

① Veröffentlichungsnummer: 0 464 470 A2

EUROPÄISCHE PATENTANMELDUNG (12)

(21) Anmeldenummer: 91110049.3

2 Anmeldetag: 19.06.91

(51) Int. Cl.⁵: **D21H 25/00**, D21H 19/74, D21H 17/35, D21H 17/36, D21H 17/37, D21H 19/20, D21H 19/18, D21H 19/32, D21H 19/14

3 Priorität: 20.06.90 DE 4019680

(43) Veröffentlichungstag der Anmeldung: 08.01.92 Patentblatt 92/02

(84) Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IT LI LU NL SE (71) Anmelder: STEINBEIS GESSNER GmbH **Rosenheimer Strasse 88** W-8204 Brannenburg(DE)

2 Erfinder: **Dehler, Klaus** Hans-Weigl-Strasse 14 a W-8208 Kolbermoor(DE) Erfinder: Hamberger, Jörg Mozartstrasse 9 a W-8206 Bruckmühl(DE)

(74) Vertreter: Hansen, Bernd, Dr. Dipl.-Chem. et al Hoffmann, Eitle & Partner Patent- und Rechtsanwälte Arabellastrasse 4 Postfach 81 04 20 W-8000 München 81(DE)

(54) Kreppapiere, Verfahren zu ihrer Herstellung und Verwendung.

Die vorliegende Erfindung umfaßt Kreppapiere, die neben einer hohen Dehnung auch eine hohe Glätte aufweisen. Derartige Kreppapiere können als Rohpapier, imprägniertes und als imprägniertes und beschichtetes Papier ausgebildet sein. Die erfindungsgemäßen Papiere können über ein Verfahren hergestellt werden, das durch einen speziellen Schaber und einen speziellen Anstellwinkel des Schabers gegenüber dem Kreppzylinder gekennzeichnet ist. Die so hergestellten Papiere können vorteilhaft bei der Herstellung von Klebe- und Abdeckbändern und zur Herstellung von Etiketten, insbesondere zur Auszeichnung von Formkörpern, verwendet werden.

Die Erfindung betrifft Kreppapiere, Verfahren zu ihrer Herstellung und ihre Verwendung.

Bei der Papierherstellung kann eine höhere Dehnbarkeit des von der Papiermaschine kommenden Papieres (im allgemeinen 2 bis 4%) erhalten werden, indem man die Papierbahn kreppt. Hierbei wird die feuchte, auf der Oberfläche eines Zylinders haftende Bahn durch einen an dem Zylinder anliegenden Schaber abgenommen. Eine Differenz in der Antriebsgeschwindigkeit des Kreppzylinders und der folgenden Überführ- und Trockeneinheit, die auf etwa 10 bis 50% eingestellt werden kann, bewirkt, daß die Papierbahn um diesen Betrag "eingekreppt", d.h. durch Erzeugen feiner Falten verkürzt wird. Dieser Prozeß kann sowohl innerhalb (Naßkrepp) als auch außerhalb der Papiermaschine (Trockenkrepp) vorgenommen werden. Beim Trockenkreppen verarbeitet man die wieder angefeuchtete Papierbahn auf besonderen Kreppmaschinen. Die feine Fältelung quer zur Maschineneinrichtung bewirkt die große Dehnbarkeit der Kreppapiere, die auf dem Sanitär- bzw. Hygienesektor zur Herstellung von Taschentüchern, Handtüchern, Servietten, Windeln und Toilettenpapieren, aber auch zur Herstellung von Klebe- und Abdeckbändern eingesetzt werden. Die Kreppapiere werden üblicherweise aus hochwertigen Zellstoffen aber auch aus (un)gebleichtem Holzschliff zusammen mit gebräuchlichen Zusatzstoffen unter Erhalt der gewünschten Dicke und des beabsichtigten Flächengewichts gefertigt.

Gemäß dem Verfahren des Standes der Technik wird das Naßkreppapier von einer Presse mit hohem Druck an den Kreppzylinder angepreßt, von dem es dann bei einem Trockengehalt von ca. 40% mittels eines Schabers abgenommen wird. Die Geschwindigkeitsdifferenzen zu den nachfolgenden Papiermaschinenteilen (z.B. Überführvorrichtung und Trockenzylinder) ergeben den Kreppgrad. Die gemäß dem obigen Verfahren eingesetzten Schaber besitzen einen Schliffwinkel, der im Bereich von 20° bis 90° liegt. Weiterhin ist die Höhe der Schabkante mit 0,2 bis 0,4 mm gegeben. Der Winkel zwischen der Tangente und dem Schaber am Berührungspunkt des Schabers mit dem Kreppzylinder beträgt bei dem üblichen Verfahren 10° bis 30°. Die obige Ausgestaltung des Schabers und der Anstellwinkel bewirken, daß das Papier beim Abschaben geblockt und gestaucht wird, wobei sich die typischen "Kreppberge" und "Krepptäler" ergeben.

