(19)
(11) EP 0 457 752 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
21.11.1991  Patentblatt  1991/47

(21) Anmeldenummer: 91890096.0

(22) Anmeldetag:  06.05.1991
(51) Internationale Patentklassifikation (IPC)5B61K 9/06
(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priorität: 18.05.1990 AT 1114/90

(71) Anmelder: VOEST-ALPINE Eisenbahnsysteme Aktiengesellschaft
A-1040 Wien (AT)

(72) Erfinder:
  • Sutnar, Ivan, Dr.
    A-8700 Leoben (AT)
  • Nayer, Wolfgang, Dipl.-Ing.
    A-8740 Zeltweg (AT)

(74) Vertreter: Haffner, Thomas M., Dr. et al
Patentanwalt Schottengasse 3a
A-1014 Wien
A-1014 Wien (AT)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zum Messen von Achs- und Lagertemperaturen zur Ortung von Heissläufern


    (57) Bei einem Verfahren zum Messen von Achs- bzw. Lagertemperaturen zur Ortung von Heißläufern im rollenden Bahnverkehr mit Infrarotempfängern mit einem quer zur Schienenlängsrichtung gerichteten, oszillierenden Abtaststrahl (1), werden die analogen Meßwerte des Infrarotempfängers (7) digitalisiert und mit der Oszillationsfrequenz bzw. der Orientierung des Abtaststrahles verknüpft, wobei je Achse wenigstens zwei vollständige Schwingungen des Abtaststrahles (1) ausgewertet werden, wobei aus dem einem Teilbereich einer ersten Schwingung des Abtaststrahles (1) entsprechenden Meßwert und dem oder den dem entsprechenden Teilbereich nachfolgender Schwingungen des Abtaststrahles (1) entsprechenden Meßwert(en) ein Mittelwert gebildet wird. Dabei wird die Mittelwertbildung über eine vorbestimmte maximale Anzahl von Schwingungen des Abtaststrahles (1) und/oder solange ein weiteres vom Rad ausgelöstes Signal die gleiche Achse im Meßwinkel des Sensors (7) signalisiert, wiederholt und es wird der jeweils höchste Mittelwert der Meßwerte entsprechender Teilbereiche ausgewertet.




    Beschreibung


    [0001] Die Erfindung bezieht sich auf ein Verfahren zum Messen von Achs- bzw. Lagertemperaturen zur Ortung von Heißläufern im rollenden Bahnverkehr mit Infrarotempfängern mit einem quer zur Schienenlängsrichtung gerichteten, oszillierenden Abtaststrahl, wobei die analogen Meßwerte des Infrarotempfängers digitalisiert werden.

    [0002] Für die Messung von unzulässigen Temperaturerhöhungen und insbesondere für die Ortung von Heißläufern im rollenden Bahnverkehr sind bereits eine Reihe von Einrichtungen bekannt geworden. Die Meßvorrichtung selbst umfaßt einen Infrarotempfänger, welcher nahe den Schienen zumeist so positioniert wurde, daß sein aktives Fenster unter Einschluß eines Winkels zur Normalen Lager eines rollenden Schienenfahrzeuges erfassen kann. Insbesondere bei höheren Geschwindigkeiten steht für die Temperaturmessung nur relativ kurze Zeit zur Verfügung und Schienenfahrzeuge weichen bei ihrer Bewegung in Längsrichtung der Schiene von einer geradlinigen Bewegung auch dann ab, wenn ein gerades Geleise verlegt ist. Dieser sogenannte "Sinuslauf" führt zu einem seitlichen Versetzen der Achsen um größenordnungsmäßig ± 4 cm. Je nach Lagerkonstruktion und insbesondere Konstruktion der Abdeckung eines Lagers befindet sich die jeweils meßbare heißeste Stelle bei verschiedenen Lagerkonstruktionen an verschiedenen Stellen. Um alle diese Abweichungen der jeweils heißesten Stelle einer Achse bzw. eines Lagers quer zur Schienenlängsrichtung erfassen zu können, sind bereits Einrichtungen vorgeschlagen worden, mit welchen quer zur Schienenlängsrichtung ein größerer Bereich erfaßt werden kann, um denjenigen Bereich eines Lagers, welcher tatsächlich unzulässig erwärmt ist, sicher erfassen zu können. Bei einem entsprechend breiten Abtaststrahl quer zur Schienenlängsrichtung wird ein integrales Signal erhalten, von welchem angenommen wird, daß es die jeweils heißeste Stelle mit Sicherheit enthält. Die durch die Erfassung eines relativ breiten Bereiches in Längsrichtung der Achsen gegebene Integration führt aber insgesamt zu relativ geringen Unterschieden der jeweils gemessenen Signale, so daß eine sichere Auswertung nicht ohne weiteres gelingt. Insbesondere bei relativ vollständigen Lagerabdeckungen kann eine unzulässige Erwärmung nur über einen geringen Teilbereich der axialen Länge einer Achse erfaßt werden, da die übrigen ßereiche vergleichsweise wesentlich kühler sind.

