
19

Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number : 0 4 7 2 4 3 3 A 2

12 EUROPEAN PATENT A P P L I C A T I O N

© Application number : 91307748.3 6i) int. ci.5 : G06F 9 /26

(22) Date of filing : 22.08.91

(30) Priority : 23.08.90 JP 221795/90

@ Date of publication of application
26.02.92 Bulletin 92/09

@ Designated Contracting States :
DE FR GB

© Applicant : FUJITSU LIMITED
1015, Kamikodanaka Nakahara-ku
Kawasaki-shi Kanagawa 211 (JP)

© Inventor : Maebayashi, Masato
Berubia Tsunashima Dai-4 204 2486,
Shinyoshida-cho
Kohoku-ku, Yokohama-shi, Kanagawa 223
(JP)
Inventor : Kimura, Makoto
5-8-14, Kobayashikita, Inzaimachi
Inba-gun, Chiba 270-13 (JP)

© Representative : Stebbing, Timothy Charles et
al
Haseltine Lake & Co. Hazlitt House 28
Southampton Buildings Chancery Lane
London WC2A 1AT (GB)

CM
<
CO
CO
"<t
CM
h-

© Firmware modification system wherein older version can be retrieved.

@ A firmware modification system in a data processing apparatus (1), containing : a processor (3) for
executing a program ; a working program holding unit (4) for holding therein data of the program
executed by the processor (3) ; a fixed program data storing unit (5) for storing a fixed program data ; a
modification data storing unit (6) for storing modification data with which the fixed program data is to
be modified, where the modification data storing unit (6) is accessible from outside of the data
processing apparatus (1) for writing the modification data therein ; a fixed program data loading unit (7)
for reading from the fixed program data storing unit (5), and loading the fixed program data in the
working program holding unit (4) to hold the fixed program data therein ; and a working program
modifying unit (8) for modifying data of the program which is held in the working program holding unit
(4), with the modification data which is stored in the modification data storing unit (6).

LU

Jouve, 18, rue Saint-Denis, 75001 PARIS

F i g . 1

M O D I F I C A T I O N DATA S U P P L Y UNIT

11
4

V I O D I F I C A T I O N
DATA
H O L D I N G U N I T

M O D I F I C A T I O N

DATA S T O R I N G

U N I T

2

T R A N S F E R C O M M A N D
I S S U I N G U N I T

10.

T R A N S F E R C O M M A N D !

R E C E I V I N G U N I T
.

\ \ u - r

F I X E D P R O G R A M

DATA S T O R I N G

U N I T

a

\ V
5 \

1 . 1

M O D I F I C A T I O N

DATA T R A N S F E R

' U N I T

WORKING P R O G R A M

HOLDING UNJT

5 \ H
W O R K I N G P R O G R A M

M O D I F Y I N G U N I T

\ 7 >

P R O C E S S O R

\ F I X E D P R O G R A M
V — DATA L O A D I N G

U N I T

DATA P R O C E S S I N G A P P A R A T U S

1 EP 0 472 433 A2 2

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to a firmware modi-
fication system in a data processing apparatus. The
functions of one or more piece of equipment in a data
processing system are often realized by firmware, i.e.,
the equipment contains a microprocessor and a read-
only-memory (ROM), and software which determines
fixed functions of the equipment is written in advance
in the ROM.

(2) Description of the Related Art

Since firmware is a kind of software, a modifi-
cation thereof for upgrading the firmware or correcting
a bug therein may be required. In large scale and gen-
eral purpose data processing systems, a service pro-
cessor and a magnetic disc device are provided
therein, and software is read by the service processor
from the magnetic disc device, and is installed in ran-
dom access memories (RAM) in one or more piece of
equipment in the data processing system when the
power of the system is turned on or the system is res-
tarted. Therefore, the service processor manages and
controls the modification or correction of the firmware.

In relatively small scale data processing systems,
or in a small size piece of equipment such as a
peripheral interface adapter, however, firmware is
written in advance in a ROM, and therefore, the ROM
must be replaced with a new one when the firmware
is to be modified or a bug corrected.

The system must be stopped when the ROM is
replaced, and further, the work for the replacement is
very bothersome, particularly when firmware in a
large number of pieces of equipment is to be modified,
or a plurality of pieces of equipment is distributed in a
large or remote area.

Further, the data processing apparatus may not
successfully operate after the modification of the pro-
gram data, due to a bug included in the modified data,
and in the conventional construction using the ROM
only, the ROM must be again replaced in this case.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a
firmware modification system of a data processing
apparatus wherein a modification of firmware can be
carried out fast and easily even when the data proces-
sing apparatus is located in a remote place, or when
the modification must be carried out in a large number
of data processing apparatuses, and program data of
an older version can be retrieved when the modified
program data is not successfully executed.

According to the present invention, there is pro-
vided a firmware modification system in a data pro-

cessing apparatus, comprising: a processor for
executing a program; a working program holding unit
for holding therein data of the program executed by
the processor; a fixed program data storing unit for

5 storing a fixed program data; a modification data stor-
ing unit for storing modification data with which the
fixed program data is to be modified, where the modi-
fication data storing unit is accessible from outside of
the data processing apparatus for writing the modifi-

10 cation data; a fixed program data loading unit for read-
ing the fixed program data from the fixed program data
storing unit, and loading the fixed program data in the
working program holding unit to hold the fixed prog-
ram data therein; and a working program modifying

15 unit for modifying the data of the program held in the
working program holding unit, with the modification
data stored in the modification data storing unit.

In the above construction of the present inven-
tion, the fixed program may include program portions

20 respectively corresponding to the functions of the
fixed program data loading unit and the working pro-
gram modifying unit, and the fixed program data load-
ing unit and the working program modifying unit may
be respectively realized by executions of the program

25 portions by the processor.
In the above construction of the present inven-

tion, the firmware modification system may further
comprise a modification data supply unit, provided
outside of the data processing apparatus, forsupply-

30 ing the modification data to be stored in the modifi-
cation data storing unit.

In the above construction of the present inven-
tion, the modification data supply unit may comprise:
a modification data holding unit for holding the modi-

35 fication data to be stored in the modification data stor-
ing unit; and a transfer command issuing unit for
issuing a transfer command to the data processing
apparatus; the data processing apparatus further
comprises a transfer command receiving unit for

40 receiving the transfer command; the firmware modifi-
cation system further comprises a modification data
transfer unit for reading the modification data from the
modification data holding unit, transferring the modi-
fication data from the modification data holding unit to

45 the modification data storing unit, and writing the
modification data in the modification data storing unit,
when the transfer command is received by the trans-
fer command receiving unit.

In the above construction of the present inven-
50 tion, the modification data may contain a plurality of

versions of modification data; the firmware modifi-
cation system may further comprise a modification
version command unit for commanding the working
program modifying unit to modify the data of the pro-

55 gram held in the working program holding unit with the
modification data up to a specific version; and the
working program modifying unit may modify the data
of the program held in the working program holding

3

3 EP 0 472 433 A2 4

unit with the modification data up to the version, in the
order of the versions from the oldest to the newest,
when receiving the commanding of the version.