Gemäß diesem Verfahren werden Kreppapiere erzeugt, die gegenüber den direkt von der Papiermaschine abgenommenen Papieren eine deutlich erhöhte Dehnung aufweisen. Allerdings besitzen diese Kreppapiere eine geringe Glätte, die dazu führt, daß bei der Herstellung von Klebebändern der Klebstoffauftrag sehr hoch liegt, um eine ausreichende Klebkraft zu erhalten. Weiterhin bedingt die geringe Glätte des Kreppapieres, daß die Finger und die Haut bei der Anwendung häufig in Mitleidenschaft gezogen werden. Schließlich führt die geringe Glätte des Papieres zu einer nicht befriedigenden Bedruckbarkeit.

Gemäß der US-Patentschrift Nr. 2 941 661 wird ein imprägniertes Kreppapier mit einer feinen Kreppung, mit gerundeten Krepprändern auf der einen Seite und mit einer flacheren Gegenseite beschrieben. Die Oberflächenglätte des Papiers wird erzeugt, indem man der Papiermasse wasserdispergierbaren, deacetylierten Karayagummi zusetzt.

Die Aufgabe der vorliegenden Erfindung besteht darin, Kreppapiere zu schaffen, die neben einer hohen Dehnbarkeit eine hohe Glätte aufweisen.

Eine weitere Aufgabe der Erfindung besteht darin, ein Verfahren zur Verfügung zu stellen, mit dem Kreppapiere mit den obigen Eigenschaften erzeugt werden können, wobei ein Zusatz weiterer Chemikalien zu der Papiermasse möglichst verhindert werden soll.

Die obige Aufgabe hinsichtlich der Papiereigenschaften kann durch ein Krepprohpapier mit einer Dicke (DIN 53105) von 0,07 bis 0,18 mm und einer flächenbezogenen Masse (DIN 53104) von 25 bis 80 g/m² gelöst werden, wobei dieses Rohkreppapier dadurch gekennzeichnet ist, daß es eine Bruchdehnung (DIN 53112) von 10 bis 16% und eine Glätte nach Bekk (DIN 53107) von 2,5 bis 6 Sekunden auf der Siebseite und von 1,0 bis 3,0 Sekunden auf der Oberseite aufweist.

In einer bevorzugten Ausführungsform weist das Rohkreppapier auf der Siebseite eine Glätte nach Bekk von 3 bis 6 Sekunden, insbesondere von 4 bis 6 Sekunden, und auf der Oberseite von 1,2 bis 3,0 Sekunden, insbesondere von 2 bis 3 Sekunden, auf.

Die flächenbezogene Masse (DIN 53104) des Rohkreppapieres liegt vorzugsweise bei 30 bis 60 g/m², und die Bruchkraft (trocken, nach DIN 53112) besitzt vorteilhafterweise Werte in der Längsrichtung von 26 bis 50 Newton/15 mm und in der Querrichtung von 12 bis 25 Newton/15 mm.

Eine weitere, spezielle Ausführung des Rohkreppapiers zeichnet sich dadurch aus, daß die Dichtigkeit nach Gurley 6 bis 12 s beträgt.

Gemäß der vorliegenden Erfindung wird weiterhin ein imprägniertes Kreppapier mit einer flächenbezogenen Masse (DIN 53104) von 40 bis 120 g/m², vorzugsweise 50-90 g/m², und einer Dicke (DIN 53105) von 0,07 bis 0,18 mm geschaffen, das dadurch gekennzeichnet ist, daß die Bruchdehnung (AFERA 4005) 8 bis 20% und die Glätte nach Bekk (DIN 53107) auf der Siebseite 7 bis 20 Sekunden und auf der Oberseite 2 bis 8 Sekunden beträgt.