    [0003] Zur Verbreiterung der möglichen Abtaststrecke längs der Achse eines Lagers sind Einrichtungen mit rotierenden und schwingenden Spiegeln bekanntgeworden, mit welchen die längs der Achse eines Schienenfahrzeuges auftretenden Erwärmungen bzw. Infrarotstrahlen auf einen Infrarotdetektor gerichtet und fokussiert werden. In der EP-A 265 417 wurde bereits vorgeschlagen, zum Erfassen von unzulässig erwärmten Radlagern in den Strahlengang von der Meßstelle zum Wärmestrahlungsfühler eine die Abbildung wenigstens einachsig verbreiternde Einrichtung einzuschalten, wobei eine derartige Einrichtung von einem verzerrenden optischen Element gebildet wird, welches die Abbildung eines entsprechenden verbreiterten Feldes ermöglicht. Anordnungen mit einer schwingenden Ablenkeinrichtung sind beispielsweise der EP-A 264 360 zu entnehmen, wobei hier die Meßgenauigkeit dadurch erhöht werden konnte, daß die Amplitude der Schwingung der Ablenkeinrichtung so gewählt wurde, daß in regelmäßigen Abständen eine Reflexion des gekühlten Detektors auf sich selbst vorgenommen wurde, um auf diese Weise zu einem Kalibrierungspunkt für die Erhöhung der Meßgenauigkeit zu gelangen.

    [0004] Die Erfindung zielt nun darauf ab, ein Verfahren der eingangs genannten Art mit einem oszillierenden Abtaststrahl dahingehend weiterzubilden, daß bei unterschiedlichen Ausbildungen von Lagern und unterschiedlicher Lage der jeweils heißesten Stelle eines Lagers in Längsrichtung der Achse mit Sicherheit ein signifikanter Wert gemessen werden kann. Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren im wesentlichen darin, daß die Meßwerte des Infrarotempfängers mit der Oszillationsfrequenz bzw. der Orientierung des Abtaststrahles verknüpft werden, daß je Achse wenigstens zwei vollständige Schwingungen des Abtaststrahles ausgewertet werden, wobei aus dem einem Teilbereich einer ersten Schwingung des Abtaststrahles entsprechenden Meßwert und dem oder den dem entsprechenden Teilbereich nachfolgender Schwingungen des Abtaststrahles entsprechenden Meßwert(en) ein Mittelwert gebildet wird, daß die Mittelwertbildung über eine vorbestimmte maximale Anzahl von Schwingungen des Abtaststrahles und/oder solange ein weiteres vom Rad ausgelöstes Signal die gleiche Achse im Meßwinkel des Sensors signalisiert, wiederholt wird und daß der jeweils höchste Mittelwert der Meßwerte entsprechender Teilbereiche ausgewertet wird. Da die Meßwerte des Infrarotempfängers, insbesondere Spannungsmeßwerte, digitalisiert werden, besteht eine einfache Möglichkeit der Verknüpfung derartiger Werte mit der Oszillationsfrequenz des oszillierenden Abtaststrahles, wodurch Meßwerte aufgeschlüsselt für die jeweilige Orientierung des Abtaststrahles zur Verfügung stehen. Bei entsprechend hoher Oszillationsfrequenz kann auch bei hohen Geschwindigkeiten rollender Schienenfahrzeuge die gleiche Achse mehrmals abgetastet werden und dadurch, daß je Achse wenigstens zwei vollständige Schwingungen des Abtaststrahles ausgewertet werden, von welchen durch Verknüpfung mit der Oszillationsfrequenz bzw. der Orientierung des Abtaststrahles bekannt ist, welchem Teilbereich der Achse die jeweiligen Signale entsprechen, kann eine Mittelwertbildung vorgenommen werden, welche Störungen weiter elminiert. Zu diesem Zweck wird erfindungsgemäß aus dem einem Teilbereich einer ersten Schwingung des Abtaststrahles entsprechenden Meßwert und wenigstens einem weiteren Meßwert aus dem entsprechenden Teilbereich einer weiteren Schwingung des Abtaststrahles ein Mittelwert gebildet, wobei die Anzahl der Mittelwertbildungen bei entsprechend langsam rollendem Bahnverkehr begrenzt werden kann, da bei Berücksichtigung weiterer Meßwerte eine höhere Genauigkeit nicht mehr erzielt wird und spätestens dann unterbrochen wird, wenn die jeweils gemessene Achse aus dem Meßwinkels des Sensors austritt. Um zu erfassen, ob sich die gleiche Achse noch im Meßwinkel des Sensors befindet, wird hiebei ein vom Rad ausgelöstes Signal ausgewertet, welches von einem konventionellen Radlaufsensor stammen kann. Bei einer derartigen Messung wird durch mehrmaliges Messen der heißesten Stelle ein relativ signifikanter Peak ermittelt, welcher tatsächlich einen signifikanten Wert für die unzulässige Lager- bzw. Achserwärmung darstellt und es wird daher erfindungsgemäß der jeweils höchste Mittelwert der Meßwerte entsprechender Teilbereiche für die Auswertung verwendet.

