % |
6. Infrarot-Beleuchtungseinrichtung nach einem der Ansprüche 3 bis 5, worin der härtbare
Polyester ein Polyesterharz, ein Epoxyharz und gegebenenfalls einen Härtungskatalysator
umfaßt.
7. Infrarot-Beleuchtungseinrichtung nach Anspruc 6, worin als Härtungskatalysator Eisenlinolat
vorhanden ist.
8. Infrarot-Beleuchtungseinrichtung nach einem der vorausgehenden Ansprüche, bei der
die Beleuchtungseinrichtungszusammensetzung beim Verbrennen eine Brenngeschwindigkeit
von 0,055 Inch/sec (1,4 mm/sec), eine Infrarotintensität von etwa 1060 Watt/Sterad
und eine Intensität von sichtbarem Licht von weniger als 3000 Kerzenstärken hat.
9. Verfahren zur Herstellung einer Infrarot-Beleuchtungseinrichtung nach einem der vorausgehenden
Ansprüche, bei dem man die Infrarot-Leuchtzusammensetzung in ein Beleuchtungseinrichtungsgehäuse
preßt, wobei eine mehrstufiger Preßfuß (10) zum Pressen der Zusammensetzung in das
Gehäuse verwendet wird.
10. Verfahren nach Anspruch 9, bei dem der mehrstufige Preßfuß einen Druck von 8000 bis
10 000 psi (55,16 bis 68,95 MPa) auf die Infrarot-Leuchtzusammensetzung in dem Gehäuse
ausübt.
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): AT, BE, CH, GR, LI,
NL
1. Composition de fusée éclairante en lumière infrarouge, comprenant :
| composant |
pourcentage massique |
| Nitrate de Potassium |
au moins 50% |
| Nitrate de Cesium |
9 à 20 % |
| Hexamine |
14 à 18 % |
| Silicium |
5 à 10 % |
| Bore |
1 à 3 % |
| Oxyde Ferrique |
1/2 à 1 1/2% |
| Liant |
4 à 8 % |
dans laquelle le poids total de tous les composants réunis est de 100%.
2. Composition de fusée éclairante en lumière infrarouge selon la revendication 1, comprenant
:
| composant |
pourcentage massique |
| Nitrate de Potassium |
environ 60 % |
| Nitrate de Cesium |
9 à 10 % |
| Hexamine |
15 à 16 % |
| Silicium |
6 à 7 % |
| Bore |
environ 2 % |
| Oxyde ferrique |
environ 1 % |
| liant |
environ 6 % |
3. Composition de fusée éclairante en lumière infrarouge selon la revendication 1 ou
la revendication 2, dans laquelle le liant est une composition de résine de polyester
pouvant être cuite.
4. Composition de fusée éclairante en lumière infrarouge selon la revendication 3, comprenant
:
| composant |
pourcentage massique |
| Nitrate de Potassium |
environ 60 % |
| Nitrate de Cesium |
environ 9 % |
| Hexamine |
environ 15 % |
| Silicium |
environ 7 % |
| Bore |
environ 2 % |
| Oxyde ferrique |
environ 1 % |
| liant polyester pouvant être cuit |
environ 6 % |
5. Composition de fusée éclairante en lumière infrarouge selon la revendication 3, comprenant
:
| composant |
pourcentage massique |
| Nitrate de Potassium |
58,75 % |
| Nitrate de Cesium |
9,79 % |
| Hexamine |
15,67 % |
| Silicium |
6,85 % |
| Bore |
1,96 % |
| Oxyde ferrique |
0,98 % |
| liant polyester pouvant être cuit |
6,00 % |
6. Composition de fusée éclairante en lumière infrarouge selon l'une quelconque des revendications
3 à 5, dans laquelle le polyester pouvant être cuit comprend une résine polyester,
une résine époxy, et de façon optionnelle un catalyseur de cuisson.
7. Composition de fusée éclairante en lumière infrarouge selon la revendication 6, dans
laquelle le linoleate de fer est présent comme catalyseur de cuisson.
8. Composition de fusée éclairante en lumière infrarouge selon l'une quelconque des revendications
précédentes, qui lorsqu'elle brûle, a une vitesse de combustion d'au moins 0,055 pouce/s
(1,4 mm/s), une intensité en infrarouge d'environ 1 060 Watt/stéradian et une intensité
en lumière visible inférieure à 3 000 intensités lumineuse.
9. Fusée éclairante en lumière infrarouge, comprenant une enveloppe de fusée éclairante
bourrée d'une composition éclairante en lumière infrarouge selon l'une quelconque
des revendications précédentes.