In a preferred construction of the present inven-
tion, the plurality of versions of modification data are 5
stored in the modification data storing unit in a
plurality of blocks respectively corresponding to the
versions, the blocks are arrayed in the order of the
versions from the oldest to the newest, and the modi-
fication version command unit commands the version 10
by a number of blocks containing the modification
data up to the version.

In a further construction of the present invention,
each block for each version contains: an address of
each data to be modified; new data of the address for 15
the version; and old data of the address for a version
older than the version of the block by one version
level; the working program modifying unit modifies the
data in the working program holding unit in the order
of the versions from the oldest to the newest; and the 20
working program modifying unit further comprising: a
data comparing unit for comparing, before modifying
the data in the working program holding unit, the old
data of each address and the data of the same
address in the working program holding unit; and an 25
abnormal stop unit for stopping the modifying oper-
ation when the old data of each address and the data
of the same address in the working program holding
unit are determined by the data comparing unit to be
not equal. 30

In a further preferred construction of the present
invention, each block of the modification data con-
tains first information indicating a version of the prog-
ram data up to which version the program data held
in the working program holding unit is modified with 35
modification data of the block; the working program
holding unit contains an area holding second infor-
mation indicating a version of program data which is
currently held therein; the working program modifying
unit renews the second information indicating the ver- 40
sion of program data, based on the first information
when the program data held in the working program
holding unit is modified with the modification data in
each block.

In the above construction of the present inven- 45
tion, the working program modifying unit may com-
prise a version confirming unit for determining
whether or not the version of the program data in the
working program holding unit corresponds to a ver-
sion up to which version the program data held in the 50
working program holding unit is modified with modifi-
cation data of each block, based on the first and sec-
ond information, before the program data held in the
working program holding unit is modified with the
modification data in each block. 55

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
Figure 1 is a diagram of the basic construction of
the present invention;
Figure 2 is a diagram showing an example con-
struction of a distributed data processing system
where the present invention can be applied to the
communication control processors;
Figure 3 is a diagram showing the construction of
a communication control processor according to
the embodiment of an present invention;
Figure 4 is a diagram showing the construction of
the adapter in the communication control pro-
cessor according to the embodiment of the pre-
sent invention;
Figure 5 is a flowchart indicating an operation by
the processor for transferring modification data to
the adapter;
Figure 6 is a diagram showing an example format
of the modification data stored in the EEPROM in
the construction of Fig. 4;
Figure 7 is a diagram showing an example format
of the header area in the modification data stored
in the EEPROM in the construction of Fig. 4;
Figures 8A and 8B are diagrams indicating two
types of each unit of the modification data in the
modification data area in the modification data
stored in the EEPROM in the construction of Fig.
4;
Figure 9 is a diagram showing an example of the
end mark;
Figure 1 0A is a diagram showing a general format
of the I/O command;
Figure 1 0B is a diagram showing an example for-
mat of the adapter operation descriptor AOPD;
Figure 1 1 is a diagram showing typical examples
of the function code;
Figure 12 is a diagram showing an example for-
mat of the modification data storage area in a
RAM in each of the processors in the communi-
cation control processor of Fig. 4;
Figures 1 3A, 1 3B, and 1 3C indicate a flowchart of
a detailed operation by the processor for transfer-
ring modification data to the adapter;
Figures 14A, 14B, 14C, and 14D indicate a flow-
chart of a detailed operation by the adapter for
transferring modification data thereto;
Figure 15 is a flowchart indicating an operation of
the initial program loading in the adapter; and
Figures 16A, B, and C indicate a flowchart of a
detailed operation by the adapter for loading the
modification data in the RAM therein.

4

5 EP 0 472 433 A2 6

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Basic Operations

Before describing the preferred embodiment of
the present invention, the basic operations of the pre-
sent invention are first explained below.

Figure 1 is a diagram of the basic construction of
the present invention. In Fig. 1, reference numeral 1
denotes a data processing apparatus, 2 denotes a
modification data supply unit, 3 denotes a processor,
4 denotes a working program holding unit, 5 denotes
a fixed program data storing unit, 7 denotes a fixed
program data loading unit, 8 denotes a working prog-
ram modifying unit, 9 denotes a modification data
transfer unit, 10 denotes a transfer command receiv-
ing unit, 11 denotes a modification data holding unit,
12 denotes a transfer command issuing unit, and 13
denotes a modification data transfer path.

Among these elements, the processor 3, the
working program holding unit 4, the fixed program
data storing unit 5, the modification data storing unit
6, the fixed program data loading unit 7, and the work-
ing program modifying unit 8 in the data processing
apparatus 1 are indispensable constituents of the
broadest scope of the present invention.

According to the above broadest scope of the pre-
sent invention, the fixed program data (version 0 data)
is stored in the fixed program data storing unit, and the
modification data with which the fixed data is to be
modified is stored in the modification data storing unit,
where the modification data storing unit is accessible
from outside of the data processing apparatus for writ-
ing the modification data therein. The fixed program
data is read from the fixed program data storing unit
by the fixed program data loading unit, and is loaded
in the working program holding unit to be held therein,
and then the data of the program held in the working
program holding unit, is modified with the modification
data stored in the modification data storing unit, by the
working program modifying unit. Namely, the fixed
program data (version 0 data) is permanently retained
in the fixed program data storing unit. Therefore, even
when it turns out that the modified program data can-
not be successfully executed, the fixed program data
can be retrieved at the working program holding unit.
In addition, since the modification data storing unit is
writable from outside of the data processing
apparatus, program data of an older version can be
retrieved when the modified program data is not suc-
cessfully executed.

In the above construction wherein each block for
each version contains: an address of each data to be
modified; new data of the address for the version; and
old data of the address for a version older than the ver-
sion of the block by one version level, the working pro-
gram modifying unit modifies the data in the working

program holding unit in the order of the versions from
the oldest to the newest, the data comparing unit in
the working program modifying unit compares, before
modifying the data in the working program holding

5 unit, the old data of each address and the data of the
same address in the working program holding unit.
The modifying operation is stopped by the abnormal
stop unit when the old data of each address and the
data of the same address in the working program

10 holding unit are determined by the data comparing
unit to be not equal.

The remaining elements in Fig. 1 other than the
above indispensable constituents operate respect-
ively as described in the "SUMMARY OF THE INVEN-

15 TION".

Fig. 2 (Example System to which Present Invention
is Applied)

20 Figure 2 is a diagram showing an example con-
struction of a distributed data processing system whe-
rein the present invention can be applied to the
communication control processors 19 and 29. The
distributed data processing system of Fig. 2 may be

25 a data processing system used by a bank, a credit cor-
poration, an insurance company, or a supermarket
chain, each having a plurality of branches distributed
over a large area.

In Fig. 2, reference numeral 17 and 27 each
30 denote a host computer, 18 and 28 each denote a

data base, 19 and 29 each denote a communication
control processor, 20 and 30 each denote an auxiliary
storage device, 21 , 22, and 23 each denote a network
processor, 24 denotes a maintenance center, 25

35 denotes a piece of terminal equipment, 26 denotes an
exchange system, and 27, 28, and 29 each denote a
transmission line.

The network processors 21 to 23 and the trans-
mission lines 27 to 29 constitute a backbone network,

40 and the network processors are located in respective
nodes of the network. Although only three network
processors 21 to 23 and the three transmission lines
27 to 29 are shown in Fig. 2, usually, the backbone
network can be constructed in an arbitrary form. In

45 addition, the above nodes may be located at the
above branches.