Spezielle Ausgestaltungen des imprägnierten Kreppapiers sind dadurch gekennzeichnet, daß die Bruchkraft (trocken, nach AFERA 4004) in Längsrichtung 40 bis 120 N/15 mm, vorzugsweise 40-90 N/15 mm, und in Querrichtung 15 bis 60 N/15 mm, vorzugsweise 15-40 N/15 mm, beträgt.

Die Imprägnierung des Kreppapiers basiert vorzugsweise auf wässrigen Dispersionen auf der Basis von Styrolbutadien, Polyvinylacetat, Acrylat oder Acrylnitril bzw. Mischungen aus diesen bei einer Auftragsmenge von 10 bis 40 g/m².

In einer speziellen Ausgestaltung des Kreppapiers ist auf der Oberseite des imprägnierten Papiers ein "Release Coat" aufgetragen, der vorzugsweise eine wässrige Dispersion auf der Basis von Acrylat, Polyvinylacetat, langkettigen Fettsäure- und/oder Fettalkoholderivaten, Paraffinen oder Siliconverbindungen bzw. Mischungen aus diesen in einer vorteilhaften Menge von 2 bis 10 g/m² beinhaltet.

Eine weitere Variante des imprägnierten Kreppapiers ist schließlich dadurch gegeben, daß auf der Siebseite ein Primer aufgetragen ist, der vorzugsweise aus einer Dispersion auf der Basis Naturlatex, Acrylnitril, Styrolbutadien oder Acrylat bzw. Mischungen aus diesen in einer Menge von 2 bis 5 g/m² besteht

Schließlich sind gemäß der vorliegenden Erfindung auch imprägnierte Papiere beinhaltet, die auf der Oberseite einen "Release Coat" und auf der Siebseite einen Primer aufweisen. Der "Release Coat" führt dazu, daß sich das Klebeband wieder von der Rolle abwickeln läßt, ohne daß es zu Verklebungen mit der Oberseite des darunterliegenden Rollenbandes kommt. Der Primer schließlich bedingt eine gute Haftung des Klebers auf der Siebseite.

Die erfindungsgemäßen Krepprohpapiere und veredelten Kreppapiere können über ein Verfahren hergestellt werden, bei dem die auf dem Kreppzylinder geführte Papierbahn mit einem Schaber abgehoben, über die Fläche des Schabers zu einem Überführvorrichtung und von dort zu den Trockenzylindern geführt und ggf. imprägniert und beschichtet wird, das dadurch gekennzeichnet ist, daß der Schliffwinkel des Schabers 20° bis 60° beträgt, die Schaberkante eine Höhe von 0,01 bis 0,02 mm aufweist, und der Winkel zwischen der Tangente und dem Schaber am Berührungspunkt des Schabers mit dem Kreppzylinder 35° bis 45° beträgt.

Vorteilhafterweise wird das obige Verfahren so durchgeführt, daß die Geschwindigkeit der Überführvorrichtung gegenüber der des Kreppzylinders um 15 bis 20% verzögert wird.

Das Schabermaterial besteht weiterhin vorzugsweise aus Edelstahl.

Die Imprägnierung kann in einem Tauchbad erfolgen, wobei anschließend mit Walzen abgequetscht wird.

Die "Release Coat"- und Primerbeschichtung wird in der Regel mit einer Luftbürste, einem "Mayer Bar", einem "Speed Sizer", einem Rollrakel, einer Rasterwalze oder einem "Blade Coater" vorgenommen.

Die Erfindung umfaßt weiterhin die Verwendung der erfindungsgemäßen Kreppapiere zur Herstellung von Klebe- und Abdeckbändern.

Schließlich können die erfindungsgemäßen Kreppapiere auch zur Herstellung bedruckter Etiketten für die Auszeichnung von Formkörpern eingesetzt werden.

Die Erfindung wird anhand der folgenden Figuren und dem Beispiel näher erläutert.

- Fig. 1: Kreppvorrichtung zur Kreppapierherstellung;
- Fig. 2: Schaber;

15

30

40

50

- Fig. 3a: Glätte nach Bekk auf der Siebseite des Kreppapiers in Abhängigkeit von der Dehnung;
- Fig. 3b: Glätte nach Bekk auf der Oberseite des Kreppapiers in Abhängigkeit von der Dehnung;
- Fig. 4a: Glätte nach Bekk auf der Siebseite des Kreppapiers in Abhängigkeit von dem Flächengewicht; und
- 45 Fig. 4b: Glätte nach Bekk auf der Oberseite des Kreppapiers in Abhängigkeit von dem Flächengewicht.