10. Procédé de fabrication d'une fusée éclairante en lumière infrarouge comprenant l'étape
de presser une composition éclairante en lumière infrarouge selon l'une quelconque
des revendications 1 à 8, dans une enveloppe de fusée éclairante, dans lequel un pied
presseur (10) à plusieurs gradins est utilisé pour presser la composition dans l'enveloppe.
11. Procédé selon la revendication 10, dans lequel le pied presseur à plusieurs gradins
exerce, sur la composition éclairante en lumière infrarouge contenue dans l'enveloppe,
une pression comprise entre 8 000 et 10 000 psi (55,16 à 68,95 M Pa).
Revendications pour l'(les) Etat(s) contractant(s) suivant(s): ES
1. Fusée éclairante en lumière infrarouge, comprenant une enveloppe de fusée éclairante
bourrée d'une composition de fusée éclairante en lumière infrarouge, caractérisée
en ce que ladite composition de fusée comprend :
| composant |
pourcentage massique |
| Nitrate de Potassium |
au moins 50% |
| Nitrate de Cesium |
9 à 20 % |
| Hexamine |
14 à 18 % |
| Silicium |
5 à 10 % |
| Bore |
1 à 3 % |
| Oxyde Ferrique |
1/2 à 1 1/2% |
| liant |
4 à 8 % |
dans laquelle le poids total de tous les composnts réunis est de 100%.
2. Fusée éclairante en lumière infrarouge selon la revendication 1, dans laquelle la
composition de fusée comprend :
| composant |
pourcentage massique |
| Nitrate de Potassium |
environ 60 % |
| Nitrate de Cesium |
9 à 10 % |
| Hexamine |
15 à 16 % |
| Silicium |
6 à 7 % |
| Bore |
environ 2 % |
| Oxyde Ferrique |
environ 1 % |
| liant |
environ 6 % |
3. Fusée éclairante en lumière infrarouge selon la revendication 1 ou la revendication
2, dans laquelle le liant est une composition de résine de polyester pouvant être
cuite.
4. Fusée éclairante en lumière infrarouge selon la revendication 3, dans laquelle la
composition de fusée comprend :
| composant |
pourcentage massique |
| Nitrate de Potassium |
environ 60 % |
| Nitrate de Cesium |
environ 9 % |
| Hexamine |
environ 15 % |
| Silicium |
environ 7 % |
| Bore |
environ 2 % |
| Oxyde Ferrique |
environ 1 % |
| liant polyester pouvant être cuit |
environ 6 % |
5. Fusée éclairante en lumière infrarouge selon la revendication 3, dans laquelle la
composition de fusée comprend :
| composant |
pourcentage massique |
| Nitrate de Potassium |
58,75 % |
| Nitrate de Cesium |
9,79 % |
| Hexamine |
15,67 % |
| Silicium |
6,85 % |
| Bore |
1,96 % |
| Oxyde Ferrique |
0,98 % |
| liant polyester pouvant être cuit |
6,00 % |
6. Fusée éclairante en lumière infrarouge selon l'une quelconque des revendications 3
à 5, dans laquelle le polyester pouvant être cuit comprend une résine polyester, une
résine époxy, et de façon optionnelle un catalyseur de cuisson.
7. Fusée éclairante en lumière infrarouge selon la revendication 6, dans laquelle le
linoleate de fer est présent comme catalyseur de cuisson.
8. Fusée éclairante en lumière infrarouge selon l'une quelconque des revendications précédentes,
dans laquelle la compostion de fusée lorsqu'elle brûle, a une vitesse de combustion
d'au moins 0,055 pouce/s (1,4 mm/s), une intensité en infrarouge d'environ 1 060 Watt/stéradian
et une intensité en lumière visible inférieure à 3 000 intensités lumineuse.
9. Procédé de fabrication d'une fusée éclairante en lumière infrarouge selon l'une quelconque
des revendications précédentes, comprenant l'étape de presser la composition éclairante
en lumière infrarouge dans une enveloppe de fusée éclairante, dans lequel un pied
presseur (10) à plusieurs gradins est utilisé pour presser la composition dans l'enveloppe.
10. Procédé selon la revendication 9, dans lequel le pied presseur à plusieurs gradins
exerce, sur la composition éclairante en lumière infrarouge contenue dans l'enveloppe,
une pression comprise entre 8 000 et 10 000 psi (55,16 à 68,95 M Pa).