The host computer 1 7, the data base 1 8, the com-
munication control processor 19, and the auxiliary
storage device 20 may constitute an information

so center, for example, which controle information on
customers in an area, and the host computer 27, the
data base 28, the communication control processor
29, and the auxiliary storage device 30 may also con-
stitute another information center which controls infor-

55 mation on customers in another area. The
communication control processor 19 or 29 controls
communications of data between the corresponding
host computer and the backbone network. As well

5

7 EP 0 472 433 A2 8

known, the function of the communication control pro-
cessor includes: transformation of data format; estab-
lishing and release of data links; monitoring
transmission lines; error detection; data buffering;
data transfer control between the host computer and
communication control processor; and the like.

The maintenance center 24 is connected to one
of the network processors 21 to 23, and the exchange
system 26 is connected to that network processor 22
in the construction of Fig. 2. Alternately, the exchange
26 may be connected to the other network processor
when the network processor is located at the
exchange. The terminal equipment 25 may be pro-
vided, for example, at each branch office of the bank,
and connected to the exchange 26 through a trans-
mission line, whereby, for example, an operator in a
branch office can information from the information
center through the terminal equipment, the exchange
26, and the backbone network.

Fig. 3 (Communication Control Processor)

Figure 3 is a diagram of the construction of a com-
munication control processor according to the embo-
diment of the present invention. In Fig. 3, reference
numerals 31 ̂ and 31 2 each denote a common storage
unit, 33 ̂ 332, 38! , and 382 each denote a bus handler,
34i and 342 each denote an I/O device, for example,
an auxiliary storage device, 35 denotes a line switch-
ing circuit, 36 ̂ 362, 363, and 364 each denote an
adapter, 37 denotes a transmission line, 40 ̂ 402, and
403 each denote a processor, 4^ and 41 2 each
denote a system bus, and 42̂ and 422 each denote an
I/O bus.

The communication control processor of Fig. 3 is
realized by a loosely-coupled multi-processor con-
struction wherein the above-mentioned functions are
shared by the processors 40 ̂ 402, and 403. The com-
mon storage units 3^ and 312 are used for storing
data commonly used by the processors 40 ̂ 402, and
403. The respective paired provisions of common stor-
age units 31 1 and 312, the bus handlers 331 and 332,
the system buses 4^ and 412, the bus handlers 38!
and 382, the I/O buses 42̂ and 41 2, the adapters 36!
and 362, and the adapters 363 and 364 are made for
realizing a doubled construction. Either of each pair
can be used (activated) under the control of the pro-
cessors 40i, 402, and 403. For example, the line
switching circuit 37 is controlled to connect the trans-
mission line 37 with the activated one of the adapters
363 and 364. The transmission line 37 is, for example,
connected to the network processor 21 of Fig. 2. The
adapters 363 and 364 each operate as a line interface
circuit between the processors 40i, 402, and 403 and
the transmission line 37, and the adapters 36! and 362
each operate as an I/O interface circuit between the
processors 40i, 402, and 403 and the I/O devices 34i
and 342. In this embodiment, the adapters 36!, 362,

363, and 364 each correspond to the aforementioned
data processing apparatus 1 in Fig. 1 , and the proces-
sors 40i, 402, and 403 realize the aforementioned
modification data supply unit 2 in Fig. 1.

5
Fig. 4 (Adapter)

Figure 4 is a diagram showing the construction of
the adapter in the communication control processor

10 according to the embodiment of the present invention.
In Fig. 4, reference numeral 42j (i=1 and 2) denotes
one of the above-mentioned I/O buses 42i and 422,
36j (j=1 , 2, 3, or 4) denotes one of the above-men-
tioned adapters 36! , 362, 363, and 364, 50 denotes a

15 bus controller, 51 denotes a microprocessor unit
(MPU), 52 denotes a random access memory (RAM),
53 denotes a read only memory (ROM), 54 denotes
an electrically erasable programmable ROM (EEP-
ROM), 55 denotes a device controller, or a line inter-

20 face circuit, and 56 denotes a local bus.
The MPU 51 controls the whole operation of the

adapter 36j, and corresponds to the aforementioned
processor 3 in Fig. 1 . The RAM 52 is used as a main
memory area (working area) of the MPU 51 , and data

25 of a program executed by the MPU 51 is loaded in the
RAM 52. The RAM 52 corresponds to the aforemen-
tioned working program holding unit 4 in Fig. 1. The
ROM 53 stores fixed data of the program as program
data of version zero, and corresponds to the

30 aforementioned fixed program data storing unit 5 in
Fig. 1. Any of the processors 40i, 402, and 403 can
write modification data in the EEPROM 54 with the aid
of the MPU 51, as explained later. The modification
data is used for modifying data of the program held in

35 the RAM 52.
The program data of version zero includes a pro-

gram portion for an initial program loading. The prog-
ram portion is comprised of: a first routine for reading
the program data of version zero from the ROM 53,

40 and transferring the program data to the RAM 52 to
load the program data in the RAM 52; and a second
routine for modifying the data of the program held in
the RAM 52, with the modification data held in the
EEPROM 54, as explained later.

45 When the power of the adapter 36j is turned ON,
or the adapter receives a command to carry out an ini-
tial program loading operation (IPL), as explained
later, the operation of the MPU 51 is jumped to a top
address of an area, in the ROM 53 where the above

so first routine is stored, and thus the above first routine
is executed by the MPU 51 . Then, the operation goes
to an area in the ROM 53 where the above second
routine is stored. When modification data is held in the
EEPROM 54, and when the modification is requested

55 by any of the processors 40i, 402, and 403, the above
second routine is executed by the MPU 51 .

The device controller, or the line interface circuit
55 is provided as an interface circuit between the local

6

g EP 0 472 433 A2 10

bus 56 and the I/O devices 34i and 342, or the trans-
mission line 37, respectively. The bus controller 50
operates as an interface circuit between the adapter
36j and the I/O bus 42j. The functions of the bus con-
troller 55 include: reception of a command from any
one of the processors 40i , 402, and 403; transfer of the
received command to the MPU 51; buffering of data
to be transferred between one of the processors 40^
402, and 403 and the I/O devices 34̂ and 342, or the
transmission line 37; buffering of the modification data
to be transferred from one of the processors 40̂ , 402,
and 403 to the EEPROM 54; obtaining a right to
access a memory (not shown) in any of the proces-
sors 40i, 402, and 403; transfer of the modification
data from the memory in one of the processors 40̂ ,
402, and 403 to the bus controller 50; and transfer of
the modification data from the bus controller 50 to the
EEPROM 54. The above transfer operations of the
modification data are realized by DMA (direct memory
access) operations, i.e., the bus controller 50 com-
prises a DMA controller. The above function of access
to a memory (not shown) in any of the processors 40̂ ,
402, and 403 is used, for example, when transferring
the modification data from the memory in the pro-
cessor to the bus controller 50.