Die gemäß der Erfindung eingesetzte Kreppvorrichtung zur Erzeugung des Kreppapiers ist in Figur 1 wiedergegeben. An dem Kreppzylinder (1) liegt der Schaber (2), der mit einem Deckblatt (3) versehen ist, an. Der Schaber ist mit dem Schaberhalter (4) verbunden, der seinerseits am Schaberbalken (5) befestigt ist.

Die Ausgestaltung des Schabers ist in Figur 2 verdeutlicht. Der Schaber weist an seiner Vorderseite eine Schliffläche (6) und eine Schabkante (7) auf, die gemäß der vorliegenden Erfindung einen speziellen Schliffwinkel bzw. eine definierte Höhe besitzen.

In den Figuren 3a, 3b, 4a und 4b ist die Glätte nach Bekk eines veredelten Kreppapieres (0) gemäß der vorliegenden Erfindung mit der Glätte handelsüblicher Produkte (I) bis (VII) verglichen. Die Darstellungen zeigen die Überlegenheit der erfindungsgemäßen Kreppapiere hinsichtlich der Glätte bei gleichzeitiger hoher Dehnung, wobei diese Überlegenheit insbesondere auf der Siebseite zu Tage tritt. Das erfindungsgemäße Kreppapier war hierbei mit einer wässrigen Dispersion auf der Basis von Styrolbutadien in einer

Menge von 15 g/m² imprägniert. Weiterhin befand sich auf der Oberseite ein "Release Coat" auf der Basis einer wässrigen Dispersion aus Acrylat und Fettalkoholderivaten in einer Auftragsmenge von 4 g/m².

Schließlich war auf der Siebseite ein Primer in einer Menge von 2 g/m² aufgetragen, der sich aus einer wässrigen Dispersion von Naturlatex, Acrylnitril und Styrolbutadien zusammensetzte. Das verwendete Rohpapier entsprach dem des folgenden Beispiels.

Beispiel:

Eine auf einer Papiermaschine in üblicher Weise aus halbgebleichten Sulfatzellstoff gebildete Papiermasse wurde auf einen Kreppzylinder geführt und von dort mittels eines Schabers abgenommen. Dieser Schaber besaß einen Schliffwinkel von 41°, eine Abschabkante mit einer Höhe von 0,02 mm und war in einem Winkel von 6° hinsichtlich der Horizontalen an dem Zylinder im Berührungspunkt angestellt. Weiterhin betrug die Geschwindigkeitsdifferenz zwischen dem Kreppzylinder und der nachfolgenden Überführvorrichtung 18%, d.h. die Überführvorrichtung bewegte sich gegenüber dem Zylinder mit einer Verzögerung von 18%. Die Geschwindigkeit der auf die Überführvorrichtung folgenden Trockenzylinder und des Papieraufrollers waren gegenüber der Überführvorrichtung wieder erhöht. So betrug die Geschwindigkeitsverzögerung zwischen dem Kreppzylinder und dem ersten Trockenzylinder nur mehr 12,5% und zwischen dem Kreppzylinder und dem Papieraufroller 9,5%.

Mittels des obigen Verfahrens konnte ein Rohkreppapier erhalten werden, das durch die folgenden Daten gekennzeichnet ist:

	Flächengewicht	39 <u>+</u> 1 g/m ²
25	Dicke	0,09 bis 0,12 mm
	Bruchkraft (trocken, DIN 53112)	40 <u>+</u> 2 N (längs)
		17 <u>+</u> 1 N (quer)

30

Dichtigkeit nach Gurley Bruchdehnung (DIN 53112) Glätte nach Bekk (DIN 53107) 8 bis 10 Sekunden 12 bis 14%