    [0005] Um Geschwindigkeiten des rollenden Bahnverkehres von bis zu 350 km/h unter Einhaltung der Bedingung, daß wenigstens zwei vollständige Schwingungen ausgewertet werden können, sicher erfassen zu können, wird mit Vorteil die Oszillationsfrequenz des Abtaststrahles zwischen 2 und 10 kHz gewählt. Um nun zu verhindern, daß wiederum nur integrale Signale mit entsprechender Unschärfe zur Auswertung gelangen, muß eine entsprechend hohe Abtastrate gewählt werden, wobei die Abtastrate mit Vorteil gleich einem ganzzahligen Vielfachen der Oszillationsfrequenz, insbesondere gleich dem 5 bis 15-fachen der Oszillationsfrequenz gewählt wird. Auf diese Weise wird sichergestellt, daß jede volle Schwingung des Abtaststrahles in 5 bis 15 Teilbereiche unterteilt werden kann, wobei die Meßwerte derartiger Teilbereiche jeweils gesondert zu einer Mittelwertbildung mit entsprechenden Meßwerten von entsprechenden Teilbereichen wenigstens einer weiteren Schwingung herangezogen werden können.

    [0006] Um die mechanischen Teile des Infrarotempfängers entsprechend zu schonen, wird das Verfahren mit Vorteil so durchgeführt, daß die oszillierende Bewegung des Abtaststrahles von einem vor der Meßstelle liegenden Radsensor eingeschaltet wird und nach Überlaufen des letzten Rades abgeschaltet wird. Auf diese Weise wird die Oszillation des Abtaststrahles nur dann aktiviert, wenn tatsächlich rollender Bahnverkehr gemessen werden soll.

    [0007] Bei hoher Sonneneinstrahlung kann die einseitige Erwärmung von Lagern auf Grund der Sonneneinstrahlung Verzerrungen der Meßergebnisse zur Folge haben. Um auch derartige Verzerrungen der Meßergebnisse sicher ausschließen zu können und signifikante Meßwerte zu erhalten, wird mit Vorteil so vorgegangen, daß die Mittelwerte der Meßwerte der gleichen Achse zu beiden Seiten des Schienenfahrzeuges miteinander verglichen werden, wobei vorzugsweise auch die Mittelwerte der Meßwerte von in Längsrichtung des Schienenfahrzeuges aufeinanderfolgenden Achsen miteinander verglichen werden. Die Erfassung der Mittelwerte der Meßwerte der gleichen Achse links und rechts des Schienenfahrzeuges gibt Auskunft darüber, ob eine einseitige Einstrahlung von Sonnenenergie die Ergebnisse verzerrt. Der Vergleich von Meßwerten aufeinanderfolgender Achsen an der gleichen Seite des Schienenfahrzeuges kann auf Grund von Wahrscheinlichkeitsüberlegungen ausgewertet werden, da eine übermäßige Anhäufung von Heißläufern auf einer Seite ein geringes Maß an Wahrscheinlichkeit besitzt.