Fig. 5 (Operation of Processor)

In the distributed data processing system of Fig.
2, the modification data with which the program data
of the program in the RAM 52 of Fig. 4 is to be mod-
ified, is transferred from the maintenance center 24 to
one of the processors 40 ̂ 402, and 403 in the com-
munication control processor 19 or 29, through the
backbone network. The transferred modification data
is held in a memory (RAM, not shown) in the pro-
cessor. When receiving the modification data, the pro-
cessor carries out the operation of Fig. 5 to transfer
the modification data to the adapter 36j. Figure 5 is a
flowchart indicating an operation by the processor for
transferring modification data to one of the adapters
36 ̂ 362, 363, and 364. The processor 40 ̂ 402, or403
in the communication control processor 1 9 or 29 may
transfer the modification data to the adapters 36!, 362,
363 and 364 only when the processor receives a
request to transfer same or when a processing load
on the processor becomes small after the above
reception of the modification data.

In step 1 01 , the processor issues an adapterstate
transition command to the adapter, and in step 102 it
is determined whether or not the execution of the
adapter state transition command is successfully
completed. When it is determined that the operation
is not successfully completed in step 102, the oper-
ation goes to step 109 to execute an abnormal end
(abnormal termination) routine. When it is determined
that the execution of the adapter state transition com-
mand is successfully completed in step 102, the oper-

ation goes to step 103. The above adapterstate tran-
sition command is first received at the bus controller
50 in the adapter, and then, the bus controller 50 sup-
plies an interrupt signal corresponding to the adapter

5 state transition command to the MPU 51 . In response
to the interrupt signal, the MPU 51 executes a routine
to bring the adapter to a state whereby the adapter is
ready to receive the modification data, and returns to
the processor of the communication control processor

10 a ready signal indicating that the adapter is ready to
receive the modification data. When the processor
receive the ready signal in step 103, the operation
goes to step 104 to issue a modification data transfer
command to the adapter. The details of the operation

15 of the transfer are explained later. In step 105, it is
determined whether or not the transfer of the modifi-
cation data has been successfully completed. When
the transfer cannot be successfully completed, the
operation goes to step 109 to execute the abnormal

20 end routine, and when it is determined that the trans-
fer is successfully completed, the operation goes to
step 106 to issue an adapter operation restart com-
mand to the adapter. The adapter operation restart
command is first received at the bus controller 50 in

25 the adapter, and then, the bus controller 50 supplies
an interrupt signal corresponding to the adapter oper-
ation restart command to the MPU 51. In response to
the interrupt signal, the MPU 51 executes a routine to
bring the adapter to a normal processing state, and

30 returns to the processor of the communication control
processor a complete signal indicating that the adap-
ter is in the normal processing state. In step 107, it is
determined whether or not the adapter operation res-
tart command is successfully completed. When the

35 above complete signal is not received by the pro-
ceseor in the communication control processor, the
operation goes to step 109 to execute the abnormal
end routine, and when the above complete signal is
received by the processor in the communication con-

40 trol processor, the operation of Fig. 5 is completed.

Figs. 6, 7, 8A, 8B, and 9 (Format of Modification
Data)

45 Figure 6 is a diagram showing an example format
of the modification data stored in the EEPROM 54 in
the construction of Fig. 4. As shown at the left side of
Fig. 6, the EEPROM 54 contains control data, a
plurality of modification data blocks 1 to N, and a vac-

50 ant area. The plurality of modification data blocks 1 to
N respectively correspond to a plurality of versions of
modification data, i. e., a plurality of revisions. The
order of the modification data blocks corresponds to
the order of the number of the revisions. That is, the

55 modification data block 1 corresponds to the modifi-
cation data for the first revision 1; the modification
data block 2 corresponds to the modification data for
the second revision; ■■■ the modification data block N

7

11 EP 0 472 433 A2 12

corresponds to the modification data for the N-th revi-
sion. As shown at the upper right side of Fig. 6, the
area of the control data contains: a fixed value "FPDT
(ASCII CODE)" which indicates a top of the area of the
control data; a status of the EEPROM 54 which indi-
cates whether or not the EEPROM is protected
(closed) against a writing operation ("00" indicates
that the EEPROM is protected, and "01" indicates that
the EEPROM is open (not protected) for a writing
operation); an identification number PM-ID which indi-
cates the processor in the communication control pro-
cessor which supplies the commands to the adapter;
a number N' of modification data blocks to be used for
modification; the size of the vacant area (the remain-
ing area) of the EEPROM 54; the size of the area in
which the modification data is written in the EEPROM
54; and the check sum which is a sum of all data in
the control data and the modification data blocks in
the EEPROM 54. As explained later, the above con-
trol data except the check sum is supplied from one
of the processors 40 ̂ 402, and 403 to the adapter.

As shown at the lower right side of Fig. 6, each
modification data block contains a header area, modi-
fication data area, and an end mark.

Figure 7 is a diagram showing an example format
of the header area of the modification data block of
Fig. 6.

As shown in Fig. 7, the header area contains: a
fixed value "DBLK (ASCII CODE)"; a current version
of the program data which is held on the RAM 52 in
the adapter, and which is to be further modified; a new
version of the program data to which version the pro-
gram data held on the RAM 52 is modified with the
modification data of the modification data block; the
size of the modification data block; and a check sum
of the data in the modification data block.

In each of the above modification data blocks, the
modification data is contained in a plurality of units.
Figures 8A and 8B are diagrams indicating two types
of each unit of the modification data in the modification
data area in the modification data stored in the EEP-
ROM in the construction of Fig. 4. In the type of Fig.
8A, each unit contains old data and new data for two
bytes with a corresponding address of the RAM 52.
On the other hand, in the type of Fig. 8B, each unit
contains new data for four bytes with a corresponding
address of the RAM 52. Each unit also contains infor-
mation which indicates which type the above unit is.

Figure 9 is a diagram showing an example of the
end mark. The end mark is a fixed value "FFFFFFFF".

Fig. 10A (I/O Command)

Figure 1 0A is a diagram showing a general format
of an I/O command which is issued to the adapters
36 ̂ 362, 363, and 364 from the processors 40!, 402,
and 403 in the communication control processor. The
format of Fig. 10A is used in all commands issued

from the processors 40i, 402, and 403 toward the
adapters 36i, 362, 363, and 364 through the I/O buses
42i and422. The format contains: a number ADP-NO.
of an adapter to which the I/O command is issued; an

5 operation code OPECD which indicates a type of the
command; and an AOPD address. When the I/O com-
mand is a command which commands an operation
which should be initiated by the MPU 51 in the adap-
ter, the OPECD is indicated as "IAD". The AOPD rep-

10 resente an adapter operation descriptor AOPD, and
the AOPD address indicates a top addrese of an area
of the memory (RAM) in the processor at which the
adapter operation descriptor AOPD is written.

15 Fig. 10B (Adapter Operation Descriptor AOPD)

Figure 1 0B is a diagram showing an example for-
mat of the adapter operation descriptor AOPD. The
adapter operation descriptor AOPD of Fig. 10B con-

20 tains areas for: a command code CMDCODE which
indicates a type of an operation requested by the com-
mand; a data count DATA COUNT which indicates a
number of bytes of the modification data; a top
address of modification data storage area (which is

25 explained later); a function code FNC CODE which
indicates a detail of the function of the operation
requested by the command; and a number N' of the
blocks of the modification data which is to be used for
the modification.