Siebseite: 3 Sekunden Oberseite: 1,1 Sekunden

40

Die obigen Ausführungen legen dar, welche Vorteile mit der vorliegenden Erfindung erreicht werden können. Das nach dem erfindungsgemäßen Verfahren erzeugte Kreppapier weist neben einer hohen Dehnung auch eine hohe Glätte auf. Damit läßt sich bei der Herstellung von Klebe- und Abdeckbändern der Klebstoffauftrag, insbesondere auf der Siebseite des Papiers, stark reduzieren. Um die gleiche Klebkraft wie bei üblichen Kreppapieren zu erreichen, können mindestens 30% Klebstoff eingespart werden. Dadurch werden die Herstellkosten für die Klebebänder stark reduziert und die Produktivität des Herstellprozeßes steigt deutlich an. Die gegenüber den Normalkreppapieren deutlich höhere Glätte führt weiterhin dazu, daß bei der Anwendung des Kreppapiers Finger und Haut des Anwenders besser geschont werden. Schließlich wird auch eine bessere Haftung der Kreppbänder aufeinander erreicht. Die hohe Glätte, verbunden mit einer geringeren Auftragsmenge an Kleber und somit einer geringeren Dicke des Klebebandes bewirkt auch, daß scharfe Lackkanten an der Verbindungsstelle zwischen bestrichenen und mit Klebeband abgedeckten Flächen erzeugt werden können.

Aufgrund der gleichzeitigen Eigenschaften einer hohen Dehnung und einer herausragenden Glätte eröffnet sich für die so erzeugten Kreppapiere eine neue Verwendungsmöglichkeit. Die hohe Glätte führt dazu, daß das Kreppapier nunmehr leicht bedruckt werden kann, andererseits bietet die hohe Dehnung des Papiers die Möglichkeit, auch kompliziert geformte Teile mit diesem Papier zu bekleben. Die erfindungsgemäßen Kreppapiere können damit vorteilhaft als Etiketten für auch komplizierte Formkörper verwendet

werden.

Patentansprüche

- 1. Rohkreppapier mit einer Dicke (DIN 53105) von 0,07 bis 0,18 mm und einer flächenbezogenen Masse (DIN 53104) von 25 bis 80 g/m², **gekennzeichnet** durch eine Bruchdehnung (DIN 53112) von 10 bis 16% und eine Glätte nach Bekk (DIN 53107) von 2,5 bis 6 Sekunden auf der Siebseite und von 1,0 bis 3 Sekunden auf der Oberseite.
- 2. Rohkreppapier nach Anspruch 1, dadurch **gekennzeichnet**, daß die Glätte nach Bekk auf der Siebseite 3 bis 6 Sekunden, insbesondere 4 bis 6 Sekunden, und auf der Oberseite 1,2 bis 3 Sekunden, insbesondere 2 bis 3 Sekunden, beträgt.
- 3. Rohkreppapier nach Anspruch 1 oder 2, dadurch **gekennzeichnet**, daß die flächenbezogene Masse (DIN 53104) 30 bis 60 g/m² ist.
 - **4.** Rohkreppapier nach einem der vorhergehenden Ansprüche, dadurch **gekennzeichnet**, daß die Bruchkraft (trocken, nach DIN 53112) in Längsrichtung 26 bis 50 N/15 mm und in Querrichtung 12 bis 25 N/15 mm beträgt.
 - 5. Rohkreppapier nach einem oder mehreren der vorhergehenden Ansprüche, dadurch **gekennzeichnet**, daß die Dichtigkeit nach Gurley 6 bis 12 Sekunden ist.
- 6. Imprägnierties Kreppapier mit einer flächenbezogenen Masse (DIN 53104) von 40 bis 120 g/m², vorzugsweise 50 bis 90 g/m², und einer Dicke (DIN 53105) von 0,07 bis 0,18 mm **gekennzeichnet** durch eine Bruchdehnung (AFERA 4005) 8 bis 20% und eine Glätte nach Bekk (DIN 53107) auf der Siebseite von 3 bis 20 Sekunden und auf der Oberseite von 2 bis 8 Sekunden.
- 7. Imprägnierties Kreppapier nach Anspruch 6, dadurch gekennzeichnet, daß die Glätte nach Bekk (DIN 53107) auf der Siebseite 7 bis 20 Sekunden und auf der Oberseite 3 bis 8 Sekunden beträgt.
 - 8. Imprägnierties Kreppapier nach Anspruch 6 oder 7, dadurch **gekennzeichnet**, daß die Bruchkraft (trocken, nach AFERA 4004) in Längsrichtung 40 bis 120 N/15 mm, vorzugsweise 40 bis 90 N/15 mm, und in Querrichtung 15 bis 60 N/15 mm, vorzugsweise 15-40 N/15 mm, ist.
 - 9. Imprägnierties Kreppapier nach einem oder mehreren der vorhergehenden Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Imprägnierung wässrige Dispersionen auf der Basis Styrolbutadien, Polyvinylacetat, Acrylat oder Acrylnitril oder Mischungen aus diesen in einer Auftragsmenge von 10 bis 40 g/m² umfaßt.
 - **10.** Imprägnierties Kreppapier nach einem oder mehreren der vorhergehenden Ansprüche 6 bis 9, dadurch **gekennzeichnet**, daß auf der Oberseite ein "Release Coat" aufgebracht ist.
- 11. Imprägnierties Kreppapier nach Anspruch 10, dadurch gekennzeichnet, daß der "Release Coat" eine Dispersion auf Basis Acrylat, Polyvinylacetat, langkettige Fettsäure- und/oder Fettalkoholderivate, Paraffin oder Siliconverbindungen oder Mischungen aus diesen in einer Auftragsmenge von 2 bis 10 g/m² enthält.
- **12.** Imprägnierties Kreppapier nach einem oder mehreren der vorhergehenden Ansprüche 6 bis 11, dadurch **gekennzeichnet**, daß auf der Siebseite ein Primer aufgetragen ist.
 - 13. Imprägnierties Kreppapier nach Anspruch 12, dadurch **gekennzeichnet**, daß der Primer wässrige Dispersionen auf der Basis Naturlatex, Acrylnitril, Styrolbutadien oder Acrylat oder Mischungen aus diesen in einer Auftragsmenge von 2 bis 5 g/m² umfaßt.
 - 14. Kreppapier nach einem oder mehreren der vorhergehenden Ansprüche dadurch **gekennzeichnet**, daß das Kreppapier erhältlich ist, indem man die auf dem Kreppzylinder laufende Papierbahn mit einem Schaber mit einem Schliffwinkel von 20° bis 60° und einer Kreppschaberkante von 0,01 bis 0,02 mm,