    [0008] Zur Erzielung entsprechend signifikanter und aussagekräftiger Meßwerte bzw. Mittelwerte von Meßwerten wird das Verfahren mit Vorteil so durchgeführt, daß wenigstens 3 und maximal 20 Meßwerte von Teilbereichen der Schwingung des Abtaststrahles einer Mittelwertbildung unterworfen werden. Um zu signalisieren, daß sich die gleiche Achse immer noch im Meßwinkel des Sensors aufhält, ist mit Vorteil an der Schiene dem IR-Empfänger benachbart wenigstens ein Radsensor angeordnet, wobei zusätzlich durch wenigstens einen in Schienenlängsrichtung versetzt angeordneten Radsensor die Einschaltung der oszillierenden Bewegung des Abtaststrahles erfolgen kann. Bei Schienenwechselbetrieb bzw. eingleisigen Strecken, welche in beide Richtungen befahren werden können, muß hiebei in Schienenlängsrichtung versetzt vor und nach dem Infrarotempfänger je ein gesonderter Radsensor angeordnet werden.

    [0009] Die Erfindung wird nachfolgend an Hand eines in der Zeichnung Schematisch dargestellten Ausführungsbeispieles näher erläutert. In dieser zeigen Fig.1 eine schematische Darstellung eines Infrarotempfängers mit einem Schwingspiegel; Fig.2 eine perspektivische Anordnung des Empfängers im Schienenverlauf und Fig.3 eine schematische Darstellung der Meßwertbildung aus den Signalen des Infrarotempfängers.

    [0010] Bei der Ausbildung nach Fig.l trifft der Meßstrahl bzw. Abtaststrahl 1 über ein fokussierendes optisches Element 2 auf einen Umlenkspiegel 3 und gelangt in der Folge unter Zwischenschaltung einer Bildfeldlinse 4 auf einen Schwingspiegel 5, welcher das an der Bildfeldlinie 4 abgetastete Bild über eine Infrarotoptik 6 einem Detektor bzw. Wärmestrahlungsfühler 7 zuleitet. Der Schwingspiegel 5 schwingt hiebei in Richtung des Doppelpfeiles 8 und kann zur Ausübung dieser Schwingung piezoelektrisch über Schwingquarze oder elektromagnetisch erregt sein.

    [0011] Die Bildfeldlinse 4 weist einen krümmungsradius an ihrer dem Spiegel zugewandten Seite auf, welcher der Brechkraft der Sammellinse(n) der Infrarotoptik 6 entspricht. Durch die Schwenkbewegung des Spiegels 5 wird nun einesteils ein entsprechend dem Doppelpfeil 9 überstrichener Sehbereich erfaßt und andererseits gelangt die durch die Sammellinse der Infrarotoptik 6 entworfenen Abbildung des Detektors 7 bei entsprechend weiter Auslenkung auf im Randbereich der Sammellinse vorgesehene verspiegelte Bereiche 10. In diesen Randbereichen wird das Bild des Detektors 7 reflektiert und in diesen Randbereichen wird somit ein Referenzsignal für die Temperatur des Detektorelementes 7, welches in einfacher Weise thermoelektrisch gekühlt sein kann, zur Verfügung gestellt. Die Autokollimation wird hiebei durch die reflektierend bedampften Bereiche der Bildfeldlinse 4, welche mit 10 bezeichnet sind, erzielt. Da kleine Abbildungen auf Linsenflächen wegen möglicher Inhomogenitäten bekanntermaßen kritisch sind, kann die Linse auch etwas außerhalb des Fokus angeordnet sein. Im vorliegenden Fall kann jedoch durch den abgelenkten Strahl auch bei Inhomogenitäten lediglich eine geringe zusätzliche Modulation auftreten, die für die Referenzbildung unwesentlich ist.