30 When the above AOPD is used for a transfer com-
mand of the modification data from one of the proces-
sors 40 ̂ 402, and 403 to one of the adapters 36!, 362,
363, and 364, a command code for the transfer com-
mand is set in the above area for the command code

35 CMDCODE, the top address of the modification data
storage area is set in the above area for that address,
and the number N' of the blocks of the modification
data to be used for the modification is set in the above
area for the number of the blocks of the modification

40 data.
When the above AOPD is used for an initial pro-

gram loading command from one of the processors
40i , 402, and 403 to the adapters 36i 362, 363, and 364,
a command code for the initial program loading com-

45 mand is set in the above area for the command code
CMDCODE, and all zero is set in the above area for
that address. Another number N' of the blocks of the
modification data which is to be used in the execution
of the initial program loading command, which num-

50 ber N' is different from the number N' stored in the
EEPROM 54 at this time, may be set in the above area
for the number N' in the AOPD to carry out a modifi-
cation based on the new number N' in response to the
initial program loading command.

55 Thus, the processor in the communication control
processor can supply the adapter the number N' of
modification data blocks which is to be used in the
modification of the program data in the RAM 52 in the

8

13 EP 0 472 433 A2 14

adapter. Then, the modification of the program data
(firmware) can be carried out when an initial program
loading command is issued from the processor to the
adapter.

Since each modification data block corresponds
to one version of the program data, the processor can
change the version of the program data in the RAM 52
in the adapter, arbitrarily within the versions zero to N,
where N is the number of all modification data block
stored in the EEPROM 54. For example, when the
processor detects that the adapter does not operate
normally with a specific version of the firmware, the
processor can change the version to an older version
as explained above.

Fig. 11 (Function Code FNC CODE)

Figure 1 1 is a diagram showing typical examples
of the function code regarding operations for writing in
the EEPROM 54 in the adapters. As shown in Fig. 1 1 ,
the function code FNC CODE is "00" when one of the
processors 40 ̂ 402, and 403 commands a new writing
of modification data in the EEPROM 54; the function
code FNC CODE is "01" or "02" when one of the pro-
cessors 40!, 402, and 403 commands a writing of
modification data in addition to modification data
which is previously mitten in the EEPROM 54; the
function code FNC CODE is "03" when the processor
commands a closing of the EEPROM 54 (make the
EEPROM to be protected against a writing operation);
the function code FNC CODE is "04" when the pro-
cessor commands a clearing and then closing of the
EEPROM 54, and an initializing of the control data;
and the function code FNC CODE is "05" when the
processor commands a verifying of the modification
data in the modification data blocks designated in the
area of the control data with regard to the block for-
mat, consistency of the new and old versions, and the
check sum.

Fig. 12 (Format of Modification Data Storage Area
in RAM)

Figure 12 is a diagram showing an example for-
mat of the modification data storage area which is
held in a RAM in one of the processors in the com-
munication control processor of Fig. 4. As shown in
Fig. 12, the format of the modification data storage
area is the same as the aforementioned format of the
modification data in the EEPROM 54 shown in Fig. 6.

Figs. 13A, 13B, and 13C (Detailed Operation by
Processor for Transferring Modification Data to
Adapter)

Figures 1 3A, 1 3B, and 1 3C indicate a flowchart of
a detailed operation by the processor for transferring
modification data to the adapter.

In step 301 , the processor stores an AOPD in the
memory which is provided therein, where the above
function code FNC CODE is set as "00" or "01 ". Then,
in step 302, the processor stores modification data in

5 the memory. In step 303, the processor issues an IAD
command (an I/O command wherein the operation
code OPECD is set as "IAD"). The dashed lines and
the encircled symbols "A" and "B" indicates relation-
ships between the corresponding operations in the

10 adapter which are indicated in Figs. 14A, 14B, and
14C.

In step 304, it is determined whether or not an end
interrupt signal is received. As explained later with
reference to Fig. 14D, the adapter returns an end

15 interrupt signal to the processor when an operation for
an IAD command is completed. When it is determined
that the end interrupt signal is received, the operation
goes to step 305 of Fig. 13B. In step 305, it is deter-
mined whether or not the processor has further

20 (additional) modification data to be transferred to the
adapter. When it is determined thai the processor has
further modification data, the operation goes to step
306, and when it is determined that the processor has
not additional modification data, the operation goes to

25 step 311 of Fig. 13C.
In step 306, the processor stores in the memory

therein an AOPD wherein the function code FNC
CODE is set as "02", and then stores the additional
modification data in the memory in step 307. Next, in

30 step 308, the processor issued an IAD command for
transferring the additional modification data to the
adapter.

In step 309, it is determined whether or not an end
interrupt signal is received, and when it is determined

35 that the end interrupt signal is received, the operation
goes to step 310. In step 310, it is determined whether
or not the processor has further (additional) modifi-
cation data to be transferred to the adapter. When it
is determined that the processor has further modifi-

40 cation data, the operation goes back to step 306, and
when it is determined that the processor has no
additional modification data, the operation goes to
step 311 of Fig. 13C.

In step 31 1 , the processor stores an AOPD whe-
45 rein the function code FNC CODE is set as "03", and

then issues an IAD command to the adapter for clos-
ing the EEPROM 54. Then, when an end interrupt sig-
nal is received in step 313, the operation of Figs. 13A
to 13C is completed.

50
Figs.14A, 14B, 14C, and 14D (Detailed Operation
by Adapter for Transferring Modification Data)

Figures 14A, 14B, 14C, and 14D indicate a flow-
55 chart of a detailed operation by the adapter for trans-

ferring modification data thereto.
The operation of 14A, 14B, 14C, and 14D starts

when an IAD command is received by the adapter

9

15 EP 0 472 433 A2 16

from one of the processors 40 ̂ 402, and 403 in step
400. In step 401, the MPU 51 reads out the AOPD
(adapter operation descriptor) through the bus con-
troller 50 from the memory in the processor which
issued the IAD command. The AOPD address in the
IAD command shown in Fig. 10A is used to the read-
ing operation. The data of the AOPD is transferred to
the adapter by using the DMA function of the bus con-
troller 50. In step 402, the next step is determined
according to the function code FNC CODE in the
AOPD. When the function code FNC CODE is equal
to "00", the operation goes to step 403 in Fig. 14B,
when the function code FNC CODE is equal to "01" or
"02", the operation goes to step 406 in Fig. 14B, and
when the function code FNC CODE is equal to "03",
the operation goes to step 410 in Fig. 14C.

In step 403, the MPU 51 reads the content of the
modification data storage area (Fig. 12), where the top
address of the modification data storage area is read
from the above AOPD, and then transfers the modifi-
cation data to the EEPROM 54 in the adapter. The
DMA function of the bus controller 50 is used for the
transfer operations between the memory in the pro-
cessor and the bus controller 50, and between the bus
controller 50 and the EEPROM 54.

In this embodiment, the modification data is trans-
ferred to the adapterwith the aid of the MPU 51 in the
adapter through the I/O bus 42̂ or 422, the bus con-
troller 50, and the local bus 56. Namely, the modifi-
cation data path 13 in Fig. 1 is realized by the I/O bus
42i or 422, the bus controller 50, and the local bus 56,
and the modification data transfer unit 9 in Fig. 1 is
realized by the MPU 51 and the bus controller 50.