20

35

40

55

der in einem Winkel von 35° bis 45° bezüglich der Tangente an den Kreppzylinder angestellt ist, abnimmt, über die Fläche des Schabers zu einer Überführvorrichtung und anschließend auf Trockenzylinder führt und ggf. imprägniert und beschichtet.

15. Verfahren zur Herstellung von Kreppapier gemäß einem der Ansprüche 1 bis 13, wobei man die auf einem Kreppzylinder laufende Papierbahn mit einem Schaber abnimmt, über die Fläche des Schabers zu einer Überführvorrichtung und anschließend auf Trockenzylinder führt und ggf. imprägniert und beschichtet, dadurch gekennzeichnet, daß

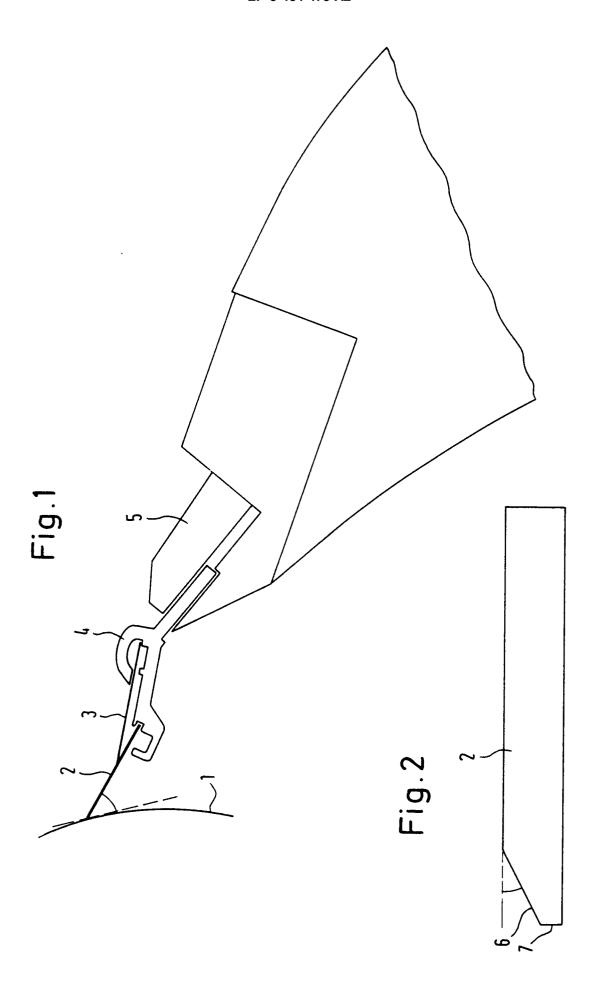
10

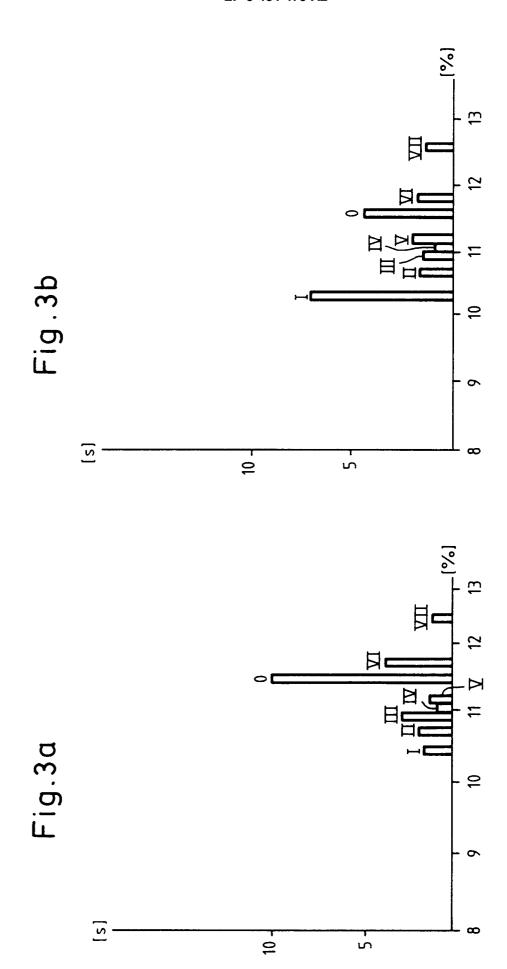
25

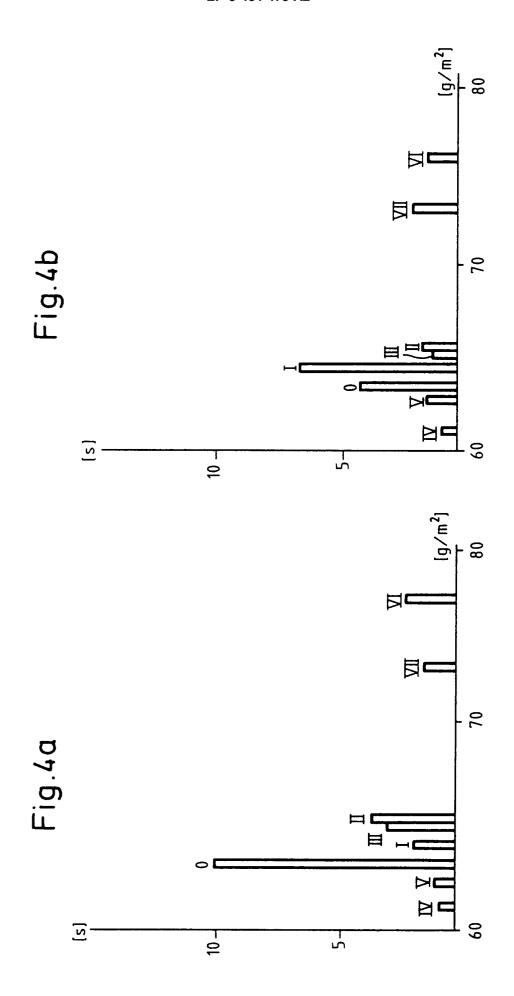
30

35

40


45


50


55

- (1) der Schaber einen Schliffwinkel von 20° bis 60° und eine Abschabkante von 0,01 bis 0,02 mm aufweist, und
- (2) der Schaber in einem Winkel bezüglich der Tangente an den Kreppzylinder im Berührungspunkt mit dem Schaber von 35° bis 45° angestellt wird.
- **16.** Verfahren nach Anspruch 15, dadurch **gekennzeichnet**, daß die Überführvorrichtung gegenüber dem Kreppzylinder in der Geschwindigkeit um 15 bis 20% verzögert wird.
 - **17.** Verfahren nach Anspruch 15 oder 16, dadurch **gekennzeichnet**, daß der Schaber aus Edelstahl gebildet ist.
- 20 18. Verwendung der Kreppapiere gemäß einem der Ansprüche 1 bis 13 zur Herstellung von Klebe- und Abdeckbändern.
 - 19. Verwendung der Kreppapiere gemäß einem der Ansprüche 1 bis 13 zur Herstellung von Etiketten, insbesondere zur Auszeichnung von Formkörpern.

6