    [0012] Bei der Schwenkbewegung des Spiegels 5 in Richtung des Doppelpfeiles 8 wird somit ein jeweils entsprechender Teilbereich in Richtung des Doppelpfeiles 9 als Sehbereich erfaßt. Bei entsprechender kenntnis der Schwingungsfrequenz des Schwingspiegels 5 läßt sich der jeweiligen Stelle des Sehbereiches ein entsprechender Teilbereich der Schwingung des Schwingspiegels 5 zuordnen. Zu diesem Zweck ist ein in Fig.1 nicht dargestellter beispielsweise induktiver Geber für die tatsächliche Schwingfrequenz des Spiegels 5 vorgesehen.

    [0013] In Fig.2 ist nun die schematische Anordnung eines Infrarotempfängers im Schienenverlauf dargestellt. Die Empfänger sind hiebei schematisch mit 11 angedeutet und es sind jeweils ein Empfänger für jede gesonderte Schiene 12 vorgesehen. Um die Einschaltung und das Einzählen von Achsen, welche die Infrarotempfänger 11 passieren zu ermöglichen, ist ein Schienenkontakt 13 vorgesehen. Die Abschaltung der mit 14 schematisch angedeuteten Auswerteschaltung und der Oszillationsfrequenz des Schwingspiegels 5 kann nach Ablauf eines definierten Zeitraumes nach welchem die letzte Achse den Radsensor bzw. Schienenkontakt 13 passiert hat, erfolgen. Alternativ kann hiefür ein weiterer Radsensor 15 vorgesehen sein, welcher insbesondere dann von Bedeutung ist, wenn das Gleis in beide Richtungen befahrbar sein soll, da dann der Radsensor 15 den Einschalteimpuls für den Oszillator des Schwingspiegels 5 und die Synchronisierung der Auswerteelektronik ergibt. Die Auswerteelektronik enthält darüberhinaus noch einen Außenbzw. Lufttemperatursensor 16 um die Genauigkeit der Meßwerterfassung zu verbessern. Die vom Infrarotempfänger 11 über Signalleitungen 17 der Auswerteelektronik 14 zur Verfügung gestellten Signale werden nun, wie in Fig.3 näher erläutert, für die Meßwertbïldung herangezogen.

    [0014] In Fig.3 ist mit a die Zeitdauer einer vollen Schwingung des Oszillators für den Schwingspiegel 5 bezeichnet. Über diese volle Schwingung, bei welcher der Abtaststrahl im Sinne des Doppelpfeiles 9 in Fig.1 den Sehbereich sukzessive erfaßt, werden mit einer Abtastrate vom zehnfachen der Oszillatorfrequenz Meßwerte gewonnen und zwischengespeichert. Die jeweiligen Meßwerte über eine erste volle Schwingung a sind als a1, a2, a3 bis a10 bezeichnet. Bei einer nachfolgenden vollen Schwingung des Schwingspiegels 5, für welche bei gleicher Oszillationsfrequenz auf der Zeitachse die Länge b zur Verfügung steht, werden in analoger Weise bei identischer Abtastrate wiederum zehn Meßwerte b1 bis b10 gewonnen. Analoges gilt für eine dritte vollständige Schwingung, deren Zeitdauer mit c bezeichnet ist und welche bei entsprechender Abtastrate Meßwerte von c1 bis c10 ergibt. Die jeweils erhaltenen Meßwerte mit gleichen Indizes werden einer Mittelwertbildung unterworfen und es wird beispielsweise ein Mittelwert a1 + b1 + c1 / 3 gebildet. Analog werden Werte a2 + b2 + c2 / 3 bis a10 + b10 + c10 / 3 gebildet. Der jeweils höchste Mittelwert ergibt einen signifikanten Wert für die tatsächliche Erwärmung der heißesten Stelle im Abtastbereich entsprechend dem Doppelpfeil 9 der Fig.1 und es kann bei einer derartigen Auswertung der Meßergebnisse und Mittelwertbildung ein scharfes Meßsignal auch dann gewährleistet werden, wenn ein weitgehend abgedecktes Lager eine heißeste Stelle nur in einem relativ kleinen Teilbereich, beispielsweise am Rande der Lagerabdeckung, aufweist. Bei derartigen Lagern würde die Auswertung des integralen Signales eine wesentlich geringere absolute Erwärmung erkennen lassen, als die erfindungsgemäß vorgenommene Mittelwertbildung, welche tatsächlich den heißesten Bereich im Sehbereich sicher erkennen läßt.