Then, the transferred data is stored in an area
which follows the area of the control data as shown in
Fig. 6 in the EEPROM 54 in step 404. Then, the ope-
tation goes to step 405 to renew the control data, and
store the renewed control data in the EEPROM 54. In
the renewing operation, the number N' of the modifi-
cation data to be used for the modification in the
AOPD is written in the area of the control data, the
status is set as "open (not protected)", an identifi-
cation number of the processor which issued the IAD
command is set as the number PM-ID, and the sizes
of the vacant area and the written area are renewed
based on the transferred modification data. Then the
operation goes to step 411 in Fig. 14D to send the end
interrupt signal to the processor.

In step 406, the MPU 51 reads the content of the
modification data storage area, where the top address
of the modification data storage area is read from the
above AOPD, and then transfers the modification data
to the EEPROM 54 in the adapter. The DMA function
of the bus controller 50 is used for the transfer oper-
ations between the memory in the processor and the
bus controller 50, and between the bus controller 50
and the EEPROM 54. The transferred data is stored
in an area which follows the area where the modifi-

cation data is previously stored in the EEPROM 54 in
step 407. Then, the operation goes to step 408 to
determine whether or not the function code FNC
CODE is "01" or "02". When the function code FNC

5 CODE is determined to be "01 ", the operation goes to
the above-explained step 405. When the function
code FNC CODE is determined to be "02", the oper-
ation goes to step 409. In step 409, the MPU 51
renews the control data, and store the renewed con-

10 trol data in the EEPROM 54. In the renewing oper-
ation, the number N' of the modification data to be
used for the modification in the AOPD is written in the
area of the control data, the sizes of the vacant area
and the written area are renewed based on the trans-

15 ferred modification data. Then the operation goes to
step 411 in Fig. 14D to send the end interrupt signal
to the processor.

In step 41 0, the MPU 51 renews the control data,
and stores the renewed control data in the EEPROM

20 54. In the renewing operation, the number N' of the
modification data to be used for the modification in the
AOPD is written in the area of the control data, the
status is set as "closed (protected)", the number of the
modification data blocks is renewed, the sizes of the

25 vacant area and the written area are renewed, and the
check sum of the data in the area where the modifi-
cation data is stored is calculated. Then the operation
goes to step 41 1 in Fig. 14D, to send the end interrupt
signal to the processor.

30
Figs. 15, 16A, 16B, 16C, and 16d (Initial Program
Loading in Adapter)

When an initial program loading command is
35 issued to an adapter by one of the processor 40 ̂ 402,

and 403 in the communication control processor, the
adapter executes the process of Fig. 1 5. Figure 1 5 is
a flowchart indicating an operation of the initial prog-
ram loading in an adapter.

40 In step 201, the operation goes to a predeter-
mined address of the ROM 53 in the adapter to read
out a fixed program data (program data of version
zero) from the ROM 53, and to load the program data
in the RAM 52 in the adapter. Then, in step 202, the

45 MPU 51 reads the number N' of the modification data
blocks to be used, from the adapter operation descrip-
tor AOPD to determine whether or not modification
data stored in the EEPROM 54 in step 203. When the
number N' is determined to be zero, the operation of

so Fig. 15 (the initial program loading) is completed.
When the number N' is determined not to be zero, the
operation goes to step 204 to carry out the operation
of Figs. 16A to 16C for modifying the program data
held in the RAM 52. When the operation of Figs. 16A

55 to 16C is completed, the operation of Fig. 15 is com-
pleted.

Figures 16A, B, and C indicate a flowchart of a
detailed operation by the adapter for loading the mod i-

10

17 EP 0 472 433 A2 18

fication data in the RAM therein.
In step 501 of Fig. 16A, it is determined whether

or not the check sum in the control data area is cor-
rect. When it is determined that the check sum is not
correct, the operation of Figs. 16A to 16C is com-
pleted. When it is determined that the check sum is
correct, the operation goes to step 502. In step 502,
the MPU 51 holds at a predetermined register therein
a number N' of modification data blocks, where the
number N' is a maximum number of modification data
blocks which are to be used in the operation of mod-
ifying the program data in the RAM 52. Namely, the
modification is to be carried out by using the modifi-
cation data corresponding to the block numbers from
1 to the number N'. This number N' can be supplied
from the processor in the communication control pro-
cessor to the adapter by issuing an IAD command
such as a transfer command for the modification data,
and an initial program loading command using the for-
mats using the command formats of Figs. 10A and
10B, as explained before with reference to Fig. 10B.
The above number N' can be contained in the format
of the AOPD of Fig. 10B.

Next, in step 503, the MPU 51 sets an initial value
"1" as a variable M. Then, the MPU 51 reads a modi-
fication data block whose block number is equal to the
above variable M from the EEPROM 54, and then it
is determined whether or not the check sum in the
header area (Fig. 7) in each modification data block
is correct, in step 505. When it is determined that the
check sum is not correct in step 505, the operation of
Figs. 16A to 16C is completed. When it is determined
that the check sum is correct in step 505, the oper-
ation goes to step 506 to determine whether or not the
information on the "current version" in the header area
(Fig. 7) is equal to an indication of "current version" in
the content of the RAM 52 in the adapter. As exp-
lained later, when the program data held on the RAM
52 is modified with the modification data of each modi-
fication data block, a number indicating the new cur-
rent version is written in a predetermined area of the
RAM 52. When it is determined not equal in step 506,
the operation of Figs. 16A to 16C ends (abnormal
end). When it is determined equal in step 506, the
operation goes to step 507 to read out modification
data in the top address (of the first unit) of the modifi-
cation data block.

In step 508, the above-mentioned type of the
modification data of the unit is determined. When the
type is determined to be "00" the operation goes to
step 509. When the type is determined to be "01" the
operation goes to step 511. In step 509, the MPU 51
reads out the program data in the address of the
above unit from the RAM 52, as a current data, and it
is determined whether or not the current data is equal
to the old data (Fig. 8A) in the unit in step 510. When
it is determined to be not equal in step 510, the oper-
ation of Figs. 16A to 16C is completed. When it is

determined equal in step 510, the operation goes to
step 511.

In step 511, the MPU 51 reads out modification
data in the next unit. Then, in step 512, it is deter-

5 mined whether or not the end mark is detected. When
the end mark is detected, the operation goes to step
513. When the end mark is not detected, the operation
goes back to step 508 for the operation of the next
unit.

10 In step 513, the MPU 51 reads out modification
data in the top address (of the first unit) of the modi-
fication data block again from the EEPROM 54. Then,
in step 514, the MPU 51 rewrites, in the RAM 52, the
program data of the same address as that in the unit,

15 with the modification data of the unit. Then, in step
515, the MPU 51 reads out modification data in the
next unit. In step 516, it is determined whether or not
the end mark is detected. When the end mark is
detected, the operation goes to step 517. When the

20 end mark is not detected, the operation goes back to
step 514.

In step 517, the MPU 51 rewrites the information
on the above-mentioned number indicating the new
current version. Then, in step 518, the above-men-

25 tioned variable M is incremented by one. In step 51 9,
it is determined whether or not the above variable M
reaches the above number N'. When it is determined
that the variable M reaches the number N', the oper-
ation of Figs. 16A to 16C is completed. When it is

30 determined that the variable M does not reach the
number N', the operation goes back to step 504 to
carry out the modification with the modification data of
the next new version.

35 Other Matters

As explained above, according to the above con-
struction, a modification of firmware can be carried out
fast and easily. In addition, for example, as shown in

40 the system of Fig. 2, the transfer of modification data
to a remote data processing apparatus and a com-
mand to modify program data in a remote data proces-
sing apparatus, are possible through the network.
Further, it is easy for the processors in the communi-

45 cation control processor to command a number of
data processing apparatuses to modify program data
in their apparatuses. Namely, the modification can be
carried out in a large number of data processing
apparatuses.

so Another advantage is that program data of an
older version can be retrieved when it turns out that
modified program data is not successfully executed.
For example, in the above embodiment, when one of
the processors 40 ̂ 402, and 403 in the communi-

55 cation control processor detects a malfunction of the
adapters after a modification of the program data up
to a first version number, the processor can make the
adapter retrieve a second version which is older than

11

19 EP 0 472 433 A2 20

the above first version. This is carried out by issuing
an IAD command such as the transfer command for
the modification data and the initial program loading
command using the formats of Figs. 10A and 10B to
the adapters wherein the number N' of modification
data blocks which corresponds to the above older ver-
sion is set in the aforementioned area for the number
N' of modification data blocks in the AOPD of Fig.
10B. Namely, the above number N' is a number of the
modification data blocks to be used for modification by
which the version of the program data in the RAM 52
is made the above second version. As explained with
reference to Figs. 15 to 16D, when the adapter
receives the above initial program loading command,
the operations of Figs. 15 to 16D are carried out, and
therefore, the version of the program data in the RAM
52 is made the above second version.

Although, in the above embodiment, the modifi-
cation data path 13 in Fig. 1 is realized by the I/O bus
42i or 422, the bus controller 50, and the local bus 56,
and the modification data transfer unit 9 in Fig. 1 is
realized by the MPU 51 and the bus controller 50, the
modification data path 13 may be provided, in addition
to the local path 50 of Fig. 4, for the processor to
directly access the EEPROM 54.

Claims

1 . A firmware modification system in a data proces-
sing apparatus (1), comprising:

a processor (3) for executing a program;
a working grogram holding means (4) for

holding therein data of said program executed by
said processor (3);

a fixed program data storing means (5) for
storing a fixed program data;

a modification data storing means (6) for
storing modification data with which said fixed
program data is to be modified, where said modi-
fication data storing means (6) is accessible from
outside of said data processing apparatus (1) for
writing the modification data therein;

a fixed program data loading means (7) for
reading said fixed program data from said fixed
program data storing means (5), and loading the
fixed program data in said working program hold-
ing means (4) to hold said fixed program data the-
rein; and

a working program modifying means (8) for
modifying said data of the program held in said
working program holding means (4), with said
modification data stored in said modification data
storing means (6).

2. A firmware modification system according to
claim 1 , wherein said fixed program data includes
program portions respectively corresponding to

the functions of said fixed program data loading
means (7) and said working program modifying
means (8), and said fixed program data loading
means (7) and said working program modifying

5 means (8) are respectively realized by executions
of said program portions by said processor (3).

3. A firmware modification system according to
claim 1, further comprising:

10 a modification data supply means (2), pro-
vided outside of said data processing apparatus
(1), for supplying the modification data which is to
be stored in said modification data storing means
(6).

15
4. A firmware modification system according to

claim 3, wherein said modification data supply
means (2) comprises:

a modification data holding means (11) for
20 holding said modification data which is to be

stored in said modification data storing means
(6); and

a transfer command issuing means (12) for
issuing a transfer command to said data proces-

25 sing apparatus (1);
said firmware modification system further

comprises a modification data transfer path (13)
from said modification data holding means (1 1) to
said modification data storing means;

30 said data processing apparatus (1) further
comprises a transfer command receiving means
for receiving said transfer command;

said firmware modification system further
comprises a modification data transfer means

35 (10) for reading said modification data from said
modification data holding means (11), transfer-
ring the modification data from the modification
data holding means (11) through said modifi-
cation data transfer path (13) to said modification

40 data storing means (6), and writing the modifi-
cation data in the modification data storing means
(6), when said transfer command is received by
said transfer command receiving means.

45 5. A firmware modification system according to
claim 1, wherein said modification data contains
a plurality of versions of modification data;

said firmware modification system further
comprises a modification version command

so means for commanding said working program
modifying means (8) to modify the data of the pro-
gram held in said working program holding means
(4) with the modification data up to a specific ver-
sion; and

55 said working program modifying means (8)
modifies the data of the program held in said
working program holding means (4) with the
modification data up to said version in the order

12

21 EP 0 472 433 A2 22

of the versions from the oldest to the newest when
receiving said commanding of the version.

A firmware modification system according to
claim 5, wherein said plurality ofversions of modi- 5
fication data are stored in said modification data
storing means (6) in a plurality of blocks respect-
ively corresponding to the versions, and the
blocks are arrayed in the order of the versions
from the oldest to the newest; and 10

said modification version command
means commands said version by a number of
blocks containing the modification data up to said
specific version.

15
A firmware modification system according to
claim 1, wherein each block for each version con-
tains:
an address of each data which is to be modified;
new data of the address for the version; and old 20
data of the address for a version which is older
than the version of the block by one version level;

said working program modifying means (8)
modifies the data in said working program holding
means (4) in the order of the versions from the 25
oldest to the newest; and

said working program modifying means (8)
further comprising:

a data comparing means for com-
paring, before modifying the data in said working 30
program holding means (4), said old data of each
address and the data of the same address in said
working program holding means (4); and

an abnormal stop means for stop-
ping the modifying operation when said old data 35
of each address and the data of the same address
in said working program holding means (4) are
determined to be not equal by said data compar-
ing means.

40
A firmware modification system according to
claim 6, wherein each block of the modification
data contains first information indicating a version
of the program data up to which version the pro-
gram data held in said working program holding 45
means is modified with modification data of the
block;

said working program holding means (4)
contains an area holding second information indi-
cating a version of program data which is cur- 50
rently held therein;

said working grogram modifying means (8)
renews said second information indicating the
version of program data, based on said first infor-
mation when the program data held in said work- 55
ing program holding means is modified with the
modification data in each block.

9. A firmware modification system according to
claim 6, wherein said working program modifying
means (8) comprises a version confirming means
for determing whether or not the version of the
progrm data in said working progrm holding
means corresponds to a version up to which ver-
sion the program data held in the working prog-
ram holding means is modified with modification
data of each block, based on said firstand second
information, before the program data held in the
working program holding means is modified with
the modification data in each block.

10. A firmware modification system according to
claim 1, wherein said fixed program data storing
means (5) is realized by a read only memory.

13

EP 0 472 433 A2

F i g . 1

M O D I F I C A T I O N DATA S U P P L Y UNIT

11

M O D I F I C A T I O N
DATA
H O L D I N G U N I T

M O D I F I C A T I O N

DATA S T O R I N G

U N I T

12

T R A N S F E R C O M M A N D
I S S U I N G U N I T

10.

T R A N S F E R C O M M A N D

R E C E I V I N G U N I T
.