    [0015] Analog kann die Abtastrate naturgemäß variiert werden, wobei es vorteilhaft ist als Abtastrate immer ein ganzzahliges Vielfaches der Oszillationsfrequenz und wie es einer bevorzugten Ausführung der Erfindung entspricht ein 5 bis 15-faches der Oszillationsfrequenz zu wählen.


    Ansprüche

    1. Verfahren zum Messen von Achs- bzw. Lagertemperaturen zur Ortung von Heißläufern im rollenden Bahnverkehr mit Infrarotempfängern (7) mit einem quer zur Schienenlängsrichtung gerichteten, oszillierenden Abtaststrahl (1), wobei die analogen Meßwerte des Infrarotempfängers (7) digitalisiert werden, dadurch gekennzeichnet, daß die Meßwerte des Infrarotempfängers mit der Oszillationsfrequenz bzw. der Orientierung des Abtaststrahles (1) verknüpft werden, daß je Achse wenigstens zwei vollständige Schwingungen des Abtaststrahles (1) ausgewertet werden, wobei aus dem einem Teilbereich (a₁,a₂,-a₃,a₄,a₅,a₆,a₇,a₈,a₉,a₁₀) einer ersten Schwingung (a) des Abtaststrahles (1) entsprechenden Meßwert und dem oder den dem entsprechenden Teilbereich (b₁,b₂,b₃,b₄,b₅,b₆,b₇,b₈,b₉,-b₁₀;c₁,c₂,c₃,c₄,c₅,c₆,c₇,c₈,c₉, clO) nachfolgender Schwingungen (b,c) des Abtaststrahles (1) entsprechenden Meßwert(en) ein Mittelwert gebildet wird, daß die Mittelwertbildung über eine vorbestimmte maximale Anzahl von Schwingungen (a,b,c) des Abtaststrahles (1) und/oder solange ein weiteres vom Rad ausgelöstes Signal die gleiche Achse im Meßwinkel des Sensors (7) signalisiert, wiederholt wird und daß der jeweils höchste Mittelwert der Meßwerte entsprechender Teilbereiche ausgewertet wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die oszillierende Bewegung des Abtaststrahles (1) von einem vor der Meßstelle (11) liegenden Radsensor (13) eingeschaltet wird und nach Überlaufen des letzten Rades abgeschaltet wird.
     
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mittelwerte der Meßwerte der gleichen Achse zu beiden Seiten des Schienenfahrzeuges miteinander verglichen werden.
     
    4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Mittelwerte der Meßwerte von in Längsrichtung des Schienenfahrzeuges aufeinanderfolgenden Achsen miteinander verglichen werden.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Oszillationsfrequenz des Abtaststrahles (1) zwischen 2 und 10 kHz gewählt wird.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Abtastrate gleich einem ganzzahligen Vielfachen der Oszillationsfrequenz, insbesondere gleich dem 5 bis 15-fachen der Oszillationsfrequenz gewählt wird.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß wenigstens 3 und maximal 20 Meßwerte von Teilbereichen (a₁,a₂,a₃,a₄,a₅,a₆,a₇,a₈,a₉,a₁₀;b₁,b₂,b₃,b₄,-b₅,b₆,b₇,b₈,b₉, b₁₀;c₁,c₂,c₃,c₄,c₅,c₆,c₇,c₈,c₉,c₁₀) der Schwingung des Abtaststrahles (1) einer Mittelwertbildung (a,b,c) unterworfen werden.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß an der Schiene (12) dem IR-Empfänger (11) benachbart wenigstens ein Radsensor (13) und in Schienenlängsrichtung versetzt wenigstens ein weiterer Radsensor (15) angeordnet werden.
     




    Zeichnung













    Recherchenbericht