* x \ 9-
\ \ u - r

F I X E D P R O G R A M

DATA S T O R I N G

U N I T

\ > —

1 . L

M O D I F I C A T I O N

DATA T R A N S F E R

U N I T

WORKING P R O G R A M

HOLDING UNJT

* \ a

J* \ ^ W O R K I N G P R O G R A M

M O D I F Y I N G U N I T

\ 7-

P R O C E S S O R

\ F I X E D P R O G R A M
V — DATA L O A D I N G

U N I T

DATA P R O C E S S I N G A P P A R A T U S

14

U *tf ̂ «too rtZ.

!P 0 472 433 A2

F i g . 3

3 h 3 1 2

SS U s s u

33 1

3 3 2 B H

B H

4 0 , 4,0 c

41 2

4 0 3

P M P M P M

16

:P 0 472 433 A2

F i g . 4

42 i

3 6

5 6

5 5
D E V I C E
C O N T R O L L E R

O R
L I N E
I N T E R F A C E

I / O D E V I C E
O R

T R A N S M I S S I O N
L I N E

17

EP 0 472 433 A2

F i g . 5

a
5TART M O D I F I C A T I O N D A T A

T R A N S F E R O P E R A T I O N

I S S U E A D A P T O R S T A T E

T R A N S I T I O N C O M M A N D

0 0

101

C O M P L E T E D ?

'""•"""TesT'""*

1 0 3

— " " " ^ T S A D A P T O R ^ "

P R E P A R E D TO R E C E I V E

■ ^ ^ D A T A ?

^ ^ T y e s 1 0 4

I S S U E M O D I F I C A T I O N D A T A

T R A N S F E R C O M M A N D

1 0 5

c o m p l e t e d ?

" " ^ ^ T y e s
0 6

I S S U E A D A P T O R O P E R A T I O N

R E S T A R T C O M M A N D

Y E S

(E N D ^ 1 0 8

1 —

A B N O R M A L
T E R M I N A T I O N
R O U T I N E

18

Hi

x 2
rr l u u j

LU UJ

? >" - >-
3 co < m

< *

^ <N > OJ l,
O H £ Z ^ J UJ U,

U q Q U_
. O Q Q Lu

—1 <1 <
» o

o £ -
<

o £

CD |- CD u

id S b 3

(A z o • 5
Q >

y o o Q 2
^ o

t w — J > w Q
g u J u o UJ UJ fZ LU

> £ >" >" CD ~

CM fO o — o —

^ C Q

0 0 0 0 0)

C j O i D i

£ £ £

20

UJ
Q_
Q

O C
2 C
i C

8 5 g
i § §

Q * g

§ £ 5

c s o

u z 2

5 o o
o
2

b

<rt o

— LU

j Q UJ

! § 8

1 P g
o

) | U-

5
i

O

s o ©
0

b

in
LU

j Q UJ

I § 8

s ^ Z 0
J> 1 U-

s,
D

O

k

EP 0 472 433 A2

F i g . 1 1

FNC CODE O P E R A T I O N

0 0 NEW O P E N

0 1 A P P E N D O P E N

0 2 PUT
;

0 3 C L O S E

0 4 C L E A R

0 5 V E R I F Y

22

EP 0 472 433 A2

T O P A D D R E S S

^

F i g . 1 2

C U R R E N T N E W
V E R S I O N V E R S I O N

SIZE OF MODIFICATION DATA S T O R A G E A R E A

0 o C H E C K S U M

T Y P E (O O) A D D R E S S

OLD DATA N E W DATA

T Y P E (0 0) A D D R E S S

O L D DATA N E W D A T A

FIXED V A L U E (" D 8 L K ")

FIXED VALUE F F F F F - F F F

H E A D E R

M O D I F I C A T I O N DATA A R E A

END M A R K

<
UJ
o :
<
X
UJ
Q
<
LU

Q

Z
o

Si
y
L u <

° 5
5 <

H E A D E R

M O D I F I C A T I O N DATA A R E A

E N D M A R K

23

EP 0 472 433 A2

F i g . 1 3 A

C S T A R T 3

S T O R E AOPD (F N C C O D E « " 0 0 " OR "01")

IN M E M O R Y

S T O R E M O D I F I C A T I O N DATA IN

M E M O R Y

I S S U E IAD C O M M A N D

3 0 1

3 0 2

3 0 3

EP 0 472 433 A2

F i g . 1 3 B

S T O R E A O P D OF F N C C O D E « " 0 2 "
IN M E M O R Y

S T O R E M O D I F I C A T I O N D A T A
IN M E M O R Y

ISSUE IAD C O M M A N D

3 0 7

3 0 8

EP 0 472 433 A2

F i g . 1 3 C

26

o

o

f

u-

o

Q
2 *

\ J 7 >

- UJ fx

IT* w S " z 0 "

- 3 *
- U u
- -1UJ

I 2

° Z fc *

<
UJ

tP U Hit 433 Ait

F i g . 7 5

f S T A R T J

LUMU H K M W A R E O F
V E R S I O N Z E R O IN R A M
IN A D A P T O R

2 0 1

n c A U N U M B E R O F
B L O C K S OF M O D I F I C A T I O N

DATA IN A O P D

2 0 2

2 0 4

O P E R A T I O N O F
F I G S . 16A TO 1 6 C

^

3

EP 0 472 433 A2

F i g 1 6 A

G
S T A R T

M O D I F I C A T I O N

- — ^ C H E C K SUM IN
C O N T R O L DATA AREA IS

— C O R R E C T ? -

Y E S

H O L D M O D I F I C A T I O N DATA B L O C K
N U M B E R N '

5 0 2

SET INITIAL VALUE V AS VARIABLE M
5 0 3

READ M O D I F I C A T I O N DATA BLOCK M
5 0 4

CHECK S U M
N H E A D E R A R E A

- - ^ C O R R E C T ?

Y E s T " " " " " " ^

— ^ C U R R E N T V E R S I O N 1 7 ^
IN H E A D E R IS S A M E A S

" C U R R E N T V E R S I O N " IN
■ - ^ R A M I N A D A P T O R

Y E S

®

5 0 6

30

EP 0 472 433 A2

F i g , 1 6 B

R E A D OUT M O D I F I C A T I O N DATA
IN F I R S T UNIT (A D D R E S S)

R E A D OUT M O D I F I C A T I O N DATA

IN THAT A D D R E S S

OLD D A T A "
S EQUAL TO C U R R E N T DATA
— IN RAM IN A D A P T O R ?

5 0 7

50 8

5 0 9

5 1 0

NC

Y E S

R E A D OUT M O D I F I C A T I O N DATA
IN N E X T UNIT (A D D R E S S)

5 1 !

Y E S

©

31

EP 0 472 433 A2

F i g . 1 6 C

R E A D OUT M O D I F I C A T I O N DATA IN
F I R S T UNIT (A D D R E S S)

R E W R I T E C O N T E N T OF RAM IN A D A P T O R '
C O R R E S P O N D I N G TO THAT A D D R E S S
WITH M O D I F I C A T I O N DATA

i 1 1 * i

5 1 3

5 1 4

READ OUT M O D I F I C A T I O N DATA IN N E X T
UNIT (A D D R E S S)

5 1 5

	bibliography
	description
	claims
	drawings

